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Abstract

We consider one multidimensional version of the Cauchy characteristic problem in the light cone of the future for a hyperbolic
equation with power nonlinearity with iterated wave operator in the principal part. Depending on the exponent of nonlinearity and
spatial dimension of equation, we investigate the problem on the nonexistence of global solutions of the Cauchy characteristic
problem. The question on the local solvability of that problem is also considered.
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1. Statement of the problem

Consider the nonlinear equation of the type
Lu:=Pu=xAul*+F, (1)
. . . . . . 2 2
where 2 and « are the given positive constants, F is the given and u is an unknown real functions, [ = 25 — Y iy
ot =1 ax;
n> 1.
For Eq. (1), we consider the Cauchy characteristic problem on finding in the truncated light cone of the future D7:
x| <t<T,x=(x1,...,%,), T =const > 0, a solution u(x, t) of that equation by the boundary conditions
s, =0 Ou 0 )
u N ) a.. =Y,
g,
where S7: t = |x|, t < T, is the characteristic manifold which is, in fact, a conic portion of the boundary of the
domain Dr, % is the derivative in the direction of the outer normal to d D7 . For the case T = +00 we assume that
Dyt > |x|and Soo = 0Do: t = |X]|.
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Note that for nonlinear hyperbolic type equations the question of local and global solvability of the Cauchy problem
with initial conditions for t = 0 has been considered by various authors (see, for e.g., [1-20]). For linear second order
hyperbolic equations the characteristic problem in a conic domain is, as is known, well-posed and there takes place
the global solvability in the corresponding function spaces [21-25].

In the case of one second order wave equation with power nonlinearity the problems of existence or nonexistence
of a global solution have been considered in [26].

Below we will show that under certain conditions, imposed on the exponent of nonlinearity « and on the function F,
the problem (1), (2) has no global solution, although, as it will be proved below, this problem is locally solvable.

Assume Vifzz(DT, St)={u € W22(DT): uls, =0, g—"“gr = 0}, where W22(DT) is the Sobolev space [27, p. 56]
consisting of elements L, (D7) with generalized derivatives from Lo (D7) up to the second order, inclusive, and the
conditions (2) are understood in the sense of the trace theory [27, p. 70].

Definition 1. Let F € Ly(D7). The function u is said to be a weak generalized solution of the problem (1), (2) of
the class sz in Dr,ifu e W22(DT, S7), [u|* € Lo(D7), and for every function ¢ € W22(DT), such that p|,=7 =0,

%—‘f l/=r = 0, the integral equality

/DuDgodxdt:k/luF’(pdxdt—i—/F(pdxdt 3)
Dr Dr Dr
is valid.

Integration by parts shows that the classical solution u € C*(Dr, St) ={u e C*(Dr): uls; =0, %lgT =0} of
the problem (1), (2) is also a weak generalized solution of that problem of the class W22 in the sense of Definition 1,
and vice versa, if a weak generalized solution of the problem (1), (2) of the class W22 belongs to the space c*(Dy),
then this solution will be classical as well. Here we have used the fact that if u € C 4(57) and the conditions (2) are
fulfilled, then taking into account that S7 is the characteristic manifold, the equality Clu|s, = 0 is valid. In addition,
since the derivative with respect to the conormal % = Vp+1 % — Z?: 1 Vi aix,- (v=(1,...,Vpn, Vy41)) is the interior

differential operator on the characteristic manifold S, then %Du |s; =0, and likewise g—l’f, ls; =0, since u|g, =0.

Definition 2. Let F € Lo(D7). The function u is said to be a strong generalized solution of the problem _( 1), (2) of the
class W22 in Dr,ifu € WZZ(DT, St), |u|* € Lo(D7) and there exists a sequence of functions u,,, € C*(Dr, St), such

that u,, — u in the space Vi/zz(DT, St) and |u,, |* — |ul®, [Luy — Muy|*] — F in the space Lo (D).

