= PARTIAL DIFFERENTIAL EQUATIONS =

On the Solvability of the Characteristic Cauchy Problem for Some Nonlinear Wave Equations in the Future Light Cone

S. S. Kharibegashvili

Mathematical Institute, Tbilisi, Georgia Received July 5, 2006

Abstract—We consider some multidimensional versions of the sine-Gordon equation and the Liouville equation. For these equations, the existence or absence of a global solution of the characteristic Cauchy problem in the future light cone is studied.

DOI: 10.1134/S0012266108010126

1. STATEMENT OF THE PROBLEM

Consider the nonlinear wave equation

$$\Box u := \frac{\partial^2 u}{\partial t^2} - \Delta u = f(u) + F, \tag{1}$$

where f and F are given real functions; moreover, f is a nonlinear function, u is the desired unknown function, and $\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$, n > 1.

For Eq. (1), we consider the characteristic Cauchy problem on finding a solution u(x,t) of this equation with the boundary condition

$$u|_{S_T} = g \tag{2}$$

in the truncated future light cone D_T : |x| < t < T, $x = (x_1, \ldots, x_n)$, T = const > 0, where g is a given real function on the characteristic conic surface S_T , t = |x|, $t \leq T$. If $T = +\infty$, then D_{∞} : t > |x| and $S_{\infty} = \partial D_{\infty}$: t = |x|.

Numerous publications (e.g., see the bibliography in [1–20]) deal with the local or global solvability of the Cauchy problem for nonlinear equations of the form (1) with the initial conditions $u|_{t=0} = u_0$ and $u_t|_{t=0} = u_1$. As to the characteristic Cauchy problem in the linear case, that is problem (1), (2) with f = 0, it is known that this problem is well posed and global solvability takes place in the corresponding function spaces [21–25].

In what follows, we consider special cases of a nonlinear function f corresponding to manydimensional variants of the sine-Gordon equation and the Liouville equation. For these equations, we analyze the existence or absence of a global solution of the characteristic Cauchy problem (1), (2). Note that this problem for Eq. (1) with a power-law nonlinearity was considered in [26].

2. MANY-DIMENSIONAL VERSION OF THE SINE-GORDON EQUATION

Consider the case in which $f(u) = \lambda \sin \mu u$, where λ and μ are given nonzero real numbers. In this case, Eq. (1) acquires the form

$$Lu := \frac{\partial^2 u}{\partial t^2} - \Delta u = \lambda \sin \mu u + F,$$
(3)

where we have set $L = \Box$ for convenience.

To simplify the exposition, in what follows, we assume that the boundary condition (2) is homogeneous; i.e.,

$$u|_{S_T} = 0. (4)$$

We set $\mathring{W}_2^1(D_T, S_T) := \{ u \in W_2^1(D_T) : u|_{S_T} = 0 \}$, where $W_2^1(D_T)$ is the usual Sobolev space [27, p. 56] and condition (4) is treated in the sense of the theory of traces [27, p. 70].

Remark 1. Since the Nemytskii operator $N : L_2(D_T) \to L_2(D_T)$ acting by the formula $Nu = \lambda \sin \mu u$ is continuous and bounded [28, p. 349; 29, pp. 66–67 of the Russian translation] and the embedding $I : \mathring{W}_2^1(D_T, S_T) \to L_2(D_T)$ is a continuous compact operator [27, p. 81], it follows that

$$N_0 = NI : W_2^1(D_T, S_T) \to L_2(D_T)$$
(5)

is also a continuous compact operator.

Definition 1. Let $F \in L_2(D_T)$. A function $u \in W_2^1(D_T, S_T)$ is referred to as a *strong* generalized solution of the nonlinear problem (3), (4) in the domain D_T if there exists a sequence of functions $u_m \in \mathring{C}^2(\bar{D}_T, S_T) := \{u \in C^2(\bar{D}_T) : u|_{S_T} = 0\}$ such that $u_m \to u$ in the space $\mathring{W}_2^1(D_T, S_T)$ and $[Lu_m - \lambda \sin \mu u_m] \to F$ in the space $L_2(D_T)$. In this case, the convergence of the sequence $\{\lambda \sin \mu u_m\}$ to the function $\lambda \sin \mu u$ in the space $L_2(D_T)$ as $u_m \to u$ in the space $\mathring{W}_2^1(D_T, S_T)$ follows from Remark 1.

