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1. STATEMENT OF THE PROBLEM

Consider the nonlinear wave equation

�u :=
∂2u

∂t2
− ∆u = f(u) + F, (1)

where f and F are given real functions; moreover, f is a nonlinear function, u is the desired
unknown function, and ∆ =

∑n

i=1 ∂2/∂x2
i , n > 1.

For Eq. (1), we consider the characteristic Cauchy problem on finding a solution u(x, t) of this
equation with the boundary condition

u|ST
= g (2)

in the truncated future light cone DT : |x| < t < T , x = (x1, . . . , xn), T = const > 0, where g is a
given real function on the characteristic conic surface ST , t = |x|, t ≤ T . If T = +∞, then D∞ :
t > |x| and S∞ = ∂D∞ : t = |x|.

Numerous publications (e.g., see the bibliography in [1–20]) deal with the local or global solv-
ability of the Cauchy problem for nonlinear equations of the form (1) with the initial conditions
u|t=0 = u0 and ut|t=0 = u1. As to the characteristic Cauchy problem in the linear case, that is
problem (1), (2) with f = 0, it is known that this problem is well posed and global solvability takes
place in the corresponding function spaces [21–25].

In what follows, we consider special cases of a nonlinear function f corresponding to many-
dimensional variants of the sine-Gordon equation and the Liouville equation. For these equations,
we analyze the existence or absence of a global solution of the characteristic Cauchy problem (1), (2).
Note that this problem for Eq. (1) with a power-law nonlinearity was considered in [26].

2. MANY-DIMENSIONAL VERSION OF THE SINE-GORDON EQUATION

Consider the case in which f(u) = λ sin µu, where λ and µ are given nonzero real numbers.
In this case, Eq. (1) acquires the form

Lu :=
∂2u

∂t2
− ∆u = λ sin µu + F, (3)

where we have set L = � for convenience.

135



136 KHARIBEGASHVILI

To simplify the exposition, in what follows, we assume that the boundary condition (2) is
homogeneous; i.e.,

u|ST
= 0. (4)

We set W̊ 1
2 (DT , ST ) := {u ∈ W 1

2 (DT ) : u|ST
= 0}, where W 1

2 (DT ) is the usual Sobolev space
[27, p. 56] and condition (4) is treated in the sense of the theory of traces [27, p. 70].

Remark 1. Since the Nemytskii operator N : L2 (DT ) → L2 (DT ) acting by the formula
Nu = λ sin µu is continuous and bounded [28, p. 349; 29, pp. 66–67 of the Russian translation] and
the embedding I : W̊ 1

2 (DT , ST ) → L2 (DT ) is a continuous compact operator [27, p. 81], it follows
that

N0 = NI : W̊ 1
2 (DT , ST ) → L2 (DT ) (5)

is also a continuous compact operator.

Definition 1. Let F ∈ L2 (DT ). A function u ∈ W̊ 1
2 (DT , ST ) is referred to as a strong

generalized solution of the nonlinear problem (3), (4) in the domain DT if there exists a sequence
of functions um ∈ C̊2

(
D̄T , ST

)
:=

{
u ∈ C2

(
D̄T

)
: u|ST

= 0
}

such that um → u in the space
W̊ 1

2 (DT , ST ) and [Lum − λ sin µum] → F in the space L2 (DT ). In this case, the convergence of
the sequence {λ sin µum} to the function λ sin µu in the space L2 (DT ) as um → u in the space
W̊ 1

2 (DT , ST ) follows from Remark 1.

Lemma 1. Let F ∈ L2 (DT ). Then any strong generalized solution u ∈ W̊ 1
2 (DT , ST ) of prob-

lem (3), (4) in the domain DT admits the a priori estimate

‖u‖W̊ 1
2 (DT ,ST ) ≤

√
e

2
T‖F‖L2(DT ) + c(λ, µ, T ), (6)

where c(λ, µ, T ) =
(

3e|λ|ωn

|µ|n(n + 1)
T n+1

)1/2

and ωn is the area of the unit sphere in Rn.