Obviously, the classical solution of the problem (1), (2) from 6'4(57, ST) is a strong generalized solution of that
problem of the class W22. In its turn, a strong generalized solution of the problem (1), (2) of the class Wz2 is a weak
generalized solution of that problem of the class W22.

Definition 3. Let F' € L) joc (Do) and F' € Ly (D7) forany T > 0. We say that the problem (1), (2) is globally solvable
in a weak (strong) sense in the class sz , if for any T > 0 this problem has a weak (strong) generalized solution of the
class sz in the domain D7.

Remark 1. It is easy to see that if the problem (1), (2) is not globally solvable in a weak sense, then it fails to
be globally solvable in a strong sense as well in the class W22. It is also evident that the global solvability of the
problem (1), (2) in a strong sense implies global solvability of that problem in a weak sense in the class sz.

2. The nonexistence of global solvability of the problem (1), (2)

Theorem 1. Let F € Ly 1oc(Doo), F 20, F #0and F € Lo(Dr) for any T > 0. Then if the exponent of nonlinearity
o in Eq. (1) satisfies the inequalities

n—+1
1<oz<n_ , n>3, (4)
1 <a < oo, n=2,3,
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and in the limiting case o = "H 5 for n > 3 the function F satisfies the condition

lim [ Fdxdt=oo0, )
T—o0
Dt

then the problem (1), (2) is not globally solvable in a weak sense in the class W22, i.e. there exists a number Ty =
To(F) > 0, such that for T > Ty the problem (1), (2) fails to have a weak generalized solution of the problem (1), (2)
of the class W22 in the domain Dr.

Proof. Assume that u is a weak generalized solution of the problem (1), (2) of the class W2 in the domain Dr, i.e.

the integral equality (3) is valid for every function ¢ € W22(DT), such that ¢|;=7 =0, 3 : ?|,—r = 0. Integrating the
left-hand side of equality (3) by parts, we obtain

/DuDgﬁdxdt: / —Dgp s — /——D(pdxdt—i—/ V,uV,Up)dx dt

Dr oDt Dt

/aDd /aDd+/D2ddt (6)
= — s — U— s u xdt,
oN 7 aN 7 ¢
oDt aDr Dy
where % is the derivative with respect to the conormal, V, = (%, e, ain ).
Let the function @9 = ¢o(o) of one real variable o be such that
4 / _ 15 O < o < 17

9o € C*((—00,4+00)), 90 =0, ¢;<0, ¢o(o)= {0, o> (7

Using the method of test functions [12, pp. 10-12], in the capacity of a test function in equality (3) we take the function
(x, 1) = gol 7 (12 + xH)].

Taking into account that u|s, = 0, and hence §—K, |s; =0, since % = Vp41 % — Z?:l V; .037 is the inner differential
operator on St, as well as by virtue of (7), the equalities %'—;f li=7 =0,0<i <4,0¢|—1 = %Dwt:T =0, it follows
from (6) that

fDuDgodxdt:/uDz(pdxdt.
Dr Dt

Therefore equality (3) can be rewritten in the form

,\/|u|“<pdxdt=/um2¢dxdr—/F¢dxdr. (8)
Dr Dr Dr

If in the Young’s inequality with the parameter ¢ > 0,

€ 1 o
ab< —a“—i—mba,, a,b}O, a/: y
o o'e a—1
we take a = |u|p'/% b= ,/a , then taking into account that - = o’ — 1, we have
e Pl _ e 1 TP

[uD%p| = |ulp

—ul®

ole S u

€))

o’e?'—1 (pot’—l :
By virtue of (9), from (8) we obtain the inequality

& o |D2¢|“’
A—— ul“pdxdt < - dxdt — | Fedxdt,
o o' —1 —1

Dy Dr

whence
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| wl“ o /
Yodxdt < Fodxdt 10
/IMI pdx O 8)0580(_1/ Ry pdx (10)
Dr Dt
for ¢ < M.

