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Abstract

We consider one multidimensional version of the Cauchy characteristic problem in the light cone of the future for a hyperbolic
equation with power nonlinearity with iterated wave operator in the principal part. Depending on the exponent of nonlinearity and
spatial dimension of equation, we investigate the problem on the nonexistence of global solutions of the Cauchy characteristic
problem. The question on the local solvability of that problem is also considered.
© 2007 Elsevier Inc. All rights reserved.
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1. Statement of the problem

Consider the nonlinear equation of the type

Lu := �2u = λ|u|α + F, (1)

where λ and α are the given positive constants, F is the given and u is an unknown real functions, � = ∂2

∂t2 −∑n
i=1

∂2

∂x2
i

,

n > 1.
For Eq. (1), we consider the Cauchy characteristic problem on finding in the truncated light cone of the future DT :

|x| < t < T , x = (x1, . . . , xn), T = const > 0, a solution u(x, t) of that equation by the boundary conditions

u|ST
= 0,

∂u

∂ν

∣∣∣∣
ST

= 0, (2)

where ST : t = |x|, t � T , is the characteristic manifold which is, in fact, a conic portion of the boundary of the
domain DT , ∂

∂ν
is the derivative in the direction of the outer normal to ∂DT . For the case T = +∞ we assume that

D∞: t > |x| and S∞ = ∂D∞: t = |x|.
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Note that for nonlinear hyperbolic type equations the question of local and global solvability of the Cauchy problem
with initial conditions for t = 0 has been considered by various authors (see, for e.g., [1–20]). For linear second order
hyperbolic equations the characteristic problem in a conic domain is, as is known, well-posed and there takes place
the global solvability in the corresponding function spaces [21–25].

In the case of one second order wave equation with power nonlinearity the problems of existence or nonexistence
of a global solution have been considered in [26].

Below we will show that under certain conditions, imposed on the exponent of nonlinearity α and on the function F ,
the problem (1), (2) has no global solution, although, as it will be proved below, this problem is locally solvable.

Assume W̊ 2
2 (DT ,ST ) = {u ∈ W 2

2 (DT ): u|ST
= 0, ∂u

∂ν
|ST

= 0}, where W 2
2 (DT ) is the Sobolev space [27, p. 56]

consisting of elements L2(DT ) with generalized derivatives from L2(DT ) up to the second order, inclusive, and the
conditions (2) are understood in the sense of the trace theory [27, p. 70].

Definition 1. Let F ∈ L2(DT ). The function u is said to be a weak generalized solution of the problem (1), (2) of
the class W 2

2 in DT , if u ∈ W̊ 2
2 (DT ,ST ), |u|α ∈ L2(DT ), and for every function ϕ ∈ W 2

2 (DT ), such that ϕ|t=T = 0,
∂ϕ
∂t

|t=T = 0, the integral equality∫
DT

�u�ϕ dx dt = λ

∫
DT

|u|αϕ dx dt +
∫

DT

Fϕ dx dt (3)

is valid.

Integration by parts shows that the classical solution u ∈ C̊4(DT ,ST ) = {u ∈ C4(DT ): u|ST
= 0, ∂u

∂ν
|ST

= 0} of
the problem (1), (2) is also a weak generalized solution of that problem of the class W 2

2 in the sense of Definition 1,
and vice versa, if a weak generalized solution of the problem (1), (2) of the class W 2

2 belongs to the space C4(DT ),
then this solution will be classical as well. Here we have used the fact that if u ∈ C4(DT ) and the conditions (2) are
fulfilled, then taking into account that ST is the characteristic manifold, the equality �u|ST

= 0 is valid. In addition,
since the derivative with respect to the conormal ∂

∂N
= νn+1

∂
∂t

− ∑n
i=1 νi

∂
∂xi

(ν = (ν1, . . . , νn, νn+1)) is the interior

differential operator on the characteristic manifold ST , then ∂
∂N

�u|ST
= 0, and likewise ∂u

∂N
|ST

= 0, since u|ST
= 0.

Definition 2. Let F ∈ L2(DT ). The function u is said to be a strong generalized solution of the problem (1), (2) of the
class W 2

2 in DT , if u ∈ W̊ 2
2 (DT ,ST ), |u|α ∈ L2(DT ) and there exists a sequence of functions um ∈ C̊4(DT ,ST ), such

that um → u in the space W̊ 2
2 (DT ,ST ) and |um|α → |u|α , [Lum − λ|um|α] → F in the space L2(DT ).

