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Abstract

In the present paper, for wave equations with power nonlinearity we investigate the problem of the existence or nonexistence of
global solutions of a multidimensional version of the first Darboux problem in the conic domain.
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1. Statement of the problem

Let us consider a nonlinear wave equation of the type

Lu :=
∂2u

∂t2 − ∆u + mu = f (u)+ F, (1)

where f and F are given real functions; f is a nonlinear function, f (0) = 0, and u is an unknown real function,
m = const ≥ 0, ∆ =

∑n
i=1

∂2

∂x2
i

, n ≥ 2.

By D : t > |x |, xn > 0, we denote a half of a light cone of the future which is bounded by a part S0
= D∩{xn = 0}

of the hyperplane xn = 0 and by a part S : t = |x |, xn ≥ 0, of the characteristic conoid C : t = |x | of Eq. (1). Suppose
DT = {(x, t) ∈ D : t < T }, S0

T = {(x, t) ∈ S0
: t ≤ T }, ST = {(x, t) ∈ S : t ≤ T }, T > 0. In the case T = ∞, it is

obvious that D∞ = D, S0
∞ = S0 and S∞ = S.

For Eq. (1) we consider the problem on finding in the domain DT a solution u(x, t) of that equation under the
boundary conditions

∂u

∂xn

∣∣∣∣
S0

T

= 0, u|ST = g, (2)

where g is the given real function on ST .
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The problem (1), (2) is by itself a multidimensional version of the first Darboux problem for the nonlinear Eq. (1),
when one portion of the data support is the characteristic manifold and the other one is the manifold of time type [1,
pp. 228,233].

The questions of existence or nonexistence of a global solution of the Cauchy problem for nonlinear equations of
type (1) with the boundary conditions u|t=0 = u0, ∂u

∂t

∣∣
t=0 = u1 have been considered and studied in [2–17]. As for

the multidimensional versions of the first Darboux problem for linear hyperbolic equations of the second order, they
are formulated correctly and their global solvability arises in the corresponding functional spaces [18–20].

In the present work we distinguish particular cases of the nonlinear function f = f (u), when the problem (1), (2)
is globally solvable in one case and unsolvable in the other case.

2. Global solvability of the problem

We consider the case when f (u) = −λ|u|
pu, where λ 6= 0 and p > 0 are the given real numbers. In this case Eq.

(1) takes the form

Lu :=
∂2u

∂t2 − ∆u + mu = −λ|u|
pu + F. (3)

Note that Eq. (3) emerges in relativistic quantum mechanics [21–24].
In this section we will restrict ourselves to the consideration of the case when the boundary conditions (2) are

homogeneous, i.e.

∂u

∂xn

∣∣∣∣
S0

T

= 0, u|ST
= 0. (4)

Remark 1. The embedding operator I : W̊ 1
2 (DT , ST ) → Lq(DT ) is the linear continuous compact operator for

1 < q <
2(n+1)

n−1 , when n > 1 [25, p. 81]. At the same time, Nemytski’s operator K : Lq(DT ) → L2(DT ), acting
by the formula K u := −λ|u|

pu, is continuous and bounded if q ≥ 2(p + 1) [26, p. 349], [27, pp. 66,67]. Thus if
p < 2

n−1 , i.e. 2(p + 1) < 2(n+1)
n−1 , there exists a number q such that 1 < 2(p + 1) ≤ q <

2(n+1)
n−1 , and hence the

operator

K0 = K I : W̊ 1
2 (DT , ST ) → Lq(DT ) (5)

is continuous and compact. In addition, from u ∈ W̊ 1
2 (DT , ST ) it all the more follows that u ∈ L p+1(DT ). As is

mentioned above, we assume that here and in the sequel, p > 0.

If u ∈ C2(DT ) is a classical solution of the problem (3), (4), then multiplying both parts of Eq. (3) by an arbitrary
function ϕ ∈ C2(DT ) which satisfies the condition ϕ|t=T = 0, after integration by parts we obtain∫

S0
T ∪ST

∂u

∂N
ϕ ds −

∫
DT

utϕt dx dt +

∫
DT

∇x u∇xϕ dx dt +

∫
DT

muϕ dx dt

= −λ

∫
DT

|u|
puϕ dx dt +

∫
DT

Fϕ dx dt, (6)

where ∂
∂N = ν0

∂
∂t −

∑n
i=1 νi

∂
∂xi

is the derivative with respect to the conormal, ν = (ν1, . . . , νn, ν0) is the unit vector

of the outer normal to ∂DT , ∇x = ( ∂
∂x1
, . . . , ∂

∂xn
). Taking into account that ∂u

∂N

∣∣
S0

T
=

∂u
∂xn

, and ST is the characteristic

manifold on which ∂
∂N is the interior differential operator, by virtue of (4) we have ∂u

∂N

∣∣
S0

T ∪ST
= 0. Therefore Eq. (6)

takes the form

−

∫
DT

utϕt dx dt +

∫
DT

∇x u∇xϕ dx dt +

∫
DT

muϕ dx dt = −λ

∫
DT

|u|
puϕ dx dt +

∫
DT

Fϕ dx dt. (7)

Taking into account the fact that u ∈ W̊ 1
2 (DT , ST ), by Remark 1, implies |u|

pu ∈ L2(DT ), we can consider
equality (7) as the basis for finding a weak generalized solution of the problem (3), (4) of the class W̊ 1

2 (DT , ST ).
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Definition 1. Let F ∈ L2(DT ) and 0 < p < 2
n−1 . The function u ∈ W̊ 1

2 (DT , ST ) is said to be a weak generalized
solution of the nonlinear problem (3), (4) in the domain DT , if for any function ϕ ∈ W 1

2 (DT ) such that ϕ|t=T = 0 the
integral equation (7) is fulfilled.