Bearing in mind the equalities

, o o ) o 1

o =——:, o= and  min —————— =
oa—1 o —1 O<e<ia (Ao — &)a’e% — Y

7

which is achieved for ¢ = A, it follows from (10) that

/ lu|*pdx dt <
Dy

According to the properties (7) of the function ¢p, the test function ¢(x,t) = (,o()[%(t2 + [x|»)] =0 for
r= @2+ |x|®)Y/2 > T. Therefore after the change of variables t = T&y and x = T£ we have

IDzwl"‘

dx dt——/F(pdxdt (11)
Dt Dt

/mzw le1 T4 + (cat® + c31x DT 09 + caT 8% — x|
dx dt
(,0 -1
r=(2+x2DV2<T
t>|x|
, c10! + (¢ s ///+C 2N2 ol
_ prtl—da / 1] + (22 3|€|;S_1 4 (2 — €12y déods.  (12)
1<2(&5+1£1%) <2
§o>§|

where ¢; =c;j(n),i =1, ..., 4, are some integers.

As is known, the test function ¢(x,?) = (,t)()[%(t2 + |x]?)] with the above-mentioned properties for which the
integrals in the right-hand sides of (11) and (12) are finite, does exist [12, p. 28].
Owing to (12) and the fact that pg(0) = 1 for 0 < o < 1, from inequality (11) we obtain

n+1—4a’ ’

o
|| dx dt < / lu|“p dx dt < T TV(T), (13)
=+ < I Dr

t>|x|

where

y(T) = / Fodxdt,

Dr
c +(c Ty " 282, 1yl
o — le1gg + (28] 3IE|)¢ ) 155 — 1519200 dto dé < +oo.
o
1<2(&8+E1) <2
o>£|
Let us consider first the case ¢ =n + 1 — 4o’ < 0, which in accordance with the condition (4) means that o < 2 +;
for n > 3, and o < oo for n =2, 3. In this case the equation
n+1—4a’ o
TN=———x——y(T)=0 14
§(1) = ——x0— 5y (T) (14)
has the unique positive root 7 = Ty > 0, since the function g1(7T) = ;;4“ xp 1s positive, continuous and strictly

decreasing on the interval (0, +00), and also lim7_¢g1(7T) = +oo and lim7_, yo g1(T) = 0, while the function
y(T)= f Dr Fodxdt is, by virtue of F' > 0 and (7), nonnegative, nondecreasing and, owing to the absolute continuity
of the integral, is likewise continuous. Moreover, lim7_,» ¥ (T) > 0, since F > 0 and F #£0, i.e. F # 0 on some set
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of the positive Lebesgue measure. Thus g(7) < O for T > Tp, and g(T) > 0 for 0 < T < Ty. Consequently, for T > Ty
the right-hand side of inequality (13) is negative, but this is impossible.

Consider now the limiting case g =n + 1 —4a’ =0, i.e. when o = ”“

for n > 3. In this case equation (14) takes

the form ﬁ%() — Ty(T) = 0, which by the obvious equality limzr_,¢ y(T) = 0 and conditions (5), (7) has likewise
the unique positive root 7 = Ty > 0. For T > Ty, the right-hand side of inequality (13) is negative, and this again
leads to the contradiction. Thus the proof of the theorem is complete. O

Remark 2. From the proof of Theorem 1 it follows that when the conditions of the theorem are fulfilled, if there exists
a weak generalized solution of the problem (1), (2) of the class W22 in the domain D7, then the estimate

T<To (15)

is valid, where Tj is the unique positive root of Eq. (14).
3. Local solvability of the problem (1), (2)

Consider first the linear case, when in Eq. (1) the parameter A = 0, i.e. we consider the problem

Lu(x,t)=F(x,t), (x,t)€ Dr, (16)
ou

uls, =0, —| =0 (17)
ov Sy

in which for the sake of convenience we introduce the notation L = [12.

Definition 4. Let F' € Ly (Dr). The function u is said to be a strong generalized solution of the problem (16), (17) of
the class W22 in the domain D, if u € W22(DT, ST) and there exists a sequence of functions u,, € C4(DT, ST7), such

that u,, — u in the space WQZ(DT, St), and Lu,, — F in the space Lo(Dr).