Obviously, the classical solution of the problem (1), (2) from C̊4(DT ,ST ) is a strong generalized solution of that
problem of the class W 2

2 . In its turn, a strong generalized solution of the problem (1), (2) of the class W 2
2 is a weak

generalized solution of that problem of the class W 2
2 .

Definition 3. Let F ∈ L2,loc(D∞) and F ∈ L2(DT ) for any T > 0. We say that the problem (1), (2) is globally solvable
in a weak (strong) sense in the class W 2

2 , if for any T > 0 this problem has a weak (strong) generalized solution of the
class W 2

2 in the domain DT .

Remark 1. It is easy to see that if the problem (1), (2) is not globally solvable in a weak sense, then it fails to
be globally solvable in a strong sense as well in the class W 2

2 . It is also evident that the global solvability of the
problem (1), (2) in a strong sense implies global solvability of that problem in a weak sense in the class W 2

2 .

2. The nonexistence of global solvability of the problem (1), (2)

Theorem 1. Let F ∈ L2,loc(D∞), F � 0, F �≡ 0 and F ∈ L2(DT ) for any T > 0. Then if the exponent of nonlinearity
α in Eq. (1) satisfies the inequalities{

1 < α <
n + 1

n − 3
, n > 3, (4)
1 < α < ∞, n = 2,3,
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and in the limiting case α = n+1
n−3 for n > 3 the function F satisfies the condition

lim
T →∞

∫
DT

F dx dt = ∞, (5)

then the problem (1), (2) is not globally solvable in a weak sense in the class W 2
2 , i.e. there exists a number T0 =

T0(F ) > 0, such that for T > T0 the problem (1), (2) fails to have a weak generalized solution of the problem (1), (2)

of the class W 2
2 in the domain DT .

Proof. Assume that u is a weak generalized solution of the problem (1), (2) of the class W 2
2 in the domain DT , i.e.

the integral equality (3) is valid for every function ϕ ∈ W 2
2 (DT ), such that ϕ|t=T = 0, ∂ϕ

∂t
|t=T = 0. Integrating the

left-hand side of equality (3) by parts, we obtain∫
DT

�u�ϕ dx dt =
∫

∂DT

∂u

∂N
�ϕ ds −

∫
DT

∂u

∂t

∂

∂t
�ϕ dx dt +

∫
DT

∇xu∇x(�ϕ)dx dt

=
∫

∂DT

∂u

∂N
�ϕ ds −

∫
∂DT

u
∂

∂N
�ϕ ds +

∫
DT

u�2ϕ dx dt, (6)

where ∂
∂N

is the derivative with respect to the conormal, ∇x = ( ∂
∂x1

, . . . , ∂
∂xn

).
Let the function ϕ0 = ϕ0(σ ) of one real variable σ be such that

ϕ0 ∈ C4((−∞,+∞)
)
, ϕ0 � 0, ϕ′

0 � 0, ϕ0(σ ) =
{

1, 0 � σ � 1,

0, σ � 2.
(7)

Using the method of test functions [12, pp. 10–12], in the capacity of a test function in equality (3) we take the function
ϕ(x, t) = ϕ0[ 2

T 2 (t2 + |x|2)].
Taking into account that u|ST

= 0, and hence ∂u
∂N

|ST
= 0, since ∂

∂N
= νn+1

∂
∂t

− ∑n
i=1 νi

∂
∂xi

is the inner differential

operator on ST , as well as by virtue of (7), the equalities ∂iϕ

∂ti
|t=T = 0, 0 � i � 4, �ϕ|t=T = ∂

∂N
�ϕ|t=T = 0, it follows

from (6) that∫
DT

�u�ϕ dx dt =
∫

DT

u�2ϕ dx dt.