Lemma 1. Let $F \in L_2(D_T)$. Then any strong generalized solution $u \in \mathring{W}_2^1(D_T, S_T)$ of problem (3), (4) in the domain D_T admits the a priori estimate

$$\|u\|_{\mathring{W}_{2}^{1}(D_{T},S_{T})} \leq \sqrt{\frac{e}{2}} T \|F\|_{L_{2}(D_{T})} + c(\lambda,\mu,T),$$
(6)

where $c(\lambda, \mu, T) = \left(\frac{3e|\lambda|\omega_n}{|\mu|n(n+1)}T^{n+1}\right)^{1/2}$ and ω_n is the area of the unit sphere in \mathbb{R}^n .

Proof. Let $u \in W_2^1(D_T, S_T)$ be a strong generalized solution of problem (3), (4). By Definition 1 and Remark 1, there exists a sequence of functions $u_m \in C^2(\bar{D}_T, S_T)$ such that

$$\lim_{m \to \infty} \|u_m - u\|_{\dot{W}_2^1(D_T, S_T)} = 0, \qquad \lim_{m \to \infty} \|Lu_m - \lambda \sin \mu u_m - F\|_{L_2(D_T)} = 0.$$
(7)

Consider the function $u_m \in \mathring{C}^2(\bar{D}_T, S_T)$ that is found from the problem

$$Lu_m - \lambda \sin \mu u_m = F_m,\tag{8}$$

$$u_m|_{S_T} = 0. (9)$$

Here

$$F_m = Lu_m - \lambda \sin \mu u_m. \tag{10}$$

By multiplying both sides of Eq. (8) by $\partial u_m/\partial t$ and by integrating the resulting relation over the domain D_{τ} , $0 < \tau \leq T$, we obtain

$$\frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t} \left(\frac{\partial u_m}{\partial t} \right)^2 dx \, dt - \int_{D_{\tau}} \Delta u_m \frac{\partial u_m}{\partial t} dx \, dt + \frac{\lambda}{\mu} \int_{D_{\tau}} \frac{\partial}{\partial t} \left(\cos \mu u_m \right) dx \, dt = \int_{D_{\tau}} F_m \frac{\partial u_m}{\partial t} dx \, dt.$$
(11)

We set $\Omega_{\tau} := D \cap \{t = \tau\}$, and by $\nu = (\nu_1, \ldots, \nu_n, \nu_0)$ we denote the unit outward normal to $S_T \setminus \{(0, \ldots, 0)\}$. By performing integration by parts and by taking into account (9) and the

relations $\nu|_{\Omega_{\tau}} = (0, \dots, 0, 1)$ and $\nu_0|_{S_{\tau}} = -\sqrt{2}/2$, one can readily obtain the relations