Remark 2. In a standard way [25, p. 113] we can prove that if a weak generalized solution u of the problem (3), (4)
belongs to the space W 2

2 (DT ), then the homogeneous boundary conditions (4) for that solution will be fulfilled in the
sense of the trace theory.

Suppose C̊2(DT , S0
T , ST ) =

{
u ∈ C2(DT ) :

∂u
∂xn

∣∣∣
S0

T

= 0, u|ST = 0
}

.

Definition 2. Let F ∈ L2(DT ) and 0 < p < 2
n−1 . The function u ∈ W̊ 1

2 (DT , ST ) is said to be a strong
generalized solution of the nonlinear problem (3), (4) in the domain DT if there exists a sequence of functions
uk ∈ C̊2(DT , S0

T , ST ) such that uk → u in the space W̊ 1
2 (DT , ST ), and [Luk + λ|uk |

puk] → F in the space L2(DT ).
Note that the convergence of the sequence {λ|uk |

puk} to the function λ|u|
pu in the space L2(DT ), as uk → u in the

space W̊ 1
2 (DT , ST ), follows from Remark 1.

Remark 3. It can be easily verified that if u ∈ W̊ 1
2 (DT , ST ) is a strong generalized solution of the problem (3), (4),

then it will automatically be a weak generalized solution of that problem. Therefore if in addition the fact that
u ∈ W 2

2 (DT ) is known, then the boundary conditions (4) for that solution are fulfilled in the sense of the trace
theory.

Definition 3. Let 0 < p < 2
n−1 , F ∈ L2,loc(D) and F ∈ L2(DT ) for any T > 0. We say that the problem (3), (4) is

globally solvable if for any T > 0 it has a strong generalized solution in the domain DT from the space W̊ 1
2 (DT , ST ).

Lemma 1. Let λ ≥ 0, 0 < p < 2
p−1 and F ∈ L2(DT ). Then for every strong generalized solution u ∈ W̊ 1

2 (DT , ST )

of the problem (3), (4) in the domain DT an a priori estimate

‖u‖W̊ 1
2 (DT ,ST )

≤

√
e

2
T ‖F‖L2(DT ) (8)

is valid.

Proof. Let u ∈ W̊ 1
2 (DT , ST ) be the strong generalized solution of the problem (3), (4). By Definition 2, there exists a

sequence of functions uk ∈ C̊2(DT , S0
T , ST ) such that

lim
k→∞

‖uk − u‖W̊ 1
2 (DT ,ST )

= 0, lim
k→∞

∥∥Luk + λ|uk |
puk − F

∥∥
L2(DT )

= 0. (9)

Consider the function uk ∈ C̊2(DT , S0
T , ST ) in the capacity of a solution of the problem

Luk + λ|uk |
puk = Fk, (10)

∂uk

∂xn

∣∣∣∣
S0

T

= 0, uk |ST
= 0. (11)

Here

Fk = Luk + λ|uk |
puk . (12)

Multiplying both parts of Eq. (10) by ∂uk
∂t and integrating with respect to the domain Dτ , 0 < τ ≤ T , we obtain

1
2

∫
Dτ

∂

∂t

(
∂uk

∂t

)2

dx dt −

∫
Dτ

∆uk
∂uk

∂t
dx dt +

m

2

∫
Dτ

∂

∂t
u2

k dx dt

+
λ

p + 2

∫
Dτ

∂

∂t
|uk |

p+2 dx dt =

∫
Dτ

Fk
∂uk

∂t
dx dt. (13)
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Let Ωτ := DT ∩ {t = τ }, 0 < τ < T . Obviously, ∂Dτ = S0
τ ∪ Sτ ∪ Ωτ . Taking into account (11) and equalities

ν|Ωτ
= (0, . . . , 0, 1), and ν|S0

T
= (0, . . . , 0,−1, 0), integration by parts provides us with∫

Dτ

∂

∂t

(
∂uk

∂t

)2

dx dt =

∫
∂Dτ

(
∂uk

∂t

)2

ν0 ds =

∫
Ωτ

(
∂uk

∂t

)2

dx +

∫
Sτ

(
∂uk

∂t

)2

ν0 ds,∫
Dτ

∂

∂t
(uk)

2 dx dt =

∫
∂Dτ

u2
kν0 ds =

∫
Ωτ

u2
k dx,∫

Dτ

∂

∂t
|uk |

p+2 dx dt =

∫
∂Dτ

|uk |
p+2ν0 ds =

∫
Ωτ

|uk |
p+2 dx,∫

Dτ

∂2uk

∂x2
i

∂uk

∂t
dx dt =

∫
∂Dτ

∂uk

∂xi

∂uk

∂t
νi ds −

1
2

∫
Dτ

∂

∂t

(
∂uk

∂xi

)2

dx dt

=

∫
∂Dτ

∂uk

∂xi

∂uk

∂t
νi ds −

1
2

∫
∂Dτ

(
∂uk

∂xi

)2

ν0 ds =

∫
Sτ

∂uk

∂xi

∂uk

∂t
νi ds

−
1
2

∫
Sτ

(
∂uk

∂xi

)2

ν0 ds −
1
2

∫
Ωτ

(
∂uk

∂xi

)2

dx,

whence by virtue of (13) it follows that∫
Dτ

Fk
∂uk

∂t
dx dt =

∫
Sτ

1
2ν0

[
n∑

i=1

(
∂uk

∂xi
ν0 −

∂uk

∂t
νi

)2

+

(
∂uk

∂t

)2
(
ν2

0 −

n∑
j=1

ν2
j

)]
ds

+
1
2

∫
Ωτ

[
mu2

k +

(
∂uk

∂t

)2

+

n∑
i=1

(
∂uk

∂xi

)2
]

dx +
λ

p + 2

∫
Ωτ

|uk |
p+2 dx . (14)