Therefore equality (3) can be rewritten in the form

λ

∫
DT

|u|αϕ dx dt =
∫

DT

u�2ϕ dx dt −
∫

DT

Fϕ dx dt. (8)

If in the Young’s inequality with the parameter ε > 0,

ab � ε

α
aα + 1

α′εα′−1
bα′

, a, b � 0, α′ = α

α − 1
,

we take a = |u|ϕ1/α , b = |�ϕ|2
ϕ1/α , then taking into account that α′

α
= α′ − 1, we have

∣∣u�2ϕ
∣∣ = |u|ϕ1/α |�2ϕ|

ϕ1/α
� ε

α
|u|αϕ + 1

α′εα′−1

|�2ϕ|α′

ϕα′−1
. (9)

By virtue of (9), from (8) we obtain the inequality(
λ − ε

α

) ∫
DT

|u|αϕ dx dt � 1

α′εα′−1

∫
DT

|�2ϕ|α′

ϕα′−1
dx dt −

∫
DT

Fϕ dx dt,

whence
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∫
DT

|u|αϕ dx dt � α

(λα − ε)α′εα′−1

∫
DT

|�2ϕ|α′

ϕα′−1
dx dt − α

λα − ε

∫
DT

Fϕ dx dt (10)

for ε < λα.
Bearing in mind the equalities

α′ = α

α − 1
, α = α′

α′ − 1
and min

0<ε<λα

α

(λα − ε)α′εα′−1
= 1

λα′ ,

which is achieved for ε = λ, it follows from (10) that∫
DT

|u|αϕ dx dt � 1

λα′

∫
DT

|�2ϕ|α′

ϕα′−1
dx dt − α′

λ

∫
DT

Fϕ dx dt. (11)

According to the properties (7) of the function ϕ0, the test function ϕ(x, t) = ϕ0[ 2
T 2 (t2 + |x|2)] = 0 for

r = (t2 + |x|2)1/2 � T . Therefore after the change of variables t = T ξ0 and x = T ξ we have∫
DT

|�2ϕ|α′

ϕα′−1
dx dt =

∫
r=(t2+|x2|)1/2<T

t>|x|

|c1T
−4ϕ′′

0 + (c2t
2 + c3|x|2)T −6ϕ′′′

0 + c4T
−8(t2 − |x|2)2ϕ′′′′

0 |α′

ϕα′−1
dx dt

= T n+1−4α′
∫

1<2(ξ2
0 +|ξ |2)<2

ξ0>|ξ |

|c1ϕ
′′
0 + (c2ξ

2
0 + c3|ξ |2)ϕ′′′

0 + c4(ξ
2
0 − |ξ |2)2ϕ′′′′

0 |α′

ϕα′−1
dξ0 dξ, (12)

where ci = ci(n), i = 1, . . . ,4, are some integers.
As is known, the test function ϕ(x, t) = ϕ0[ 2

T 2 (t2 + |x|2)] with the above-mentioned properties for which the
integrals in the right-hand sides of (11) and (12) are finite, does exist [12, p. 28].

Owing to (12) and the fact that ϕ0(σ ) = 1 for 0 � σ � 1, from inequality (11) we obtain∫
r=(t2+|x2|)1/2< T√

2
t>|x|

|u|α dx dt �
∫

DT

|u|αϕ dx dt � T n+1−4α′

λα′ 
0 − α′

λ
γ (T ), (13)

where

γ (T ) =
∫

DT

Fϕ dx dt,


0 =
∫

1<2(ξ2
0 +|ξ |2)<2

ξ0>|ξ |

|c1ϕ
′′
0 + (c2ξ

2
0 + c3|ξ |2)ϕ′′′

0 + c4(ξ
2
0 − |ξ |2)2ϕ′′′′

0 |α′

ϕα′−1
dξ0 dξ < +∞.

Let us consider first the case q = n + 1 − 4α′ < 0, which in accordance with the condition (4) means that α < n+1
n−3

for n > 3, and α < ∞ for n = 2,3. In this case the equation

g(T ) = T n+1−4α′

λα′ 
0 − α′

λ
γ (T ) = 0 (14)

has the unique positive root T = T0 > 0, since the function g1(T ) = T n+1−4α′

λα′ 
0 is positive, continuous and strictly
decreasing on the interval (0,+∞), and also limT →0 g1(T ) = +∞ and limT →+∞ g1(T ) = 0, while the function
γ (T ) = ∫

DT
Fϕ dx dt is, by virtue of F � 0 and (7), nonnegative, nondecreasing and, owing to the absolute continuity

of the integral, is likewise continuous. Moreover, limT →∞ γ (T ) > 0, since F � 0 and F �≡ 0, i.e. F �= 0 on some set
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of the positive Lebesgue measure. Thus g(T ) < 0 for T > T0, and g(T ) > 0 for 0 < T < T0. Consequently, for T > T0
the right-hand side of inequality (13) is negative, but this is impossible.