$$\begin{split} \int_{D_{\tau}} \frac{\partial}{\partial t} \left(\frac{\partial u_m}{\partial t}\right)^2 dx \, dt &= \int_{\partial D_{\tau}} \left(\frac{\partial u_m}{\partial t}\right)^2 \nu_0 ds = \int_{\Omega_{\tau}} \left(\frac{\partial u_m}{\partial t}\right)^2 dx + \int_{S_{\tau}} \left(\frac{\partial u_m}{\partial t}\right)^2 \nu_0 ds, \\ \int_{D_{\tau}} \frac{\partial}{\partial t} \left(\cos \mu u_m\right) dx \, dt &= \int_{\partial D_{\tau}} \left(\cos \mu u_m\right) \nu_0 ds = \int_{\Omega_{\tau}} \cos \mu u_m dx - \frac{\sqrt{2}}{2} \int_{S_{\tau}} \cos \mu u_m ds \\ &= \int_{\Omega_{\tau}} \cos \mu u_m dx - \frac{1}{2} \int_{\Omega_{\tau}} dx, \\ \int_{D_{\tau}} \frac{\partial^2 u_m}{\partial x_i^2} \frac{\partial u_m}{\partial t} dx \, dt = \int_{\partial D_{\tau}} \frac{\partial u_m}{\partial x_i} \frac{\partial u_m}{\partial t} \nu_i ds - \frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t} \left(\frac{\partial u_m}{\partial x_i}\right)^2 \nu_0 ds \\ &= \int_{\partial D_{\tau}} \frac{\partial u_m}{\partial x_i} \frac{\partial u_m}{\partial t} \nu_i ds - \frac{1}{2} \int_{S_{\tau}} \left(\frac{\partial u_m}{\partial x_i}\right)^2 \nu_0 ds \\ &= \int_{\partial D_{\tau}} \frac{\partial u_m}{\partial x_i} \frac{\partial u_m}{\partial t} \nu_i ds - \frac{1}{2} \int_{S_{\tau}} \left(\frac{\partial u_m}{\partial x_i}\right)^2 \nu_0 ds \\ &= \int_{\partial D_{\tau}} \frac{\partial u_m}{\partial x_i} \frac{\partial u_m}{\partial t} \nu_i ds - \frac{1}{2} \int_{S_{\tau}} \left(\frac{\partial u_m}{\partial x_i}\right)^2 \nu_0 ds - \frac{1}{2} \int_{\Omega_{\tau}} \left(\frac{\partial u_m}{\partial x_i}\right)^2 dx. \end{split}$$

Then relation (11) can be represented in the form

$$\int_{D_{\tau}} F_m \frac{\partial u_m}{\partial t} dx \, dt = \int_{S_{\tau}} \frac{1}{2\nu_0} \left[\sum_{i=1}^n \left(\frac{\partial u_m}{\partial x_i} \nu_0 - \frac{\partial u_m}{\partial t} \nu_i \right)^2 + \left(\frac{\partial u_m}{\partial t} \right)^2 \left(\nu_0^2 - \sum_{j=1}^n \nu_j^2 \right) \right] ds + \frac{1}{2} \int_{\Omega_{\tau}} \left[\left(\frac{\partial u_m}{\partial t} \right)^2 + \sum_{i=1}^n \left(\frac{\partial u_m}{\partial x_i} \right)^2 \right] dx + \frac{\lambda}{\mu} \int_{\Omega_{\tau}} \left(\cos \mu u_m - \frac{1}{2} \right) dx.$$
(12)

Since $\left(\nu_0 \frac{\partial}{\partial x_i} - \nu_i \frac{\partial}{\partial t}\right)$, $i = 1, \dots, n$, is an interior differential operator on S_{τ} , it follows from (9) that

$$\left(\frac{\partial u_m}{\partial x_i}\nu_0 - \frac{\partial u_m}{\partial t}\nu_i\right)\Big|_{S_\tau} = 0, \qquad i = 1, \dots, n.$$

By virtue of the relation

$$\left(\nu_0^2 - \sum_{j=1}^n \nu_j^2\right)\bigg|_{S_\tau} = 0$$

valid on the characteristic surface S_{τ} , relation (12) acquires the form

$$\int_{\Omega_{\tau}} \left[\left(\frac{\partial u_m}{\partial t} \right)^2 + \sum_{i=1}^n \left(\frac{\partial u_m}{\partial x_i} \right)^2 \right] dx + \frac{2\lambda}{\mu} \int_{\Omega_{\tau}} \left(\cos \mu u_m - \frac{1}{2} \right) dx = 2 \int_{D_{\tau}} F_m \frac{\partial u_m}{\partial t} dx \, dt.$$
(13)

We use the notation

$$w(\delta) = \int_{\Omega_{\delta}} \left[\left(\frac{\partial u_m}{\partial t} \right)^2 + \sum_{i=1}^n \left(\frac{\partial u_m}{\partial x_i} \right)^2 \right] dx.$$