Since Sτ is the characteristic manifold,(
ν2

0 −

n∑
j=1

ν2
j

)∣∣∣∣∣
Sτ

= 0. (15)

Taking into account that (ν0
∂
∂xi

− νi
∂
∂t ), i = 1, . . . , n, is the interior differential operator on Sτ , by virtue of (11)

we have(
∂uk

∂xi
ν0 −

∂uk

∂t
νi

)∣∣∣∣
Sτ

= 0, i = 1, . . . , n. (16)

With regard for (15) and (16), from (14) we find that∫
Ωτ

[
mu2

k +

(
∂uk

∂t

)2

+

n∑
i=1

(
∂uk

∂xi

)2
]

dx +
2λ

p + 2

∫
Ωτ

|uk |
p+2 dx = 2

∫
Dτ

Fk
∂uk

∂t
dx dt,

whence by virtue of λ > 0 it in turn follows that∫
Ωτ

[
mu2

k +

(
∂uk

∂t

)2

+

n∑
i=1

(
∂uk

∂xi

)2
]

dx ≤ 2
∫

Dτ
Fk
∂uk

∂t
dx dt. (17)

With the notation w(δ) =
∫
Ωδ

[
mu2

k + (
∂uk
∂t )

2
+
∑n

i=1(
∂uk
∂xi
)2
]

dx , taking into account the inequality 2Fk
∂uk
∂t ≤

ε(
∂uk
∂t )

2
+

1
ε

F2
k , valid for any ε = const > 0, we find that inequality (17) yields

w(δ) ≤ ε

∫ δ

0
w(σ) dσ +

1
ε
‖Fk‖

2
L2(Dδ), 0 < δ ≤ T . (18)
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From (18), bearing in mind that the value ‖Fk‖
2
L2(Dδ)

, as a function of δ, is nondecreasing, it follows by the Gronwall
lemma [28, p. 13] that

‖w(δ)‖ ≤
1
ε

‖Fk‖
2
L2(Dδ) exp δε.

The latter with regard to infε>0
exp δε
ε

= eδ, which can be achieved for ε =
1
δ
, results in

w(δ) ≤ eδ‖Fk‖
2
L2(Dδ), 0 < δ ≤ T . (19)

In turn, from (19) it follows that

‖uk‖
2
W̊ 1

2 (DT ,ST )
=

∫
DT

[
mu2

k +

(
∂uk

∂t

)2

+

n∑
i=1

(
∂uk

∂xi

)2
]

dx dt

=

∫ T

0
w(δ) dδ ≤

e

2
T 2

‖Fk‖
2
L2(Dδ). (20)

Here we have used the fact that in the space W̊ 1
2 (DT , ST ) the expression {

∫
DT

[mu2
+ ( ∂u

∂t )
2
+
∑n

i=1(
∂uk
∂xi
)2] dx dt}1/2

provides us with one of the equivalent norms, irrespective of whether m = 0 or m > 0. Indeed, from equalities
u|ST = 0 and u(x, t) =

∫ t
ψ(x)

u(x,τ )
∂t dτ , (x, t) ∈ DT , where t − ψ(x) = 0 is the equation of the conic manifold ST ,

standard reasoning leads us to the inequality [25, p. 63]∫
DT

u2(x, t) dx dt ≤ T 2
∫

DT

(
∂u

∂t

)2

dx dt.

Now, by (9) and (12), passing in inequality (20) to the limit as k → ∞, we obtain (8), which proves our lemma. �

Theorem 1. Let λ > 0, 0 < p < 2
n−1 , F ∈ L2,loc(DT ) and F ∈ L2(DT ) for any T > 0. Then the problem (3), (4) is

globally solvable, i.e. for any T > 0 this problem has a strong generalized solution u ∈ W̊ 1
2 (DT , ST ) in the domain

DT .

Proof. Before we pass to the question of the solvability of the nonlinear problem (3), (4), let us consider the same
question for the linear case, when in Eq. (3) the parameter λ = 0, i.e. for the problem

Lu(x, t) = F(x, t), (x, t) ∈ DT ,

∂u

∂xn

∣∣∣∣
S0

T

= 0, u|ST
= 0.

(21)

In this case, for F ∈ L2(DT ) we analogously introduce the notion of a strong generalized solution w ∈ W̊ 1
2 (DT , ST )

of the problem (21) for which there exists the sequence of functions uk ∈ C̊2(DT , S0
T , ST ) such that limk→∞ ‖uk −

u‖W̊ 1
2 (DT ,ST )

= 0, limk→∞ ‖Luk − F‖L2(DT ) = 0. Here it should be noted that by Lemma 1 for λ = 0 the a priori
estimate (8) is valid for the strong generalized solution of the problem (21), as well.