Proof. Let u ∈ W̊ 1
2 (DT , ST ) be a strong generalized solution of problem (3), (4). By Definition 1

and Remark 1, there exists a sequence of functions um ∈ C̊2
(
D̄T , ST

)
such that

lim
m→∞

‖um − u‖W̊ 1
2 (DT ,ST ) = 0, lim

m→∞
‖Lum − λ sin µum − F‖L2(DT ) = 0. (7)

Consider the function um ∈ C̊2
(
D̄T , ST

)
that is found from the problem

Lum − λ sin µum = Fm, (8)
um|ST

= 0. (9)

Here
Fm = Lum − λ sin µum. (10)

By multiplying both sides of Eq. (8) by ∂um/∂t and by integrating the resulting relation over
the domain Dτ , 0 < τ ≤ T , we obtain

1
2

∫

Dτ

∂

∂t

(
∂um

∂t

)2

dx dt −
∫

Dτ

∆um

∂um

∂t
dx dt +

λ

µ

∫

Dτ

∂

∂t
(cos µum) dx dt =

∫

Dτ

Fm

∂um

∂t
dx dt. (11)

We set Ωτ := D ∩ {t = τ}, and by ν = (ν1, . . . , νn, ν0) we denote the unit outward normal
to ST\{(0, . . . , 0)}. By performing integration by parts and by taking into account (9) and the
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ON THE SOLVABILITY OF THE CHARACTERISTIC CAUCHY PROBLEM 137

relations ν|Ωτ
= (0, . . . , 0, 1) and ν0|Sτ

= −
√

2/2, one can readily obtain the relations

∫

Dτ

∂

∂t

(
∂um

∂t

)2

dx dt =
∫

∂Dτ

(
∂um

∂t

)2

ν0ds =
∫

Ωτ

(
∂um

∂t

)2

dx +
∫

Sτ

(
∂um

∂t

)2

ν0ds,

∫

Dτ

∂

∂t
(cos µum) dx dt =

∫

∂Dτ

(cos µum) ν0ds =
∫

Ωτ

cos µumdx −
√

2
2

∫

Sτ

cos µumds

=
∫

Ωτ

cos µumdx − 1
2

∫

Ωτ

dx,

∫

Dτ

∂2um

∂x2
i

∂um

∂t
dx dt =

∫

∂Dτ

∂um

∂xi

∂um

∂t
νids − 1

2

∫

Dτ

∂

∂t

(
∂um

∂xi

)2

dx dt

=
∫

∂Dτ

∂um

∂xi

∂um

∂t
νids − 1

2

∫

∂Dτ

(
∂um

∂xi

)2

ν0ds

=
∫

∂Dτ

∂um

∂xi

∂um

∂t
νids − 1

2

∫

Sτ

(
∂um

∂xi

)2

ν0ds − 1
2

∫

Ωτ

(
∂um

∂xi

)2

dx.

Then relation (11) can be represented in the form
∫

Dτ

Fm

∂um

∂t
dx dt =

∫

Sτ

1
2ν0

[
n∑

i=1

(
∂um

∂xi

ν0 −
∂um

∂t
νi

)2

+
(

∂um

∂t

)2
(

ν2
0 −

n∑

j=1

ν2
j

)]

ds

+
1
2

∫

Ωτ

[(
∂um

∂t

)2

+
n∑

i=1

(
∂um

∂xi

)2
]

dx +
λ

µ

∫

Ωτ

(

cos µum − 1
2

)

dx. (12)

Since
(

ν0

∂

∂xi

− νi

∂

∂t

)

, i = 1, . . . , n, is an interior differential operator on Sτ , it follows from (9)

that (
∂um

∂xi

ν0 −
∂um

∂t
νi

)∣
∣
∣
∣
Sτ

= 0, i = 1, . . . , n.

By virtue of the relation (

ν2
0 −

n∑

j=1

ν2
j

)∣
∣
∣
∣
∣
Sτ

= 0

valid on the characteristic surface Sτ , relation (12) acquires the form
∫

Ωτ

[(
∂um

∂t

)2

+
n∑

i=1

(
∂um

∂xi

)2
]

dx +
2λ
µ

∫

Ωτ

(

cos µum − 1
2

)

dx = 2
∫

Dτ

Fm

∂um

∂t
dx dt. (13)

We use the notation

w(δ) =
∫

Ωδ

[(
∂um

∂t

)2

+
n∑

i=1

(
∂um

∂xi

)2
]

dx.