Obviously, the classical solution u € C*(Dr, St) of the problem (16), (17) is a strong generalized solution of that
problem of the class W22 in the domain D7.

Lemma 1. For a strong generalized solution u of the problem (16), (17) of the class W22 in the domain Dr the estimate
ltlli2py. 57 < L+ DI IF Ly, (18)
where ¢, = %m, holds.
Proof. Let us first show that
1ol o) < \/g (1+ 1Dl a0y Vv e E(Dr, Sp), (19)
where C2(Dr, S7) = {v € C*(Dr): v|s, =0}.

Indeed, assume that £2; := d D, N {t = 7} and denote by v = (vy, ..., vy, V,+1) the unit vector of the outer normal
to 0 D7. Taking into account the equalities v|s, =0 and v|p, = (0, ..., 0, 1), integration by parts yields

320 v 1 [ d [ov)? 1 v\ 1 v\ 2 1 v\ 2
C  dxdt== | (=) dxdt=~ = ds=- (=) ax+= [ (= ds,
/aﬂ ar 2/8t<8t) * 2/(3;) P 43 2/(3:) x+2/(3t> Pt 48

D, D, aD, 2 S,
(20)
32v dv v v 1 v v 1 v \?
— ——dxdt= | — —vjds— ~ xdt= | — —vjds — — ) vy ds
8x2 ot dx; Ot 2 8x, dx; ot 2 ox;
4 T D, dD; oD,
v dv 1 dv 1 v\ 2
= ——v;ds — = — ) Vn+1 ds—— — ) dx, t©<T. 21
d0x; Ot 2 0x; 0x;

0D, Sz .Q,
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It easily follows from (20) and (21) that

v 1 =\ dv v \2  [ov\> n
Uv—dxdt = — — ov 2 2) 4
/ v Jt * / 2041 [;(3)([ Pntl ot vl) + <3t ) Vi+1 Z Vj §

D, S = j=1

1 w\2 &/ v
+§/[<§> +lz<ax1) i|dx t<T. (22)

2.

Since v|s; =0, and (v, aax — Vi t) 1 <i < n, is the interior differential operator on Sr, there take place the
equalities

v av
v, %
ox; "N

Therefore taking into account that vl% - Z =1V ] = 0 on the characteristic manifold S, by (22) and (23) we have

av\? " v\ ov

— — dx =2 | Ov—dxdt, <T. 24
/[(at> +Zi_l<ax,-)} v=2 [ugtavar @9
Q = D

T T

=0, i=1,...,n. (23)

St

Assuming w(8) = f_% [( )2 +>7 1( )2] dx and using the inequality ZDU T < s( )2 1 |Dv|2, valid for any
& = const > 0, from (24) we get

)
1
w(a)ge/w(a)do+ D3, p,), 0<8<T. (25)
0

From (25), taking into account that ||[dv ||%2( Dy)’ being the function of §, is nondecreasing, by the Gronwall lemma
[28, p. 13] it follows that

1
w(s) < —||Dv||%2(D5) exp de.

Taking into account that inf,~ ¢ L - expde = ¢4 is achieved for ¢ = 3, from the above inequality we obtain
w(8)<e8||Dv||L2(D5), 0<8§<T. (26)
In its turn, (26) yields

v 2 " ov 2 ; €
_ 2 2
[1G) + S5 Jovar= [ v srecn. i, -
Dr = 0

Using the equalities v|s, =0 and v(x,?) = flil av(a"t’f) dt, (x,t) € Dy which are valid for any function v €
¢ 2(57, ST), standard reasoning [27, p. 63] leads to the inequality
5 5 av\?
vi(x,)dxdt <T o dx dt. (28)
Dr Dr

By (27) and (28) we have

v\ 2 ov 4
||v||€V;(DT>=/[“2+(§> +Z<8x,> }dxdt 30+ DB L0,
1=

Dr

which results in inequality (19).
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By the definition, if « is a strong generalized solution of the problem (16), (17) of the class W22 in the domain D7,
then there exists a sequence of functions u,, € 60’4(5T, S7), such that