Consider now the limiting case q = n + 1 − 4α′ = 0, i.e. when α = n+1
n−3 for n > 3. In this case equation (14) takes

the form 1
λα′ 
0 − α′

λ
γ (T ) = 0, which by the obvious equality limT →0 γ (T ) = 0 and conditions (5), (7) has likewise

the unique positive root T = T0 > 0. For T > T0, the right-hand side of inequality (13) is negative, and this again
leads to the contradiction. Thus the proof of the theorem is complete. �
Remark 2. From the proof of Theorem 1 it follows that when the conditions of the theorem are fulfilled, if there exists
a weak generalized solution of the problem (1), (2) of the class W 2

2 in the domain DT , then the estimate

T � T0 (15)

is valid, where T0 is the unique positive root of Eq. (14).

3. Local solvability of the problem (1), (2)

Consider first the linear case, when in Eq. (1) the parameter λ = 0, i.e. we consider the problem

Lu(x, t) = F(x, t), (x, t) ∈ DT , (16)

u|ST
= 0,

∂u

∂ν

∣∣∣∣
ST

= 0 (17)

in which for the sake of convenience we introduce the notation L = �2.

Definition 4. Let F ∈ L2(DT ). The function u is said to be a strong generalized solution of the problem (16), (17) of
the class W 2

2 in the domain DT , if u ∈ W̊ 2
2 (DT ,ST ) and there exists a sequence of functions um ∈ C̊4(DT ,ST ), such

that um → u in the space W̊ 2
2 (DT ,ST ), and Lum → F in the space L2(DT ).

Obviously, the classical solution u ∈ C̊4(DT ,ST ) of the problem (16), (17) is a strong generalized solution of that
problem of the class W 2

2 in the domain DT .

Lemma 1. For a strong generalized solution u of the problem (16), (17) of the class W 2
2 in the domain DT the estimate

‖u‖
W̊ 2

2 (DT ,ST )
� cn(1 + T )4‖F‖L2(DT ), (18)

where cn = e
2

√
n + 2, holds.

Proof. Let us first show that

‖v‖W 1
2 (DT ) �

√
e

2
(1 + T )2‖�v‖L2(DT ) ∀v ∈ C̊2(DT ,ST ), (19)

where C̊2(DT ,ST ) = {v ∈ C2(DT ): v|ST
= 0}.

Indeed, assume that Ωτ := ∂Dτ ∩ {t = τ } and denote by ν = (ν1, . . . , νn, νn+1) the unit vector of the outer normal
to ∂DT . Taking into account the equalities v|ST

= 0 and ν|Ωτ = (0, . . . ,0,1), integration by parts yields∫
Dτ

∂2v

∂t2

∂v

∂t
dx dt = 1

2

∫
Dτ

∂

∂t

(
∂v

∂t

)2

dx dt = 1

2

∫
∂Dτ

(
∂v

∂t

)2

νn+1 ds = 1

2

∫
Ωτ

(
∂v

∂t

)2

dx + 1

2

∫
Sτ

(
∂v

∂t

)2

νn+1 ds,

(20)∫
Dτ

∂2v

∂x2
i

∂v

∂t
dx dt =

∫
∂Dτ

∂v

∂xi

∂v

∂t
νi ds − 1

2

∫
Dτ

∂

∂t

(
∂v

∂xi

)2

dx dt =
∫

∂Dτ

∂v

∂xi

∂v

∂t
νi ds − 1

2

∫
∂Dτ

(
∂v

∂xi

)2

νn+1 ds

=
∫

∂v

∂xi

∂v

∂t
νi ds − 1

2

∫ (
∂v

∂xi

)2

νn+1 ds − 1

2

∫ (
∂v

∂xi

)2

dx, τ � T . (21)
∂Dτ Sτ Ωτ
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It easily follows from (20) and (21) that

∫
Dτ

�v
∂v

∂t
dx dt =

∫
Sτ

1

2νn+1

[
n∑

i=1

(
∂v

∂xi

νn+1 − ∂v

∂t
νi

)2

+
(

∂v

∂t

)2
(

ν2
n+1 −

n∑
j=1

ν2
j

)]
ds

+ 1

2

∫
Ωτ

[(
∂v

∂t

)2

+
n∑

i=1

(
∂v

∂xi

)2
]

dx, τ � T . (22)

Since v|ST
= 0, and (νn+1

∂
∂xi

− νi
∂
∂t

), 1 � i � n, is the interior differential operator on ST , there take place the
equalities(