Then, by virtue of the inequality

2Fm

∂um

∂t
≤ ε

(
∂um

∂t

)2

+
1
ε
F 2

m
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138 KHARIBEGASHVILI

valid for any ε = const > 0, from (13), we have

w(δ) ≤ ε

δ∫

0

w(σ)dσ +
1
ε
‖Fm‖2

L2(Dδ) +
3|λ|ωn

|µ|n δn, 0 < δ ≤ T. (14)

Since ‖Fm‖2

L2(Dδ) is a nondecreasing function of δ, it follows from (14) and the Gronwall lemma
[30, p. 13 of the Russian translation] that

w(δ) ≤
[
1
ε
‖Fm‖2

L2(Dδ) +
3|λ|ωn

|µ|n δn

]

exp δε.

If ε = 1/δ, then we obtain the inequality

w(δ) ≤ e

[

δ ‖Fm‖2

L2(Dδ) +
3|λ|ωn

|µ|n δn

]

, (15)

which implies that

‖um‖2

W̊ 1
2 (DT ,ST ) =

∫

DT

[(
∂um

∂t

)2

+
n∑

i=1

(
∂um

∂xi

)2
]

dx dt =

T∫

0

w(δ)dδ

≤ e

[
1
2
T 2 ‖Fm‖2

L2(DT ) +
3|λ|ωn

|µ|n(n + 1)
T n+1

]

and hence

‖um‖W̊ 1
2 (DT ,ST ) ≤

√
e

2
T ‖Fm‖L2(DT ) + c(λ, µ, T ), (16)

where c(λ, µ, T ) is the function defined in Lemma 1.
By using (7) and (10) and by passing in inequality (16) to the limit as m → ∞, we obtain the

estimate (6), which completes the proof of the lemma.
Remark 2. Note that in the linear case [λ = 0 in (3)], that is, in the case of the problem

Lu(x, t) = F (x, t), (x, t) ∈ DT , u(x, t) = 0, (x, t) ∈ ST , (17)

for F ∈ L2 (DT ), one can introduce the notion of a strong generalized solution u ∈ W̊ 1
2 (DT , ST )

of problem (17) in a similar way. In this case, by definition, there exists a sequence of functions
um ∈ C̊2

(
D̄T , ST

)
satisfying relation (7). It follows from the proof of Lemma 1 that the a priori

estimate (6) with λ = 0, that is, the estimate

‖u‖W̊ 1
2 (DT ,ST ) ≤

√
e

2
T‖F‖L2(DT ) (18)

is also valid for a strong generalized solution of problem (17). By [26], problem (17) has a strong
generalized solution in the class W̊ 1

2 (DT , ST ), whose uniqueness follows from the estimate (18).
Consequently, the solution u of problem (17) can be represented in the form u = L−1F , where
L−1 : L2 (DT ) → W̊ 1

2 (DT , ST ) is a linear continuous operator, whose norm, by (18), admits the
estimate

∥
∥L−1

∥
∥

L2(DT )→W̊ 1
2 (DT ,ST )

≤
√

e

2
T. (19)

Remark 3. By virtue of (19) and Remark 1, one can readily see that if F ∈ L2 (DT ), then for
the function u ∈ W̊ 1

2 (DT , ST ) to be a strong generalized solution of problem (3), (4), it is necessary
and sufficient that u is a solution of the functional equation

u = L−1(λ sin µu + F ) (20)

in the space W̊ 1
2 (DT , ST ).
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ON THE SOLVABILITY OF THE CHARACTERISTIC CAUCHY PROBLEM 139

We rewrite Eq. (20) in the form

u = Au := L−1 (N0u + F ) , (21)

where, by Remark 1, the operator N0 : W̊ 1
2 (DT , ST ) → L2 (DT ) given by (5) is a continuous

compact operator. At the same time, by Lemma 1, the a priori estimate ‖u‖W̊ 1
2 (DT ,ST ) ≤ c0 with a

positive constant c0 = c0(λ, µ, T, F ) independent of u and τ is valid for any value of the parameter
τ in the interval [0, 1] and for any solution u of the parametric equation u = τAu. Therefore, by
the Leray–Schauder theorem [31, p. 375], Eq. (21) and hence problem (3), (4) have at least one
solution u ∈ W̊ 1

2 (DT , ST ).
Let us show that problem (3), (4) has at most one strong generalized solution in the class