0. (29)

. ] _ - 2 _
Jim i = ullyyzp, 5 =00 m | Cfun = F[ ) =

Since u,, € 6‘4(5 T, ST) satisfies the homogeneous boundary conditions (17), and S is the characteristic manifold,
corresponding to the operator [J, therefore, as is known [22, p. 546],

Oumls, =0. (30)
By virtue of (30), the function v = Uu,, € ¢ (D7, St) according to (19) satisfies the inequalities
2 € 412 2
||D”m||L2(DT) < 5(1 +T7) ”D Umn ”LZ(DT)’
I N i
~X m L~(D ’
ot Ly(Dr) 2 2(Dr)
”D% ’ <E(1+T)4||D2um||iz(DT), i=1,....n G1)
0% Ly 2
Since % %“Tm € C3(Dr, St), by (19) and (31) we have
A\ " dum \ 2 2um \ "% \? " 9%u 2
2 _ 2 m m m m m
b= [ [ () 20 () () o 2 ) 3 ()
Dr i=1 i=1 i,j=1
5 oy, 2 " ol 2
S el oy TS o
2 tlwion 51 9% llwior)

e’ 811M2, |12 e’ 812, |2 — ¢’ 812, |2
S Z(H‘T) IO ”m”Lz(DT)"'Z(l"'T) lm um||L2(DT)+ZZ(1+T) |O ”anz(DT)

i=1
4o 4 TP
=(n+ )Z( + 1) Mm”Lz(DT)’
whence
e
lamlliz o5 < U+ D],y en=53n+2. (32)

In (29), passing in inequality (32) to the limit as m — oo, we obtain (18) which shows that the proof of the lemma
is complete. 0O

Lemma 2. For every F € Lo(Dr) there exists a unique strong generalized solution u of the problem (16), (17) of the
class W22 in the domain Dt for which the estimate (18) is valid.

Proof. As far as the space CgO(DT) of finite infinitely differentiable in Dr functions is dense in L, (D7), for the
given F € L,(Dr) there exists the sequence of functions Fj, € Cgo(DT), such that limy, o0 | Fn — FllL,py) = 0.
For m fixed, continuing the function F;, by zero outside the limits of D7 and leaving for it the same notation, we have
F, e C“(Ri“) for which the support suppF;,, C Do, Wwhere Ri‘“ = R"T!'N{r > 0}. Denote by u,, a solution of the

Cauchy problem: Lu,, = Fy,, % l;=0 =0, 0 < i < 3, which, as is known, exists, is unique and belongs to the space
C°°(Rﬂ’r+l) [29, p. 192]. In addition, since supp F;, C Do, (3;77 li=0 =0, 0 < i < 3, taking into account the geometry of
the domain of dependence of a solution of the linear equation Lu,, = F), of hyperbolic type, we have suppu,, C Do
[29, p. 191]. Leaving for the restriction of the function u,, on the domain D7 the same notation, we can easily see

that u,, € C°'4(5T, St), and by virtue of (18) the inequality
it = 10kl (g 57y < En L+ DN Fw = Fell oo (33)

is valid.
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Since the sequence {F},} is fundamental in L,(Dr), the sequence {u,,} by virtue of (33) is likewise fundamental
in the complete space WQZ(DT, S7). Therefore there exists the function u € sz(DT, S7), such that

mh—>moo lum —ull WZZ(DT,ST) =0,

and as far as Lu,, = F,;, — F in the space L, (D7), the function u is, by Definition 4, a strong generalized solution of
the problem (16), (17) of the class W22 in the domain D, for which the estimate (18) is valid. The uniqueness of that
solution follows from the estimate (18). Thus the proof of the Lemma 2 is complete. O

Remark 3. By Lemma 2, for the strong generalized solution u of the problem (16), (17) of the class W22 in the domain

D7 we can write u = L~V F, where L™ : Lo(D7) — sz(DT, ST) is the linear continuous operator whose norm, by
virtue of (18), admits the estimate