Since the space C∞

0 (DT ) of finite functions infinitely differentiable in DT is dense in L2(DT ), for the given
F ∈ L2(DT ) there exists the sequence of functions Fk ∈ C∞

0 (DT ) such that limk→∞ ‖Fk − F‖L2(DT ) = 0. For a
fixed k, continuing evenly the function Fk with respect to the variable xn into the domain D−

T := {(x, t) ∈ Rn+1
:

xn < 0, |x | < t < T } and then by zero beyond the domain DT ∪ D−

T , and retaining the same designation, we will
have Fk ∈ C∞(Rn+1

+ ) for which the support supp Fk ⊂ D∞ ∪ D−
∞, where Rn+1

+ = Rn+1
∩ {t ≥ 0}. Denote by uk a

solution of the Cauchy problem

Luk = Fk, uk |t=0 = 0,
∂uk

∂t

∣∣∣∣
t=0

= 0, (22)

which, as is known, exists, is unique and belongs to the space C∞(Rn+1
+ ) [29, p. 192]. Moreover, since supp Fk ⊂

D∞ ∪ D−
∞ ⊂ {(x, t) ∈ Rn+1

: t > |x |} and uk |t=0 = 0, ∂uk
∂t

∣∣∣
t=0

= 0, taking into account the geometry of the domain
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of dependence of a solution of the wave equation Lu = F , we will have supp uk ⊂ {(x, t) ∈ Rn+1
: t > |x |} [29,

p. 191] and, in particular, uk |ST = 0. On the other hand, the function ũk(x1, . . . , xn, t) = uk(x1, . . . ,−xn, t) is
likewise a solution of the same Cauchy problem (22), since the function Fk is even with respect to the variable xn .
Therefore owing to the uniqueness of the solution of the Cauchy problem, we have ũk = uk , i.e. uk(x1, . . . ,−xn, t) =

uk(x1, . . . , xn, t), and hence the function uk is likewise even with respect to the variable xn . This in turn results in
∂uk
∂xn

|xn=0 = 0 which together with the condition uk |ST = 0 implies that if for the narrowing of the function in the

domain DT we retain the same designation, then uk ∈ C̊2(DT , S0
T , ST ). Next, by (8) and (22) we have the inequality

‖uk − u`‖W̊ 1
2 (DT ,ST )

≤

√
e

2
T ‖Fk − F`‖L2(DT ), (23)

because the a priori estimate (8) is valid for the strong generalized solution of the linear problem (21), as well.
Since the sequence {Fk} is fundamental in L2(DT ), the sequence {uk} is, by virtue of (23), likewise fundamental

in the space W̊ 1
2 (DT , ST ), which is complete. Therefore there exists the function u ∈ W̊ 1

2 (DT , ST ) such that
limk→∞ ‖uk − u‖W̊ 1

2 (DT ,ST )
= 0, and since Luk = Fk → F in the space L2(DT ), this function is, according to

the definition, the strong generalized solution of the problem (21). The uniqueness of that solution from the space
W̊ 1

2 (DT , ST ) follows from the a priori estimate (8). Consequently, for the solution u of the problem (21) we can write
u = L−1 F , where L−1

: L2(DT ) → W̊ 1
2 (DT , ST ) is the linear continuous operator, whose norm, by virtue of (8),

admits the estimate

‖L−1
‖L2(DT )→W̊ 1

2 (DT ,ST )
≤

√
e

2
T . (24)

Note that for F ∈ L2(DT ), 0 < p < 2
n−1 , by (24) and Remark 1, the function u ∈ W̊ 1

2 (DT , ST ) is the strong
generalized solution of the problem (3), (4) if and only if u is the solution of the following functional equation:

u = L−1(−λ|u|
pu + F) (25)

in the space W̊ 1
2 (DT , ST ).

We rewrite Eq. (25) in the form

u = Au := L−1(K0u + F), (26)

where the operator K0 : W̊ 1
2 (DT , ST ) → L2(DT ) from (5) is, according to Remark 1, a continuous and compact one.

Consequently, by virtue of (24), the operator A : W̊ 1
2 (DT , ST ) → W̊ 1

2 (DT , ST ) is likewise continuous and compact.
At the same time, by Lemma 1, for any parameter µ ∈ [0, 1] and for any solution of the equation with the parameter
u = µAu the a priori estimate ‖u‖W̊ 1

2 (DT ,ST )
≤ c‖F‖L2(DT ) with the positive constant c, independent of u, µ and F ,

is valid. Therefore by the Lere–Schauder theorem [30, p. 375], Eq. (26) and hence the problem (3), (4) has at least
one solution u ∈ W̊ 1

2 (DT , ST ). Thus Theorem 1 is complete. �

3. Nonexistence of global solvability of the problem

Below we will consider the case when in the problem (1), (2) the coefficient m = 0 and f (u) = λ|u|
p+1, where λ

and p are the given positive numbers, i.e. we will consider the problem

�u :=
∂2u

∂t2 − ∆u = λ|u|
p+1

+ F, (27)

∂u

∂xn

∣∣∣∣
S0

T

= 0, u|ST
= g (28)

in the domain DT , T > 0, where g is the given real function on ST .

Remark 4. Under the assumption that F ∈ L2(DT ), g ∈ W 1
2 (ST ) and 0 < p < 2

n−1 , just analogously to Definitions 1
and 2 regarding a weak and a strong generalized solution of the problem (3), (4) in the domain DT , and also taking
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into account Remark 1, we introduce the notions of a weak and of a strong generalized solution of the problem (27),
(28):

(i) the function u ∈ W 1
2 (DT ) is said to be a weak generalized solution of the problem (27), (28) in the domain DT

if for any function ϕ ∈ W 1
2 (DT ) such that ϕ|t=T = 0 the integral equality

−

∫
DT

utϕt dx dt +

∫
DT

∇x u∇xϕ dx dt = λ

∫
DT

|u|
p+1ϕ dx dt +

∫
DT

Fϕ dx dt −

∫
ST

∂g

∂N
ϕ ds (29)

holds, where ∂
∂N = ν0

∂
∂t −

∑n
i=1 νi

∂
∂xi

is the derivative with respect to the conormal which is, in turn, the interior
differential operator on ST , since the conic manifold ST is a characteristic one, and ν = (ν1, . . . , νn, ν0) is the unit
vector of the outer normal to ∂DT , ∇x = ( ∂

∂x1
, . . . , ∂

∂xn
);

(ii) the function u ∈ W 1
2 (DT ) is said to be a strong generalized solution of the nonlinear problem (27), (28) in

the domain DT if there exists the sequence of functions uk ∈ C̊2
∗(DT , S0

T ) =

{
u ∈ C2(DT ) :

∂u
∂xn

∣∣∣
S0

n

= 0
}

such that

uk → u in the space W 1
2 (DT ), [�uk − λ|uk |

p+1
] → F in the space L2(DT ), and uk |ST → g in the space W 1

2 (ST ).
Obviously, the strong generalized solution of the problem (27), (28) is likewise the weak generalized solution of

that problem.