W̊ 1
2 (DT , ST ). Indeed, let u1 and u2 be strong generalized solutions of problem (3), (4) in the class

W̊ 1
2 (DT , ST ); i.e., there exist sequences of functions u1m, u2m ∈ C̊2

(
D̄T , ST

)
such that

lim
m→∞

‖uim − ui‖W̊ 1
2 (DT ,ST ) = 0, lim

m→∞
‖Luim − λ sin µuim − F‖L2(DT ) = 0, i = 1, 2. (22)

By setting v = u2m − u1m and by using the obvious relation

f (u2m) − f (u1m) = (u2m − u1m)

1∫

0

f ′ (τu2m + (1 − τ)u1m) dτ for f(u) = λ sin µu,

one can readily see that v ∈ C̊2
(
D̄T , ST

)
is a solution of the problem

∂2v

∂t2
− ∆v = gmv + F2m − F1m, v|ST

= 0. (23)

Here Fim = Luim − λ sin µuim, i = 1, 2, and

gm = gm (u1m, u2m) = λµ

1∫

0

cos (µτu2m + µ(1 − τ)u1m) dτ, |gm| ≤ |λµ|. (24)

By analogy with the derivation of (13), for the solution v of problem (23), one can derive the
relation

∫

Ωτ

[(
∂v

∂t

)2

+
n∑

i=1

(
∂v

∂xi

)2
]

dx = 2
∫

Dτ

gmv
∂v

∂t
dx dt + 2

∫

Dτ

(F2m − F1m)
∂v

∂t
dx dt. (25)

By taking into account the inequality in (24), one can readily see that
∣
∣
∣
∣
∣
2

∫

Dτ

gmv
∂v

∂t
dx dt

∣
∣
∣
∣
∣
≤

∫

Dτ

v2dx dt +
∫

Dτ

(
∂v

∂t

)2

dx dt. (26)

In a similar way, we obtain
∣
∣
∣
∣
∣
2
∫

Dτ

(F2m − F1m)
∂v

∂t
dx dt

∣
∣
∣
∣
∣
≤

∫

Dτ

|F2m − F1m|2 dx dt +
∫

Dτ

∣
∣
∣
∣
∂v

∂t

∣
∣
∣
∣

2

dx dt. (27)

Since

v|ST
= 0, v(x, t) =

t∫

|x|

∂v(x, τ)
∂t

dτ, (x, t) ∈ D̄T

DIFFERENTIAL EQUATIONS Vol. 44 No. 1 2008



140 KHARIBEGASHVILI

for a function v ∈ C̊2
(
D̄T , ST

)
, it follows that, by using standard considerations, one can obtain

the inequality [27, p. 63]
∫

Dτ

v2(x, t)dx dt ≤ τ 2

∫

Dτ

(
∂v

∂t

)2

dx dt. (28)

By setting

w0(δ) =
∫

Ωδ

[

(∂v/∂t)2 +
n∑

i=1

(∂v/∂xi)
2

]

dx

and by using (26)–(28), from (25), we obtain the inequality

w0(δ) ≤
(
2 + δ2

)
δ∫

0

w0(σ)dσ + ‖F2m − F1m‖2

L2(Dδ) , 0 < δ ≤ T,

which, together with the Gronwall lemma, implies that

w0(δ) ≤ ‖F2m − F1m‖2

L2(DT ) exp
(
2 + T 2

)
T, 0 < δ ≤ T. (29)

In turn, it follows from (29) that

‖u2m − u1m‖2

W̊ 1
2 (DT ,ST ) = ‖v‖2

W̊ 1
2 (DT ,ST )

=
∫

DT

[(
∂v

∂t

)2

+
n∑

i=1

(
∂v

∂xi

)2
]

dx dt

=

T∫

0

w0(δ)dδ ≤ T ‖F2m − F1m‖2

L2(DT ) exp
(
2 + T 2

)
T. (30)

By virtue of (30) and the second inequality in (22), we have limm→∞ ‖u2m − u1m‖W̊ 1
2 (DT ,ST ) = 0.

This, together with the first relation in (22), implies that ‖u2 − u1‖W̊ 1
2 (DT ,ST ) = 0; i.e., u2 = u1.