Then, by virtue of the inequality

$$2F_m \frac{\partial u_m}{\partial t} \le \varepsilon \left(\frac{\partial u_m}{\partial t}\right)^2 + \frac{1}{\varepsilon} F_m^2$$

valid for any $\varepsilon = \text{const} > 0$, from (13), we have

$$w(\delta) \le \varepsilon \int_{0}^{\delta} w(\sigma) d\sigma + \frac{1}{\varepsilon} \left\| F_m \right\|_{L_2(D_{\delta})}^2 + \frac{3|\lambda|\omega_n}{|\mu|n} \delta^n, \qquad 0 < \delta \le T.$$
(14)

Since $||F_m||^2_{L_2(D_{\delta})}$ is a nondecreasing function of δ , it follows from (14) and the Gronwall lemma [30, p. 13 of the Russian translation] that

$$w(\delta) \leq \left[\frac{1}{\varepsilon} \left\|F_m\right\|_{L_2(D_{\delta})}^2 + \frac{3|\lambda|\omega_n}{|\mu|n} \delta^n\right] \exp \delta\varepsilon.$$

If $\varepsilon = 1/\delta$, then we obtain the inequality

$$w(\delta) \le e \left[\delta \left\| F_m \right\|_{L_2(D_{\delta})}^2 + \frac{3|\lambda|\omega_n}{|\mu|n} \delta^n \right],$$
(15)

which implies that

$$\begin{aligned} \|u_m\|_{\dot{W}_2^1(D_T,S_T)}^2 &= \int_{D_T} \left[\left(\frac{\partial u_m}{\partial t} \right)^2 + \sum_{i=1}^n \left(\frac{\partial u_m}{\partial x_i} \right)^2 \right] dx \, dt = \int_0^T w(\delta) d\delta \\ &\leq e \left[\frac{1}{2} T^2 \left\| F_m \right\|_{L_2(D_T)}^2 + \frac{3|\lambda|\omega_n}{|\mu|n(n+1)} T^{n+1} \right] \end{aligned}$$

and hence

$$\|u_m\|_{\mathring{W}_2^1(D_T,S_T)} \le \sqrt{\frac{e}{2}} T \, \|F_m\|_{L_2(D_T)} + c(\lambda,\mu,T), \tag{16}$$

where $c(\lambda, \mu, T)$ is the function defined in Lemma 1.

By using (7) and (10) and by passing in inequality (16) to the limit as $m \to \infty$, we obtain the estimate (6), which completes the proof of the lemma.

Remark 2. Note that in the linear case $[\lambda = 0 \text{ in } (3)]$, that is, in the case of the problem

$$Lu(x,t) = F(x,t),$$
 $(x,t) \in D_T,$ $u(x,t) = 0,$ $(x,t) \in S_T,$ (17)

for $F \in L_2(D_T)$, one can introduce the notion of a strong generalized solution $u \in \mathring{W}_2^1(D_T, S_T)$ of problem (17) in a similar way. In this case, by definition, there exists a sequence of functions $u_m \in \mathring{C}^2(\bar{D}_T, S_T)$ satisfying relation (7). It follows from the proof of Lemma 1 that the a priori estimate (6) with $\lambda = 0$, that is, the estimate

$$\|u\|_{\mathring{W}_{2}^{1}(D_{T},S_{T})} \leq \sqrt{\frac{e}{2}}T\|F\|_{L_{2}(D_{T})}$$
(18)

is also valid for a strong generalized solution of problem (17). By [26], problem (17) has a strong generalized solution in the class $\mathring{W}_2^1(D_T, S_T)$, whose uniqueness follows from the estimate (18). Consequently, the solution u of problem (17) can be represented in the form $u = L^{-1}F$, where $L^{-1}: L_2(D_T) \to \mathring{W}_2^1(D_T, S_T)$ is a linear continuous operator, whose norm, by (18), admits the estimate

$$\left\|L^{-1}\right\|_{L_2(D_T)\to \hat{W}_2^1(D_T,S_T)} \le \sqrt{\frac{e}{2}}T.$$
(19)

Remark 3. By virtue of (19) and Remark 1, one can readily see that if $F \in L_2(D_T)$, then for the function $u \in \mathring{W}_2^1(D_T, S_T)$ to be a strong generalized solution of problem (3), (4), it is necessary and sufficient that u is a solution of the functional equation

$$u = L^{-1}(\lambda \sin \mu u + F) \tag{20}$$

in the space $\mathring{W}_2^1(D_T, S_T)$.