1 4
”L HLz(Dr)—>W22(DT,ST) <ep(1+T)" (34)
Remark 4. The embedding operator I : W3(Dr, St) — Lo(Dr) is linear continuous compact for 1 < g < 2240,

when n > 3, and 1 < g < oo, when n = 2,3 [27, p. 84]. At the same time, the Nemytski’s operator 7 : L,(Dr) —
L>(Dr), acting by the formula Tu = A|u|%, is continuous and bounded, if ¢ > 2« [30, p. 349], [31, pp. 66, 67]. Thus
if the exponent o of nonlinearity in Eq. (1) satisfies inequalities (4), then putting g = 2«, we obtain that the operator

To=T1:W}(Dr, St) — Ly(Dr) (35)

is continuous and compact one. In addition, from u € Wf(DT, S7) it all the more follows that |u|* € Ly(Dr), and in

Definition 2, relying on the fact that u,, — u in the space Wf(DT, St), it automatically follows that |u,, |* — |u|* in
the space Ly (D7), as well.

Remark 5. If F € Ly(Dr) and the exponent « of nonlinearity satisfies inequalities (4), then according to Definition 2
and Remarks 3 and 4, the function u € W22(DT, ST) is a strong generalized solution of the problem (1), (2) of the
class W22 in the domain D, if and only if « is a solution of the functional equation

u=L""(Aul*+ F) (36)

in the space WZZ(DT, S7).

We rewrite Eq. (36) as follows:
u=Ku+uop, (37)
where the operator K = L7y : WZZ(DT, S7) — WZZ(DT, St) is, by virtue of (34), (35) and Remark 4, continuous
and compact, acting in the space WZZ(DT, St),andug=L"'F ¢ WZQ(DT, S7).
Remark 6. Let
B(0,22):={ue W2(Dr, St): ”u||W22(DT,ST) <22}

be a closed (convex) ball in the Hilbert space WZQ(DT, S7) of radius zo > 0 with center at a zero element. Since

the operator K : WZQ(DT, St) — WZZ(DT, St) is continuous and compact when inequalities (4) are fulfilled, by the
Schauder’s principle, for Eq. (37) to be solvable, is sufficient to show that the operator K, acting by the formula
Kiu = Ku + ug transfers the ball B(0, zp) into itself for some z > 0 [32, p. 370]. Towards this end, we cite the

needed estimate for || Ku/| 2 (Dy.Sp)"
2 9

As is known, if u € WZZ(DT, St), then the inequality [27, p. 83]

el o < Elliz o 5p) (38)
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is valid, where p = 2("+1) ifn>3and 1 < p < oo forn =2,3, while ¢ = c(n, p) is some positive constant. Consider
first the case n > 3 and p= 2("“) . If for n > 3 the exponent « satisfies inequalities (4), then 20 < p = 2(”+31) and

we can take advantage of the Well known inequality [33, p. 258]

p—2a
lull Loy (D) < (mes D7) 27 |lullr, (D)

from which with regard for the fact that mes Dy = n‘% T"*! where w, is the volume of the unit ball in R", by virtue
of (38) we have

1 n—3
~ Sna o — -
Il o) < T Nutllyi2 oy 5790 Oniw = (1 + 1)<2a O 1)>, (39)

1 n—3
where ¢; =c1(n, ) = E(%)%__Z(n+l) )
For || Toull 1,(py)» Where u € W2(Dr, St), and the operator Ty acts by formula (35), owing to (39) we have the
estimate

1/2
1 Toull s o) <x[t/|uﬁadxdﬂ = Ml oy <PET iy (40)
Dy

Next, from (34) and (40) for | Ku]| W2 where Ku = L~ Tyu, the estimate

(Dr,S1)°

1K ulizg, s < 1L | Loy w3007, 50 1 TotlLaor) < Aendf (L4 TYT e ul

Yu € W}(Dr, St) (41)

W}(Dr,St)

n+1

is valid. Note that §,, o, = (n + 1)(2a )) >0 forua < 3

Consider now the equation
az*+b=z (42)
with respect to an unknown z, where

a =2 & A+ TP b=c,(1+ T)*IFll1o(np)- (43)