This completes the proof of the uniqueness of the strong generalized solution of problem (3), (4) in
the class W̊ 1

2 (DT , ST ).
Therefore, the following assertion is valid.

Theorem 1. Let F ∈ L2 (DT ). Then problem (3), (4) has a unique strong generalized solution
u ∈ W̊ 1

2 (DT , ST ) in the domain DT .

Remark 4. Let F ∈ L2,loc (D∞) and F ∈ L2 (DT ) for any T > 0. We say that problem (3), (4)
with T = ∞ has a global solution of the class W̊ 1

2 in the future light cone D∞ if there exists a function
u ∈ L2,loc (D∞) that is a strong generalized solution of problem (3), (4) of the class W̊ 1

2 (DT , ST ) in
the domain DT for any finite T > 0. It follows from Theorem 1 that problem (3), (4) has a unique
global solution of the class W̊ 1

2 in the future light cone D∞.

3. MANY-DIMENSIONAL VERSION OF THE LIOUVILLE EQUATION

If f(u) = λ exp µu, where λ and µ are given nonzero real numbers, then Eq. (1) acquires the
form

Lu :=
∂2u

∂t2
− ∆u = λ exp µu + F. (31)
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ON THE SOLVABILITY OF THE CHARACTERISTIC CAUCHY PROBLEM 141

Definition 2. Let F ∈ L2 (DT ). A function u is called a weak generalized solution of prob-
lem (31), (4) in the class W̊ 1

2 in the domain DT if u ∈ W̊ 1
2 (DT , ST ), exp µu ∈ L2 (DT ), and the

integral relation
∫

DT

[−utϕt + ∇xu∇xϕ] dx dt = λ

∫

DT

ϕ exp µudx dt +
∫

DT

Fϕdx dt (32)

is valid for any function ϕ ∈ W 1
2 (DT ) such that ϕ|t=T = 0.

By performing integration by parts, one can readily show that a classical solution u ∈ C̊2(D̄T , ST )
of problem (31), (4) is also a weak generalized solution of problem (31), (4) in the class W̊ 1

2 in the
sense of Definition 2. Conversely, if a weak generalized solution of this problem belongs to the class
C2

(
D̄T

)
, then it is also classical.

Definition 3. Let F ∈ L2 (DT ). A function u is called a strong generalized solution of prob-
lem (31), (4) in the class W̊ 1

2 in DT if u ∈ W̊ 1
2 (DT , ST ), exp µu ∈ L2 (DT ) and there exists a sequence

of functions um ∈ C̊2
(
D̄T , ST

)
such that um → u in the space W̊ 1

2 (DT , ST ) and exp µum → exp µu,
[Lum − λ exp µum] → F in the space L2 (DT ).

Obviously, a classical solution of problem (31), (4) in the space C̊2
(
D̄T , ST

)
is a strong general-

ized solution of this problem in the class W̊ 1
2 , and, in turn, the latter is a weak generalized solution

of problem (31), (4) in the class W̊ 1
2 .

Theorem 2. Let F ∈ L2 (DT ). If λµ < 0 and λF |DT
≥ 0, then problem (31), (4) with n = 2

has a weak generalized solution in the class W̊ 1
2 in the domain DT .

Theorem 2 is a consequence of the following assertions. First, let λ > 0 and µ < 0. Instead
of (31), we consider Eq. (1) with f(u) = λ exp µ|u|, that is,

Lu :=
∂2u

∂t2
− ∆u = λ exp µ|u| + F. (33)

By analogy with Definition 3, for problem (33), (4), we introduce the notion of a strong gener-
alized solution in the class W̊ 1

2 in the domain DT .

Lemma 2. Let F ∈ L2 (DT ). Then any strong generalized solution u of problem (33), (4) in
the class W̊ 1

2 in the domain DT satisfies the estimate

‖u‖W̊ 1
2 (DT ,ST ) ≤

√
e

2
T‖F‖L2(T ) + c1(λ, µ, T ), c1(λ, µ, T ) =

(
e|λ|ωn

|µ|n(n + 1)
T n+1

)1/2

.