We rewrite Eq. (20) in the form

$$u = Au := L^{-1} \left(N_0 u + F \right), \tag{21}$$

where, by Remark 1, the operator $N_0 : \mathring{W}_2^1(D_T, S_T) \to L_2(D_T)$ given by (5) is a continuous compact operator. At the same time, by Lemma 1, the a priori estimate $||u||_{\mathring{W}_2^1(D_T,S_T)} \leq c_0$ with a positive constant $c_0 = c_0(\lambda, \mu, T, F)$ independent of u and τ is valid for any value of the parameter τ in the interval [0, 1] and for any solution u of the parametric equation $u = \tau A u$. Therefore, by the Leray–Schauder theorem [31, p. 375], Eq. (21) and hence problem (3), (4) have at least one solution $u \in \mathring{W}_2^1(D_T, S_T)$.

Let us show that problem (3), (4) has at most one strong generalized solution in the class $\mathring{W}_{2}^{1}(D_{T}, S_{T})$. Indeed, let u_{1} and u_{2} be strong generalized solutions of problem (3), (4) in the class $\mathring{W}_{2}^{1}(D_{T}, S_{T})$; i.e., there exist sequences of functions $u_{1m}, u_{2m} \in \mathring{C}^{2}(\bar{D}_{T}, S_{T})$ such that

$$\lim_{m \to \infty} \|u_{im} - u_i\|_{\dot{W}_2^1(D_T, S_T)} = 0, \qquad \lim_{m \to \infty} \|Lu_{im} - \lambda \sin \mu u_{im} - F\|_{L_2(D_T)} = 0, \qquad i = 1, 2.$$
(22)

By setting $v = u_{2m} - u_{1m}$ and by using the obvious relation

$$f(u_{2m}) - f(u_{1m}) = (u_{2m} - u_{1m}) \int_{0}^{1} f'(\tau u_{2m} + (1 - \tau)u_{1m}) d\tau \quad \text{for} \quad f(u) = \lambda \sin \mu u,$$

one can readily see that $v \in \mathring{C}^2(\bar{D}_T, S_T)$ is a solution of the problem

$$\frac{\partial^2 v}{\partial t^2} - \Delta v = g_m v + F_{2m} - F_{1m}, \qquad v|_{S_T} = 0.$$
(23)

Here $F_{im} = Lu_{im} - \lambda \sin \mu u_{im}$, i = 1, 2, and

$$g_m = g_m \left(u_{1m}, u_{2m} \right) = \lambda \mu \int_0^1 \cos \left(\mu \tau u_{2m} + \mu (1 - \tau) u_{1m} \right) d\tau, \qquad |g_m| \le |\lambda \mu|.$$
(24)

By analogy with the derivation of (13), for the solution v of problem (23), one can derive the relation

$$\int_{\Omega_{\tau}} \left[\left(\frac{\partial v}{\partial t} \right)^2 + \sum_{i=1}^n \left(\frac{\partial v}{\partial x_i} \right)^2 \right] dx = 2 \int_{D_{\tau}} g_m v \frac{\partial v}{\partial t} dx \, dt + 2 \int_{D_{\tau}} \left(F_{2m} - F_{1m} \right) \frac{\partial v}{\partial t} dx \, dt.$$
(25)

By taking into account the inequality in (24), one can readily see that

$$\left| 2 \int_{D_{\tau}} g_m v \frac{\partial v}{\partial t} dx \, dt \right| \leq \int_{D_{\tau}} v^2 dx \, dt + \int_{D_{\tau}} \left(\frac{\partial v}{\partial t} \right)^2 dx \, dt.$$
(26)