∂v

∂xi

νn+1 − ∂v

∂t
νi

)∣∣∣∣
Sτ

= 0, i = 1, . . . , n. (23)

Therefore taking into account that ν2
n+1 − ∑n

j=1 ν2
j = 0 on the characteristic manifold ST , by (22) and (23) we have

∫
Ωτ

[(
∂v

∂t

)2

+
n∑

i=1

(
∂v

∂xi

)2
]

dx = 2
∫
Dτ

�v
∂v

∂t
dx dt, τ � T . (24)

Assuming w(δ) = ∫
Ωδ

[( ∂v
∂t

)2 + ∑n
i=1(

∂v
∂xi

)2]dx and using the inequality 2�v ∂v
∂t

� ε( ∂v
∂t

)2 + 1
ε
|�v|2, valid for any

ε = const > 0, from (24) we get

w(δ) � ε

δ∫
0

w(σ)dσ + 1

ε
‖�v‖2

L2(Dδ)
, 0 < δ � T . (25)

From (25), taking into account that ‖�v‖2
L2(Dδ)

, being the function of δ, is nondecreasing, by the Gronwall lemma
[28, p. 13] it follows that

w(δ) � 1

ε
‖�v‖2

L2(Dδ)
exp δε.

Taking into account that infε>0
1
ε

exp δε = eδ is achieved for ε = 1
δ
, from the above inequality we obtain

w(δ) � eδ‖�v‖2
L2(Dδ)

, 0 < δ � T . (26)

In its turn, (26) yields

∫
DT

[(
∂v

∂t

)2

+
n∑

i=1

(
∂v

∂xi

)2
]

dx dt =
T∫

0

w(δ)dδ � e

2
T 2‖�v‖2

L2(DT ). (27)

Using the equalities v|ST
= 0 and v(x, t) = ∫ t

|x|
∂v(x,τ )

∂t
dτ , (x, t) ∈ DT which are valid for any function v ∈

C̊2(DT ,ST ), standard reasoning [27, p. 63] leads to the inequality∫
DT

v2(x, t) dx dt � T 2
∫

DT

(
∂v

∂t

)2

dx dt. (28)

By (27) and (28) we have

‖v‖2
W 1

2 (DT )
=

∫
DT

[
v2 +

(
∂v

∂t

)2

+
n∑

i=1

(
∂v

∂xi

)2
]

dx dt � e

2
(1 + T )4‖�v‖2

L2(DT ),

which results in inequality (19).
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By the definition, if u is a strong generalized solution of the problem (16), (17) of the class W 2
2 in the domain DT ,

then there exists a sequence of functions um ∈ C̊4(DT ,ST ), such that

lim
m→∞‖um − u‖

W̊ 2
2 (DT ,ST )

= 0, lim
m→0

∥∥�2um − F
∥∥

L2(DT )
= 0. (29)

Since um ∈ C̊4(DT ,ST ) satisfies the homogeneous boundary conditions (17), and ST is the characteristic manifold,
corresponding to the operator �, therefore, as is known [22, p. 546],

�um|ST
= 0. (30)

By virtue of (30), the function v = �um ∈ C̊2(DT ,ST ) according to (19) satisfies the inequalities

‖�um‖2
L2(DT ) � e

2
(1 + T )4

∥∥�2um

∥∥2
L2(DT )

,∥∥∥∥�∂um

∂t

∥∥∥∥
2

L2(DT )

� e

2
(1 + T )4

∥∥�2um

∥∥2
L2(DT )

,

∥∥∥∥�∂um

∂xi

∥∥∥∥
2

L2(DT )

� e

2
(1 + T )4

∥∥�2um

∥∥2
L2(DT )

, i = 1, . . . , n. (31)

Since ∂um

∂t
, ∂um

∂xi
∈ C̊2(DT ,ST ), by (19) and (31) we have

‖um‖2
W̊ 2

2 (DT ,ST )
=

∫
DT

[
u2

m +
(

∂um

∂t

)2

+
n∑

i=1

(
∂um

∂xi

)2

+
(

∂2um

∂t2

)2

+
n∑

i=1

(
∂2um

∂t∂xi

)2

+
n∑

i,j=1

(
∂2um

∂xi∂xj

)2
]

dx dt

� ‖um‖2
W 1

2 (DT )
+

∥∥∥∥∂um

∂t

∥∥∥∥
2

W 1
2 (DT )

+
n∑

i=1

∥∥∥∥∂um

∂xi

∥∥∥∥
2

W 1
2 (DT )