Proof. The proof reproduces the proof of Lemma 1 almost literally. One should only use the
relation

Iτ = λ

∫

Dτ

∂um

∂t
exp µ |um| dx dt =

λ

µ

∫

Dτ

∂

∂t
[(exp µ |um| − 1) sgn um] dx dt

=
λ

µ

∫

Ωτ

(exp µ |um| − 1) sgn umdx

with regard of the boundary condition (4) instead of the relation

λ

∫

Dτ

∂um

∂t
sin µumdx dt = −λ

µ

∫

Ωτ

(

cos µum − 1
2

)

dx

DIFFERENTIAL EQUATIONS Vol. 44 No. 1 2008



142 KHARIBEGASHVILI

used in the proof of Lemma 1. Since µ < 0 and 0 < exp µ |um| ≤ 1, it follows that

|Iδ| ≤
∣
∣
∣
∣
λ

µ

∣
∣
∣
∣

∫

Ωδ

dx =
∣
∣
∣
∣
λ

µ

∣
∣
∣
∣
ωn

n
δn.

Remark 5. Since µ < 0 and 0 < exp µ|u| ≤ 1, it follows that Remark 1 is also valid for the
Nemytskii operator Ñ : L2 (DT ) → L2 (DT ) acting by the formula Ñu = λ exp µ|u|. Therefore,
by analogy with Remark 3, which implies Eq. (21), problem (33), (4) is equivalent to the operator
equation u = Ãu := L−1

(
ÑIu + F

)
in the space W̊ 1

2 (DT , ST ), where I : W̊ 1
2 (DT , ST ) → L2 (DT )

is the embedding operator and ÑI : W̊ 1
2 (DT , ST ) → L2 (DT ) is a continuous compact operator.

Further, by Lemma 2, each solution u of the equation u = τÃu with any value of the parameter
τ in the interval [0, 1] admits the a priori estimate ‖u‖W̊ 1

2 (DT ,ST ) ≤ c2 with a positive constant
c2 = c2(λ, µ, T, F ) independent of u and τ . Therefore, by the Leray–Schauder theorem [31, p. 375],
the equation u = Ãu and hence problem (33), (4) has at least one strong generalized solution u

in the class W̊ 1
2 in the domain DT . Obviously, this solution is also a weak generalized solution of

problem (33), (4) in the class W̊ 1
2 in the domain DT ; i.e., the integral relation

∫

DT

[−utϕt + ∇xu∇xϕ] dx dt = λ

∫

DT

ϕ exp µ|u|dx dt +
∫

DT

Fϕdx dt (34)

is valid for any function ϕ ∈ W 1
2 (DT ) such that ϕ|t=T = 0.

Therefore, Theorem 2 will be proved for the case in which λ > 0 and µ < 0 once, for n = 2, we
show that the above-mentioned solution u of problem (33), (4) is nonnegative, i.e., u|DT

≥ 0, since,
in this case, relation (34) implies (32).

Indeed, by setting g = λ exp µ|u| + F , we rewrite relation (34) in the form
∫

DT

[−utϕt + ∇xu∇xϕ] dx dt =
∫

DT

gϕdx dt ∀ϕ ∈ W 1
2 (DT ) , ϕ|t=T = 0. (35)

Let GT : |x| < T , 0 < t < T , be a cylinder containing DT . We continue the functions u
and g by zero outside DT into the domain GT and keep the previous notation for the result-
ing functions. Obviously, g ∈ L2 (GT ), and since u ∈ W̊ 1

2 (DT , ST ), we have u ∈ W 1
2,0 (GT ) :=

{
u ∈ W 1

2 (GT ) : u||x|=T = 0
}

and u|t=0 = 0. By taking into account the relations u|GT \DT
= 0 and

g|GT \DT
= 0 and formula (35), we obtain

∫

GT

[−utψt + ∇xu∇xψ] dx dt =
∫

GT

gψ dx dt ∀ψ ∈ Ŵ 1
2,0 (GT ) , (36)

where Ŵ 1
2,0 (GT ) :=

{
ψ ∈ W 1

2,0 (GT ) : ψ|t=T = 0
}
. Relation (36) implies that u is a generalized

solution of the mixed problem [27, p. 210]

�u = g, u|t=0 = 0, ut|t=0 = 0, u||x|=T = 0 (37)

in the class W 1
2 (GT ) in the domain GT .