Remark 5. Note that the derivative with respect to the conormal ∂
∂N , being the interior differential operator on the

characteristic conic manifold S, coincides with the derivative ∂
∂r with respect to the spherical variable r = (t2

+|x |
2)1/2

taken with the minus sign.
There arises a theorem on the nonexistence of a global solution of the problem (27), (28).

Theorem 2. Let F ∈ L2,loc(D), g ∈ W 1
2,loc(S) and F ∈ L2(DT ), g ∈ W 1

2 (ST ) for any T > 0. Then if 0 < p < 2
n−1

and

F |D ≥ 0, g|S ≥ 0,
∂g

∂r

∣∣∣∣
S

≥ 0, (30)

there exists a positive number T0 = T0(F, g) such that for T > T0 the problem (27), (28) fails to have a weak
generalized solution w ∈ W 1

2 (DT ) (which is nontrivial in case F = 0 and g = 0) in the domain DT .

Proof. Let GT : |x | < t < T , G−

T = GT ∩ {xn < 0}, S−

T : t = |x |, xn ≤ 0, t ≤ T . It is evident that
DT = G+

T := GT ∩ {xn > 0} and GT = G−

T ∪ S0
T ∪ DT , where S0

T = ∂DT ∩ {xn = 0}. We continue the functions
u, F and g evenly with respect to the variable xn into G−1

T and S−1
T , respectively. For the sake of simplicity, for the

continued functions defined in GT and S−1
T ∪ ST we retain the same designations u, F and g. Then if u ∈ W 1

2 (DT )

is a weak generalized solution of the problem (27), (28) in the domain DT , for any function ψ ∈ W 1
2 (GT ) such that

ψ |t=T = 0 the equality

−

∫
GT

utψt dx dt +

∫
GT

∇x u∇xψ dx dt = λ

∫
GT

|u|
p+1ψ dx dt +

∫
GT

Fψ dx dt −

∫
S−1

T ∪ST

∂g

∂N
ψ ds (31)

holds.
Indeed, if ψ ∈ W 1

2 (GT ) and ψ |t=T = 0, then it is obvious that ψ |DT
∈ W 1

2 (DT ) and ψ̃ ∈ W 1
2 (DT ), where by the

definition, ψ̃(x1, . . . , xn, t) = ψ(x1, . . . ,−xn, t), (x1, . . . , xn, t) ∈ DT , where ψ̃
∣∣
t=T = 0. Therefore according to

equality (29), we have

−

∫
DT

utψt dx dt +

∫
DT

∇x u∇xψ dx dt = λ

∫
DT

|u|
p+1ψ dx dt +

∫
DT

Fψ dx dt −

∫
ST

∂g

∂N
ψ ds, (32)

−

∫
DT

ut ψ̃t dx dt +

∫
DT

∇x u∇x ψ̃ dx dt = λ

∫
DT

|u|
p+1ψ̃ dx dt +

∫
DT

Fψ̃ dx dt −

∫
ST

∂g

∂N
ψ̃ ds. (33)
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Taking now into account that u, F and g are the even functions with respect to the variable xn , as well as the equality
ψ̃(x1, . . . , xn, t) = ψ(x1, . . . ,−xn, t), (x1, . . . , xn, t) ∈ DT , we find that

−

∫
DT

ut ψ̃t dx dt +

∫
DT

∇x u∇x ψ̃ dx dt = −

∫
G−

T

utψt dx dt +

∫
G−

T

∇x u∇xψ dx dt, (34)

λ

∫
DT

|u|
p+1ψ̃ dx dt +

∫
DT

Fψ̃ dx dt −

∫
ST

∂g

∂N
ψ̃ ds

= λ

∫
G−

T

|u|
p+1ψ dx dt +

∫
G−

T

Fψ dx dt −

∫
S−

T

∂g

∂N
ψ̃ ds. (35)

It follows from (33), (34) and (35) that

−

∫
G−

T

utψt dx dt +

∫
G−

T

∇x u∇xψ dx dt = λ

∫
G−

T

|u|
p+1ψ dx dt +

∫
G−

T

Fψ dx dt −

∫
S−

T

∂g

∂N
ψ ds. (36)

Finally, summing equalities (32) and (36), we obtain (31).