2(n+l

For T > 0, it is evident that @ > 0 and b > 0. A simple analysis, similar to that carried out for « = 3 in [32, pp. 373—
374], shows that:

(1) in case b =0 Eq. (42) has, along with the zero root z; = 0, the unique positive root zo = cfﬁ;

(2) if b > 0, then for 0 < b < by, where

1

by = [a*ﬁ _a*ﬁ]a*ﬁ, (44

Eq. (42) has two positive roots z1 and z», 0 < z; < z2, and for b = bg these roots merge, and we have one positive
root

_ 1
Z1=z22=20=(aa) «1;

(3) when b > by, Eq. (42) has no nonnegative roots.

Note that for 0 < b < by there take place the inequalities

1
71 <zo=(aa) 1 <z.

By (43) and (44), the condition b < by is equivalent to the condition

o

~ - __a_
(L + DY FllLypy) < (henl§ (14 TYITne) & [o7@T —a7aT]
or

o
I1FllLspp) <lnja(1+T) aTT7" 0, >0, (45)
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_ L o

__1
zn,)»,oz = [Ol el — a_aT]c;I ()LC"E?) o ’
o 1 n—3
= 1) 0, épo= Dl———=)-
On o —1 n,o > na = M+ )<2a 2(n+1)>
According to the absolute continuity of Lebesgue integral, we have limz_¢ || Fllr,(p;) = 0. At the same time,

limy_o(1 + T)T;‘Ta1 T~°" = 400. Therefore there exists 71 = T1(F), 0 < T1 < 400, such that inequality (45) holds
for

0<T<Ti(F). (46)

Let us now show that if the condition (46) is fulfilled, the operator Kju = (Ku+ug) : sz(DT, St) —> WZZ(DT, ST)
transforms the ball B(0, z2), mentioned in Remark 6, into itself, where z, is the maximal positive root of Eq. (42).
Indeed, if u € B(0, z), then by virtue of (41)—(43) we have

. a o _
||K1”||W22(DT,ST) < a"”"WZZ(DT,ST) +b<az; +b=2.
Therefore by Remark 6, Eq. (37) has a solution in the space WZZ(DT, S7). The cases n = 2,3 for 1 < a < o0 are
considered analogously.
Thus by Remarks 4-6, the following theorem is valid.

Theorem 2. Let F € L 10c(Doo) and F € Lo(Dr) for any T > 0. Then if the exponent a of nonlinearity in Eq. (1)
satisfies inequalities (4), and for T the condition (46) is fulfilled, then the problem (1), (2) has at least one strong
generalized solution of the class W22 in the domain D in a sense of Definition 2, which at the same time is, in fact, a
weak generalized solution of that problem of the class W22 in the domain D in a sense of Definition 1.

Remark 7. In case 0 < o < 1, the problem (1), (2) may have more than one global solution. For example, for F =0,
the problem (1), (2) in the domain D has, besides a trivial solution, an infinite set of global linearly independent
solutions u, € C2(Doo, Soc) depending on the parameter o > 0 and given by formula

2
by (6 1) = {ﬂ[(t —0) = xPITe, >0 +|x],
0, x| <1 <o+ Ixl,

where = A7 [4k(k — 1)(n + 2k — 1)(n + 2k — 3)]" T, k = -2, and for 1/2 < « < I the function u, € C*(Day).

Remark 8. Note that for n = 2 and n = 3, by the well-known properties [22, p. 745], [25, p. 84] of solution of the
linear characteristic problem: v = g in Deg, v|s,, =0, if g 2 0, then v > 0, as well. Therefore forn =2,3,if F > 0,
then the classical solution u of the problem (1), (2) satisfying, analogously to (30), the condition Ou|s,, = 0 will
likewise be nonnegative. But in this case, this solution for « = 1 will satisfy the following linear problem:

D2u=Au+F,

uls,, =0, lse =0,

v
which is globally solvable in the corresponding functional spaces.
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