On the other hand, assuming that the function g is continued by zero outside GT in R3, by ũ ∈
D′ (R3) we denote the generalized function that is a solution of the Cauchy problem

�ũ = g, ũ|t<0 = 0 (38)

in R3. Since g|t<0 = 0, we find that the solution of problem (38) in the space D′ (R3) of generalized
functions exists, is unique, and can be represented in the form [32, p. 225]

ũ = E2 ∗ g, (39)
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where E2 (x1, x2, t) = θ(t − |x|)/
(
2π

√
t2 − |x|2

)
, and θ is the Heaviside function. Since g ∈ L2 (R3)

and n = 2, it follows that the function ũ given by (39) is a locally integrable function that can be
represented by the Poisson formula [32, p. 214] for t > 0 :

ũ (x1, x2, t) =
1
2π

t∫

0

∫

|ξ−x|<t−τ

g(ξ, t)
√

(t − τ)2 − |ξ − x|2
dξ dτ, t > 0

(
ũ|t<0 = 0

)
. (40)

Now, by taking into account the inequalities λ > 0, F ≥ 0, and hence by virtue of the above-
performed construction, g|DT

= (λ exp µ|u|+F )|DT
≥ 0 and g|R3\DT

= 0, and by using relation (40),
we obtain ũ ≥ 0 in R3. Since ũ is a solution of the Cauchy problem (38), where g ∈ L2 (R3), it
follows from [33, p. 189 of the Russian translation] that ũ ∈ W 1

2,loc (R3); moreover, by virtue of the
relation g|R3\DT

= 0, from (40), we have ũ|GT \DT
= 0. Therefore, the function ũ|GT

∈ W 1
2 (GT ) is a

solution of the mixed problem (37) in the sense of the integral relation (36). Now, by virtue of the
uniqueness theorem for the mixed problem (37) in the class W 1

2 (GT ) [27, p. 210], we have u = ũ
in the domain GT and hence u = ũ ≥ 0 in the domain DT . This completes the proof of Theorem 2
for the case in which λ > 0 and µ < 0. If λ < 0 and µ > 0, then the considerations are performed
in a similar way.

Remark 6. Let F ∈ L2,loc (D∞) and F ∈ L2 (DT ) for any T > 0. We say that problem (31), (4)
is globally solvable in the weak sense if, for any T > 0, this problem has a weak generalized solution
of the class W̊ 1

2 in the domain DT . It follows from Theorem 2 that if the function F satisfies the
inclusions F ∈ L2,loc (D∞) and F ∈ L2 (DT ) for any T > 0, then, for λµ < 0, λF |DT

≥ 0, and
n = 2, problem (31), (4) is globally solvable in the weak sense. In what follows, we show that if
λµ > 0, then problem (31), (4) is not necessarily globally solvable in the weak sense.

Theorem 3. Let F ∈ L2,loc (D∞) and F ∈ L2 (DT ) for any T > 0. In addition, let λF |D∞ ≥ 0
and F �≡ 0; i.e., F �= 0 on a set of a positive Lebesgue measure. If λµ > 0 and n = 2, then
problem (31), (4) is not globally solvable in the weak sense; i.e., there exists a T0 = T0(F ) > 0
such that for T > T0 problem (31), (4) has no weak generalized solutions of the class W̊ 1

2 in the
domain DT .

Proof. We restrict our considerations to the case in which λ > 0 and µ > 0, since the case in
which λ < 0 and µ < 0 can be considered in a similar way. Let u be a weak generalized solution of
problem (31), (4) in the class W̊ 1

2 in the domain DT . Since λ > 0 and hence, by the assumptions
of Theorem 3, the right-hand side (λ exp µu + F ) of Eq. (31) is nonnegative in the domain DT ,
it follows from the considerations performed in the proof of Theorem 2 in the case n = 2 that the
solution u of problem (31), (4) is nonnegative in the domain DT as well. Therefore, by using
the formula exp µu =

∑∞
k=0(µu)k/k!, we obtain

exp µu(x, t) >
µ2

2
u2(x, t), (x, t) ∈ DT , (41)

for the case in which µ > 0.
By performing integration by parts on the left-hand side in (32) and by taking into account the

boundary conditions (4) and ϕ|t=T = 0, we obtain the relation
∫

DT

u�ϕdx dt = λ

∫

DT

ϕ exp µudx dt +
∫

DT

Fϕdx dt. (42)