Note that the inequality ∂g
∂r

∣∣∣
S

≥ 0 under the condition (30) should be understood in a generalized sense, i.e. by the

assumption g ∈ W 1
2,loc(S), there exists the generalized derivative ∂g

∂r ∈ L2,loc(S) which is nonnegative, and hence for
any function β ∈ C(S), β ≥ 0, finite with respect to the variable r , we have the inequality∫

S

∂g

∂r
β ds ≥ 0. (37)

Here we make use of the method of test functions [14, pp. 10–12]. In the capacity of such a function we take in
equality (31) the function ψ(x, t) = ψ0[

2
T 2 (t

2
+ |x |

2)], where ψ0 ∈ C2((−∞,+∞)), ψ0 ≥ 0, ψ ′

0 ≤ 0; ψ0(σ ) = 1

for 0 ≤ σ ≤ 1, and ψ0(σ ) = 0 for σ ≥ 2 [14, p. 22]. Obviously, ψ |t=T = 0 and ψ ∈ C2(GT ), and furthermore,
ψ ∈ W 1

2 (GT ). Integrating the left-hand side of (31) by parts, we obtain∫
GT

u�ψ dx dt = λ

∫
GT

|u|
p+1ψ dx dt +

∫
GT

Fψ dx dt +

∫
S−

T ∪ST

g
∂ψ

∂N
ds −

∫
S−

T ∪ST

∂g

∂N
ψ ds. (38)

By Remark 5, owing to (30) and (37), we have∫
DT

Fψ dx dt ≥ 0,
∫

S−

T ∪ST

g
∂ψ

∂N
ds ≥ 0,

∫
S−

T ∪ST

∂g

∂N
ψ ds ≤ 0, (39)

where ψ is the test function, introduced above.
Assuming that the functions F , g and ψ are fixed, we introduce into consideration the function of one variable T ,

γ (T ) =

∫
GT

Fψ dx dt +

∫
S−

T ∪ST

g
∂ψ

∂N
ds −

∫
S−

T ∪ST

∂g

∂N
ψ ds, T > 0. (40)

Because of the absolute continuity both of the integral and of inequalities (39), the function γ (T ) from (40) is
nonnegative, continuous, nondecreasing and limT →0 γ (T ) = 0.

Taking into account (40), we rewrite equality (38) in the form

λ

∫
GT

|u|
p+1ψ dx dt =

∫
GT

u�ψ dx dt − γ (T ). (41)

If in Young’s inequality with the parameter ε > 0 for α = p + 1

ab ≤
ε

α
aα +

1

α′εα
′−1

bα
′

, a, b ≥ 0, α′
=

α

α − 1
= 1 +

1
p

we take a = |u|ψ1/α , b =
|�ψ |

ψ1/α , then bearing in mind that α
′

α
= α′

− 1 =
1
p , we find that

|u�ψ | = |u|ψ1/α
·
|�ψ |

ψ1/α ≤
ε

α
|u|

αψ +
1

α′εα
′−1

|�ψ |
α′

ψα
′−1

. (42)
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Owing to (42), equality (41) yields(
λ−

ε

α

) ∫
GT

|u|
αψ dx dt ≤

1

α′εα
′−1

∫
GT

|�ψ |
α′

ψα
′−1

dx dt − γ (T ),

whence for ε < λα we have∫
GT

|u|
αψ dx dt ≤

α

(λα − ε)α′εα
′−1

∫
GT

|�ψ |
α′

ψα
′−1

dx dt −
α

λα − ε
γ (T ). (43)

Taking now into account that α′
=

α
α−1 , α =

α′

α′−1 and min0<ε<λα
α

(λα−ε)α′εα
′−1 =

1
λα

′ , which can be achieved for

ε = λ, from (43) it follows that∫
GT

|u|
αψ dx dt ≤

1

λα
′

∫
GT

|�ψ |
α′

ψα
′−1

dx dt −
α′

α
γ (T ). (44)

According to the properties of the function ψ0, the test function ψ(x, t) = ψ0[
2

T 2 (t
2

+ |x |
2)] = 0 for

r = (t2
+ |x |

2)1/2 ≥ T . Therefore making the change of variable t =
√

2T ξ0, x =
√

2T ξ , we can easily verify
that ∫

GT

|�ψ |
α′

ψα
′−1

dx dt =

∫
r=(t2+|x |2)1/2≤T

|�ψ |
α′

ψα
′−1

dx dt = (
√

2 T )n+1−2α′

~0, (45)

where, as is known [14, p. 23],

~0 =

∫
1≤|ξ0|

2+|ξ |2≤2

|2(1 − n)ψ ′

0 + 4(ξ2
0 − |ξ |2)ψ ′′

0 |
α′

ψα
′−1

0

dξ dξ0 < +∞.

By (45), inequality (44) with regard for the fact that ψ0(σ ) = 1 for 0 ≤ σ ≤ 1, we obtain∫
r≤T/

√
2
|u|

α dx dt ≤

∫
GT

|u|
αψ dx dt ≤

(
√

2 T )n+1−2α′

λα
′

~0 −
α′

λ
γ (T ). (46)

If p < 2
n−1 , i.e. for n + 1 − 2α′ < 0, where α′

= 1 +
1
p , the equation

δ(T ) =
(
√

2 T )n+1−2α′

λα
′

~0 −
α′

λ
γ (T ) = 0 (47)

has the unique positive root T = T0 > 0, since the function δ1(T ) =
(
√

2 T )n+1−2α′

λα
′ ~0 is positive, continuous and

strictly decreasing on the interval (0,+∞), where limT →0 δ1(T ) = +∞ and limT →∞ δ1(T ) = 0, while the function
γ (T ) is, as is mentioned above, nonnegative, continuous and nondecreasing, and limT →+∞ γ (T ) > 0, because we
assume that at least one of the functions F and g is not trivial. Therefore if there exists a solution of the problem (27),
(28) in the domain DT , then without fail T ≤ T0 = T0(F, g), which proves Theorem 2. �

Remark 6. Making use of the reasoning of [14, p. 23], the conclusion of Theorem 2 remains also valid in the limiting
case p =

2
n−1 . The conclusion of that theorem fails to be valid if p > 2

n−1 and the second of the conditions (30),

i.e. the condition g|S ≥ 0, is violated. Indeed, the function u(x, t) = −ε(1 + t2
− |x |

2)
−

1
p , ε = const > 0,

is the global classical, and hence, generalized solution of the problem (27), (28) for g = −ε
(
∂g
∂r

∣∣∣
S

= 0
)

and

F =

[
2ε n+1

p − 4ε p+1
p2

t2
−|x |

2

1+t2−|x |2
− λε p+1

]
(1 + t2

− |x |
2)

p+1
p , where, as can be easily verified, F |D ≥ 0 if p > 2

n−1

and 0 < ε ≤

{
2
λ
[

n+1−
2(p+1)

p
p ]

}1/p

. Note that inequality n + 1 −
2(p+1)

p > 0 is equivalent to the inequality p > 2
n−1 .