� e2

4
(1 + T )8

∥∥�2um

∥∥2
L2(DT )

+ e2

4
(1 + T )8

∥∥�2um

∥∥2
L2(DT )

+
n∑

i=1

e2

4
(1 + T )8

∥∥�2um

∥∥2
L2(DT )

= (n + 2)
e2

4
(1 + T )8

∥∥�2um

∥∥2
L2(DT )

,

whence

‖um‖
W̊ 2

2 (DT ,ST )
� cn(1 + T )4

∥∥�2um

∥∥
L2(DT )

, cn = e

2

√
n + 2. (32)

In (29), passing in inequality (32) to the limit as m → ∞, we obtain (18) which shows that the proof of the lemma
is complete. �
Lemma 2. For every F ∈ L2(DT ) there exists a unique strong generalized solution u of the problem (16), (17) of the
class W 2

2 in the domain DT for which the estimate (18) is valid.

Proof. As far as the space C∞
0 (DT ) of finite infinitely differentiable in DT functions is dense in L2(DT ), for the

given F ∈ L2(DT ) there exists the sequence of functions Fm ∈ C∞
0 (DT ), such that limm→∞ ‖Fm − F‖L2(DT ) = 0.

For m fixed, continuing the function Fm by zero outside the limits of DT and leaving for it the same notation, we have
Fm ∈ C∞(Rn+1+ ) for which the support suppFm ⊂ D∞, where Rn+1+ = Rn+1 ∩{t � 0}. Denote by um a solution of the

Cauchy problem: Lum = Fm, ∂iu
∂ti

|t=0 = 0, 0 � i � 3, which, as is known, exists, is unique and belongs to the space

C∞(Rn+1+ ) [29, p. 192]. In addition, since suppFm ⊂ D∞, ∂iu
∂ti

|t=0 = 0, 0 � i � 3, taking into account the geometry of
the domain of dependence of a solution of the linear equation Lum = Fm of hyperbolic type, we have suppum ⊂ D∞
[29, p. 191]. Leaving for the restriction of the function um on the domain DT the same notation, we can easily see
that um ∈ C̊4(DT ,ST ), and by virtue of (18) the inequality

‖um − uk‖W̊ 2
2 (DT ,ST )

� cn(1 + T )4‖Fm − Fk‖L2(DT ) (33)

is valid.
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Since the sequence {Fm} is fundamental in L2(DT ), the sequence {um} by virtue of (33) is likewise fundamental
in the complete space W̊ 2

2 (DT ,ST ). Therefore there exists the function u ∈ W̊ 2
2 (DT ,ST ), such that

lim
m→∞‖um − u‖

W̊ 2
2 (DT ,ST )

= 0,

and as far as Lum = Fm → F in the space L2(DT ), the function u is, by Definition 4, a strong generalized solution of
the problem (16), (17) of the class W 2

2 in the domain DT , for which the estimate (18) is valid. The uniqueness of that
solution follows from the estimate (18). Thus the proof of the Lemma 2 is complete. �
Remark 3. By Lemma 2, for the strong generalized solution u of the problem (16), (17) of the class W 2

2 in the domain
DT we can write u = L−1F , where L−1 : L2(DT ) → W̊ 2

2 (DT ,ST ) is the linear continuous operator whose norm, by
virtue of (18), admits the estimate∥∥L−1

∥∥
L2(DT )→W̊ 2

2 (DT ,ST )
� cn(1 + T )4. (34)

Remark 4. The embedding operator I : W̊ 2
2 (DT ,ST ) → L2(DT ) is linear continuous compact for 1 < q <

2(n+1)
n−3 ,

when n > 3, and 1 < q < ∞, when n = 2,3 [27, p. 84]. At the same time, the Nemytski’s operator T : Lq(DT ) →
L2(DT ), acting by the formula T u = λ|u|α , is continuous and bounded, if q � 2α [30, p. 349], [31, pp. 66, 67]. Thus
if the exponent α of nonlinearity in Eq. (1) satisfies inequalities (4), then putting q = 2α, we obtain that the operator

T0 = T I : W̊ 2
2 (DT ,ST ) → L2(DT ) (35)

is continuous and compact one. In addition, from u ∈ W̊ 2
2 (DT ,ST ) it all the more follows that |u|α ∈ L2(DT ), and in

Definition 2, relying on the fact that um → u in the space W̊ 2
2 (DT ,ST ), it automatically follows that |um|α → |u|α in

the space L2(DT ), as well.