We assume that ϕ ≥ 0 in (42) and use the Cauchy inequality with the parameter ε > 0 :

ab ≤ ε

2
a2 +

1
2ε

b2, a ≥ 0, b ≥ 0,
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where a = |u|ϕ1/2 and b = |�ϕ|/ϕ1/2; then we obtain

|u�ϕ| = |u|ϕ1/2 |�ϕ|
ϕ1/2

≤ ε

2
|u|2ϕ +

1
2ε

|�ϕ|2
ϕ

. (43)

By (41), (43) and the inequality ϕ ≥ 0, from (42), we have
(

1
2
λµ2 − ε

2

) ∫

DT

u2ϕdx dt ≤ 1
2ε

∫

DT

|�ϕ|2
ϕ

dx dt −
∫

DT

Fϕdx dt. (44)

If ε = λµ2/2, then inequality (44) acquires the form
∫

D

u2ϕdx dt ≤ 4
λ2µ4

∫

DT

|�ϕ|2
ϕ

dx dt − 4
λµ2

∫

DT

Fϕdx dt. (45)

We use the method of trial functions [12, pp. 10–12]. For the trial function in (45), we take the
function

ϕ(x, t) = ϕ0

[
2
T 2

(
t2 + |x|2

)
]

,

where ϕ0 ∈ C2((−∞,+∞)), ϕ0 ≥ 0, ϕ′
0 ≤ 0, ϕ0(σ) = 1 for 0 ≤ σ ≤ 1, and ϕ0(σ) = 0 for σ ≥ 2

[12, p. 22]. Since ϕ(x, t) = 0 for r = (t2 + |x|2)1/2 ≥ T , after the change of variables t =
√

2Tξ0,
x =

√
2Tξ [n = 2, x = (x1, x2), ξ = (ξ1, ξ2)], for the first integral on the right-hand side in

inequality (45), we have
∫

DT

|�ϕ|2
ϕ

dx dt =
∫

r=(t2+|x|2)1/2≤T,
t>|x|

|�ϕ|2
ϕ

dx dt =
1√
2T

κ0, (46)

where

κ0 =
∫

1≤|ξ0|2+|ξ|2≤2,
ξ0>|ξ|

|−2ϕ′
0 + 4 (ξ2

0 − |ξ|2)ϕ′′
0 |

2

ϕ0

dξ dξ0

is a finite quantity [12, p. 22] for an appropriate choice of the function ϕ0.
Since ϕ0(σ) = 1 for 0 ≤ σ ≤ 1, it follows from (46) and (45) that

∫

r≤T/
√

2,
t>|x|

u2dx dt ≤
∫

DT

u2ϕdx dt ≤ 4
λ2µ4

1√
2T

κ0 −
4

λµ2

∫

DT

Fϕdx dt. (47)

Since λ > 0 and, by assumption, F ≥ 0, F �≡ 0, and F ∈ L2 (DT ) for any T > 0, it follows
from the absolute continuity of the integral that γ(T ) =

∫
DT

Fϕdx dt is a nonnegative continuous
nondecreasing function; moreover,

lim
T→0

γ(T ) = 0, lim
T→+∞

γ(T ) > 0. (48)

One can readily see that the equation

ψ(T ) =
4

λ2µ4

1√
2T

κ0 −
4

λµ2
γ(T ) = 0 (49)
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has a unique positive root T = T0 > 0, since

ψ1(T ) =
4

λ2µ4

1√
2 T

κ0

is a positive continuous strictly decreasing function on the interval (0,∞); moreover,

lim
T→0

ψ1(T ) = +∞, lim
T→+∞

ψ1(T ) = 0,

and, as was mentioned above, γ(T ) is a nonnegative continuous nondecreasing function satisfying
condition (48). In addition, ψ(T ) < 0 for T > T0 and ψ(T ) > 0 for 0 < T < T0. Consequently, if
T > T0, then the right-hand side of inequality (47) is negative, which is impossible. This completes
the proof of Theorem 3 for the case in which λ > 0 and µ > 0. If λ < 0 and µ < 0, then, as was
mentioned above, considerations are performed in a similar way.

Remark 7. It follows from the proof of Theorem 3 that if there exists a weak generalized
solution of problem (31), (4) of the class W̊ 1

2 in the domain DT , then, under the assumptions of
this theorem, T ≤ T0, where T0 is the unique positive root of Eq. (49).
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