Author's personal copy

S. Kharibegashvili / Nonlinear Analysis 68 (2008) 912–924 921

Remark 7. The conclusion of Theorem 2 also fails to be valid if only the third of the conditions (30), i.e. the condition
∂g
∂r

∣∣∣
S

≥ 0, is violated. Indeed, the function u(x, t) = c0[(t + 1)2 − |x |
2
]
−

1
p , where c0 = λ

−
1
p [

4(p+1)
p2 −

2(n+1)
p ]

−
1
p , is

the global classical solution of the problem (27), (28) for F = 0 and g = u|S = c0[(t + 1)2 − t2
]
−

1
p > 0.

Remark 8. In the case −1 < p < 0, the problem (27), (28) may have more than one global solution. For example, for
F = 0 and g = 0 the conditions (30) are fulfilled, but the above-mentioned problem may, besides a trivial solution,
have an infinite set of global linearly independent solutions uα(x, t), depending on the parameter α ≥ 0 and given by
the formula

uα(x, t) =

c0

[
(t − α)2 − |x |

2
]− 1

p
, t > α + |x |,

0, |x | ≤ t ≤ α + |x |,

where c0 = λ
−

1
p [

4(p+1)
p2 −

2(n+1)
p ]

−
1
p . We can easily see that uα(x, t) ∈ C1(D) for p < 0, and for −

1
2 < p < 0 the

function uα(x, t) ∈ C2(D).

4. Local solvability of the problem

Remark 9. It was shown in proving Theorem 1 that the linear problem (21), which for m = 0 coincides with the
linear problem corresponding to (27) and (28) for λ = 0 and g = 0, has the unique solution u = L−1 F , where
L−1

: L2(DT ) → W̊ 1
2 (DT , ST ) is the linear continuous operator whose norm admits the estimate (24). Note also that

analogously to Remark 1, for 0 < p < 2
n−1 the operator

K1 : W̊ 1
2 (DT , ST ) → L2(DT )

(
K1u = λ|u|

p+1
)

(48)

is a continuous and compact one. Therefore the nonlinear problem (27), (28) for g = 0 is equivalent to the functional
equation

u = Au + u0 (49)

in the space W̊ 1
2 (DT , ST ), where with regard for (48),

A = L−1 K1, u0 = L−1 F ∈ W̊ 1
2 (DT , ST ). (50)

Remark 10. Let B(0, d) :=

{
u ∈ W̊ 1

2 (DT , ST ) : ‖u‖W̊ 1
2 (DT ,ST )

≤ d
}

be a closed (convex) ball in the Hilbert space

W̊ 1
2 (DT , ST ) of radius d > 0 with center in a zero element. Since by Remark 9, the operator A : W̊ 1

2 (DT , ST ) →

W̊ 1
2 (DT , ST ) for 0 < p < 2

n−1 is continuous and compact; therefore by Schauder’s principle, for the solvability of
Eq. (49) it suffices to prove that the operator A1, acting by the formula A1u = Au + u0, transfers the ball B(0, d) into
itself for some d > 0 [30, p. 370]. Towards this end, we will give the necessary estimate for the value ‖Au‖W̊ 1

2 (DT ,ST )
.

If u ∈ W̊ 1
2 (DT , ST ), then we denote by ũ the function which by itself is the continuation of the function u0 evenly

through the planes xn = 0 and t = T . Obviously, ũ ∈ W̊ 1
2 (D

∗

T ), where D∗

T : |x | < t < 2T − |x |.
Using the inequality [31, p. 258]∫

Ω
|v| dΩ ≤ (mes Ω)1−

1
q ‖v‖q,Ω , q ≥ 1,

and taking into account the equalities

‖ũ‖
q
Lq (D∗

T )
= 4‖u‖

q
Lq (DT )

, ‖ũ‖
2
W̊ 1

2 (D
∗
T )

= 4‖u‖
2
W̊ 1

2 (DT ,ST )
,
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from the well-known multiplicative inequality [25, p. 78]

‖v‖q,Ω ≤ β‖∇v‖α̃m,Ω‖v‖1−α̃
r,Ω ∀v ∈ W̊ 1

2 (Ω),Ω ⊂ Rn+1,

α̃ =

(
1
r

−
1
q

)(
1
r

−
1
m̃

)−1

, m̃ =
(n + 1)m
n + 1 − m

,

for Ω = D∗

T ⊂ Rn+1, v = ũ, r = 1, m = 2 and 1 < q ≤
2(n+1)

n−1 , where β = const > 0 does not depend on v and T ,
we obtain the following inequality:

‖u‖Lq (DT ) ≤ c0(mes DT )
1
q +

1
n+1 −

1
2 ‖u‖W̊ 1

2 (DT ,ST )
∀ u ∈ W̊ 1

2 (DT , ST ), (51)

where c0 = const > 0 does not depend on u.
Taking into account the fact that mes DT =

ωn
2(n+1) T n+1, where ωn is the volume of the unit ball in Rn , for

q = 2(p + 1) from (51) we find that

‖u‖L2(p+1)(DT ) ≤ c0˜̀p,nT (n+1)( 1
2(p+1)+

1
n+1 −

1
2 )‖u‖W̊ 1

2 (DT ,ST )
∀ u ∈ W̊ 1

2 (DT , ST ), (52)

where ˜̀p,n = ( ωn
2(n+1) )

( 1
2(p+1)+

1
n+1 −

1
2 ).