Remark 5. If F ∈ L2(DT ) and the exponent α of nonlinearity satisfies inequalities (4), then according to Definition 2
and Remarks 3 and 4, the function u ∈ W̊ 2

2 (DT ,ST ) is a strong generalized solution of the problem (1), (2) of the
class W 2

2 in the domain DT , if and only if u is a solution of the functional equation

u = L−1(λ|u|α + F
)

(36)

in the space W̊ 2
2 (DT ,ST ).

We rewrite Eq. (36) as follows:

u = Ku + u0, (37)

where the operator K = L−1T0 : W̊ 2
2 (DT ,ST ) → W̊ 2

2 (DT ,ST ) is, by virtue of (34), (35) and Remark 4, continuous
and compact, acting in the space W̊ 2

2 (DT ,ST ), and u0 = L−1F ∈ W̊ 2
2 (DT ,ST ).

Remark 6. Let

B(0, z2) := {
u ∈ W̊ 2

2 (DT ,ST ): ‖u‖
W̊ 2

2 (DT ,ST )
� z2

}
be a closed (convex) ball in the Hilbert space W̊ 2

2 (DT ,ST ) of radius z2 > 0 with center at a zero element. Since
the operator K : W̊ 2

2 (DT ,ST ) → W̊ 2
2 (DT ,ST ) is continuous and compact when inequalities (4) are fulfilled, by the

Schauder’s principle, for Eq. (37) to be solvable, is sufficient to show that the operator K1, acting by the formula
K1u = Ku + u0 transfers the ball B(0, z2) into itself for some z2 > 0 [32, p. 370]. Towards this end, we cite the
needed estimate for ‖Ku‖

W̊ 2
2 (DT ,ST )

.

As is known, if u ∈ W̊ 2
2 (DT ,ST ), then the inequality [27, p. 83]

‖u‖Lp(DT ) � c̃‖u‖ ˚ 2 (38)

W2 (DT ,ST )
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is valid, where p = 2(n+1)
n−3 if n > 3 and 1 < p < ∞ for n = 2,3, while c̃ = c̃(n,p) is some positive constant. Consider

first the case n > 3 and p = 2(n+1)
n−3 . If for n > 3 the exponent α satisfies inequalities (4), then 2α < p = 2(n+1)

n−3 , and
we can take advantage of the well-known inequality [33, p. 258]

‖u‖L2α(DT ) � (mesDT )
p−2α
2αp ‖u‖Lp(DT ),

from which with regard for the fact that mesDT = ωn

n+1T n+1, where ωn is the volume of the unit ball in Rn, by virtue
of (38) we have

‖u‖L2α(DT ) � c̃1T
δn,α‖u‖

W̊ 2
2 (DT ,ST )

, δn,α = (n + 1)

(
1

2α
− n − 3

2(n + 1)

)
, (39)

where c̃1 = c̃1(n,α) = c̃( ωn

n+1 )
1

2α
− n−3

2(n+1) .

For ‖T0u‖L2(DT ), where u ∈ W̊ 2
2 (DT ,ST ), and the operator T0 acts by formula (35), owing to (39) we have the

estimate

‖T0u‖L2(DT ) � λ

[ ∫
DT

|u|2α dx dt

]1/2

= λ‖u‖α
L2α(DT ) � λc̃α

1 T αδn,α‖u‖α

W̊ 2
2 (DT ,ST )

. (40)

Next, from (34) and (40) for ‖Ku‖
W̊ 2

2 (DT ,ST )
, where Ku = L−1T0u, the estimate

‖Ku‖
W̊ 2

2 (DT ,ST )
�

∥∥L−1
∥∥

L2(DT )→W̊ 2
2 (DT ,ST )

‖T0u‖L2(DT ) � λcnc̃
α
1 (1 + T )4T αδn,α‖u‖α

W̊ 2
2 (DT ,ST )

∀u ∈ W̊ 2
2 (DT ,ST ) (41)

is valid. Note that δn,α = (n + 1)( 1
2α

− n−3
2(n+1)

) > 0 for α < n+1
n−3 .