For ‖K1u‖L2(DT ), where u ∈ W̊ 1
2 (DT , ST ), and the operator K1 is given by the equality from (48), by virtue of

(52) the estimate

‖K1u‖L2(DT ) ≤ λ

[∫
DT

|u|
2(p+1) dx dt

]1/2

= λ‖u‖
p+1
L2(p+1)(DT )

≤ λ`p,nT (p+1)(n+1)( 1
2(p+1)+

1
n+1 −

1
2 )‖u‖

p+1
W̊ 1

2 (DT ,ST )
(53)

holds, where `p,n = [c0˜̀p,n]
p+1.

Now from (24) and (53), for the value ‖Au‖W̊ 1
2 (DT ,ST )

, where Au = L−1 K1u, the estimate

‖Au‖W̊ 1
2 (DT ,ST )

≤ ‖L−1
‖L2(DT )→W̊ 1

2 (DT ,ST )
‖K1u‖L2(DT )

≤

√
e

2
λ`p,nT 1+(p+1)(n+1)( 1

2(p+1)+
1

n+1 −
1
2 )‖u‖

p+1
W̊ 1

2 (DT ,ST )
∀ u ∈ W̊ 1

2 (DT , ST ) (54)

is valid. Note that 1
2(p+1) +

1
n+1 −

1
2 > 0 for p < 2

n−1 .
Consider the equation

az p+1
+ b = z (55)

with respect to the unknown z, where

a =

√
e

2
λ`p,nT 1+(p+1)(n+1)( 1

2(p+1)+
1

n+1 −
1
2 ), b =

√
e

2
T ‖F‖L2(DT ). (56)

For T > 0, it is evident that a > 0 and b ≥ 0. A simple analysis, analogous to that of [30, pp. 373, 374] for p = 2,

shows that: (i) for b = 0, along with the zero root z1 = 0, Eq. (55) has the unique positive root z2 = a−
1
p ; (ii) if

b > 0, then for 0 < b < b0, where

b0 =

[
(p + 1)−

1
p − (p + 1)−

p+1
p

]
a−

1
p , (57)

and Eq. (55) has two positive roots z1 and z2, 0 < z1 < z2; these roots for b = b0 merge, and we have one positive
root

z1 = z2 = z0 = [(p + 1)a]
−

1
p ;
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(iii) for b > b0, Eq. (55) has no nonnegative roots.
Note that for 0 < b < b0 there arise the inequalities

z1 < z0 = [(p + 1)a]
−

1
p < z2.

By virtue of (56) and (57), the condition b ≤ b0 is equivalent to the condition√
e

2
T ‖F‖L2(DT ) ≤

[√
e

2
λ`p,nT 1+(p+1)(n+1)( 1

2(p+1)+
1

n+1 −
1
2 )

]−
1
p
[
(p + 1)−

1
p − (p + 1)−

p+1
p

]
or

‖F‖L2(DT ) ≤ γn,λ,pT −αn , αn > 0, (58)

where

γn,λ,p =

[
(p + 1)−

1
p − (p + 1)−

p+1
p

]
(λ`p,n)

−
1
p exp

[
−

1
2

(
1 +

1
p

)]
,

αn = 1 +
1
p

[
1 + (p + 1)(n + 1)

(
1

2(p + 1)
+

1
n + 1

−
1
2

)]
.

Owing to the absolute continuity of the Lebesgue integral, we have limT →0 ‖F‖L2(DT ) = 0. At the same time,
limT →0 T −αn = +∞. Therefore there exists a number T1 = T1(F), 0 < T1 < +∞, such that inequality (58) holds
for

0 < T ≤ T1(F). (59)

Now let us show that if the condition (59) is fulfilled, the operator A1 : W̊ 1
2 (DT , ST ) → W̊ 1

2 (DT , ST ), acting by
the formula A1u = Au + u0, transfers the ball B(0, z2), mentioned in Remark 10, into itself, where z2 is the maximal
positive root of Eq. (55). Indeed, if u ∈ B(0, z2), then by virtue of (54)–(56) we have

‖A1u‖W̊ 1
2 (DT ,ST )

≤ a‖u‖
p+1
W̊ 1

2 (DT ,ST )
+ b ≤ az p+1

2 + b = z2.

Therefore by Remarks 9 and 10, the following theorem is valid.

Theorem 3. Let F ∈ L2,loc(D), g = 0, 0 < p < 2
n−1 , and for the value T the condition (59) be fulfilled. Then the

problem (27), (28) in the domain DT has at least one strong generalized solution u ∈ W̊ 1
2 (DT , ST ).
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[23] J.L. Lions, Quelques méthodes de resolution des problemes aux limites non lineaires, Dunod, Gauthier–Villars, Paris, 1969.
[24] M. Reed, B. Simon, Methods of Modern Mathematical Physics. Vol. II: Fourier Analysis, Self-adjointness, New York, London, 1975.
[25] O.A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, Nauka, Moscow, 1973 (in Russian).
[26] M.A. Krasnosel’skii, P.P. Zabreiko, E.I. Pustyl’nic, P.E. Sobolevskii, Integral Operators in Spaces of Summable Functions, Nauka, Moscow,

1966 (in Russian).
[27] A. Kufner, S. Futchik, Nonlinear Differential Equations, Nauka, Moscow, 1988 (in Russian).
[28] D. Henry, Geometrical Theory of Semi-Linear Parabolic Equations, Mir, Moscow, 1985 (in Russian).
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