Consider now the equation

azα + b = z (42)

with respect to an unknown z, where

a = λcnc̃
α
1 (1 + T )4T αδn,α , b = cn(1 + T )4‖F‖L2(DT ). (43)

For T > 0, it is evident that a > 0 and b � 0. A simple analysis, similar to that carried out for α = 3 in [32, pp. 373–
374], shows that:

(1) in case b = 0 Eq. (42) has, along with the zero root z1 = 0, the unique positive root z2 = a− 1
α−1 ;

(2) if b > 0, then for 0 < b < b0, where

b0 = [
α− 1

α−1 − α− α
α−1

]
a− 1

α−1 , (44)

Eq. (42) has two positive roots z1 and z2, 0 < z1 < z2, and for b = b0 these roots merge, and we have one positive
root

z1 = z2 = z0 = (αa)−
1

α−1 ;
(3) when b > b0, Eq. (42) has no nonnegative roots.

Note that for 0 < b < b0 there take place the inequalities

z1 < z0 = (αa)−
1

α−1 < z2.

By (43) and (44), the condition b � b0 is equivalent to the condition

cn(1 + T )4‖F‖L2(DT ) �
(
λcnc̃

α
1 (1 + T )4T αδn,α

)− 1
α−1

[
α− 1

α−1 − α− α
α−1

]
or

‖F‖L (D ) � �n,λ,α(1 + T )−
4α

α−1 T −σn, σn > 0, (45)
2 T
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where

�n,λ,α = [
α− 1

α−1 − α− α
α−1

]
c−1
n

(
λcnc̃

α
1

)− 1
α−1 ,

σn = α

α − 1
δn,α > 0, δn,α = (n + 1)

(
1

2α
− n − 3

2(n + 1)

)
.

According to the absolute continuity of Lebesgue integral, we have limT →0 ‖F‖L2(DT ) = 0. At the same time,

limT →0(1 + T )−
4α

α−1 T −σn = +∞. Therefore there exists T1 = T1(F ), 0 < T1 < +∞, such that inequality (45) holds
for

0 < T � T1(F ). (46)

Let us now show that if the condition (46) is fulfilled, the operator K1u = (Ku+u0) : W̊ 2
2 (DT ,ST ) → W̊ 2

2 (DT ,ST )

transforms the ball B(0, z2), mentioned in Remark 6, into itself, where z2 is the maximal positive root of Eq. (42).
Indeed, if u ∈ B(0, z2), then by virtue of (41)–(43) we have

‖K1u‖
W̊ 2

2 (DT ,ST )
� a‖u‖α

W̊ 2
2 (DT ,ST )

+ b � azα
2 + b = z2.

Therefore by Remark 6, Eq. (37) has a solution in the space W̊ 2
2 (DT ,ST ). The cases n = 2,3 for 1 < α < ∞ are

considered analogously.
Thus by Remarks 4–6, the following theorem is valid.

Theorem 2. Let F ∈ L2,loc(D∞) and F ∈ L2(DT ) for any T > 0. Then if the exponent α of nonlinearity in Eq. (1)

satisfies inequalities (4), and for T the condition (46) is fulfilled, then the problem (1), (2) has at least one strong
generalized solution of the class W 2

2 in the domain DT in a sense of Definition 2, which at the same time is, in fact, a
weak generalized solution of that problem of the class W 2

2 in the domain DT in a sense of Definition 1.

Remark 7. In case 0 < α < 1, the problem (1), (2) may have more than one global solution. For example, for F = 0,
the problem (1), (2) in the domain D∞ has, besides a trivial solution, an infinite set of global linearly independent
solutions uσ ∈ C̊2(D∞, S∞) depending on the parameter σ � 0 and given by formula

uσ (x, t) =
{

β[(t − σ)2 − |x|2] 2
1−α , t > σ + |x|,

0, |x| � t � σ + |x|,
where β = λ

1
1−α [4k(k − 1)(n + 2k − 1)(n + 2k − 3)]− 1

1−α , k = 2
1−α

, and for 1/2 < α < 1 the function uσ ∈ C4(D∞).

Remark 8. Note that for n = 2 and n = 3, by the well-known properties [22, p. 745], [25, p. 84] of solution of the
linear characteristic problem: �v = g in D∞, v|S∞ = 0, if g � 0, then v � 0, as well. Therefore for n = 2,3, if F � 0,
then the classical solution u of the problem (1), (2) satisfying, analogously to (30), the condition �u|S∞ = 0 will
likewise be nonnegative. But in this case, this solution for α = 1 will satisfy the following linear problem:

�2u = λu + F,

u|S∞ = 0,
∂u

∂ν
|S∞ = 0,

which is globally solvable in the corresponding functional spaces.
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