In a similar way, we obtain

$$\left| 2 \int_{D_{\tau}} \left(F_{2m} - F_{1m} \right) \frac{\partial v}{\partial t} dx \, dt \right| \leq \int_{D_{\tau}} \left| F_{2m} - F_{1m} \right|^2 dx \, dt + \int_{D_{\tau}} \left| \frac{\partial v}{\partial t} \right|^2 dx \, dt.$$

$$\tag{27}$$

Since

$$v|_{S_T} = 0, \qquad v(x,t) = \int_{|x|}^t \frac{\partial v(x,\tau)}{\partial t} d\tau, \qquad (x,t) \in \bar{D}_T$$

for a function $v \in \mathring{C}^2(\bar{D}_T, S_T)$, it follows that, by using standard considerations, one can obtain the inequality [27, p. 63]

$$\int_{D_{\tau}} v^2(x,t) dx \, dt \le \tau^2 \int_{D_{\tau}} \left(\frac{\partial v}{\partial t}\right)^2 dx \, dt.$$
(28)

By setting

$$w_0(\delta) = \int_{\Omega_{\delta}} \left[(\partial v / \partial t)^2 + \sum_{i=1}^n (\partial v / \partial x_i)^2 \right] dx$$

and by using (26)–(28), from (25), we obtain the inequality

$$w_0(\delta) \le (2+\delta^2) \int_0^{\delta} w_0(\sigma) d\sigma + \|F_{2m} - F_{1m}\|_{L_2(D_{\delta})}^2, \qquad 0 < \delta \le T,$$

which, together with the Gronwall lemma, implies that

$$w_0(\delta) \le \|F_{2m} - F_{1m}\|_{L_2(D_T)}^2 \exp\left(2 + T^2\right) T, \qquad 0 < \delta \le T.$$
⁽²⁹⁾

In turn, it follows from (29) that

$$\|u_{2m} - u_{1m}\|_{\dot{W}_{2}^{1}(D_{T},S_{T})}^{2} = \|v\|_{\dot{W}_{2}^{1}(D_{T},S_{T})}^{2} = \int_{D_{T}}^{T} \left[\left(\frac{\partial v}{\partial t} \right)^{2} + \sum_{i=1}^{n} \left(\frac{\partial v}{\partial x_{i}} \right)^{2} \right] dx \, dt$$
$$= \int_{0}^{T} w_{0}(\delta) d\delta \leq T \|F_{2m} - F_{1m}\|_{L_{2}(D_{T})}^{2} \exp\left(2 + T^{2}\right) T.$$
(30)

By virtue of (30) and the second inequality in (22), we have $\lim_{m\to\infty} ||u_{2m} - u_{1m}||_{\dot{W}_2^1(D_T,S_T)} = 0$. This, together with the first relation in (22), implies that $||u_2 - u_1||_{\dot{W}_2^1(D_T,S_T)} = 0$; i.e., $u_2 = u_1$. This completes the proof of the uniqueness of the strong generalized solution of problem (3), (4) in the class $\dot{W}_2^1(D_T,S_T)$.

Therefore, the following assertion is valid.

Theorem 1. Let $F \in L_2(D_T)$. Then problem (3), (4) has a unique strong generalized solution $u \in \mathring{W}_2^1(D_T, S_T)$ in the domain D_T .

Remark 4. Let $F \in L_{2,\text{loc}}(D_{\infty})$ and $F \in L_2(D_T)$ for any T > 0. We say that problem (3), (4) with $T = \infty$ has a global solution of the class \mathring{W}_2^1 in the future light cone D_{∞} if there exists a function $u \in L_{2,\text{loc}}(D_{\infty})$ that is a strong generalized solution of problem (3), (4) of the class $\mathring{W}_2^1(D_T, S_T)$ in the domain D_T for any finite T > 0. It follows from Theorem 1 that problem (3), (4) has a unique global solution of the class \mathring{W}_2^1 in the future light cone D_{∞} .

3. MANY-DIMENSIONAL VERSION OF THE LIOUVILLE EQUATION

If $f(u) = \lambda \exp \mu u$, where λ and μ are given nonzero real numbers, then Eq. (1) acquires the form

$$Lu := \frac{\partial^2 u}{\partial t^2} - \Delta u = \lambda \exp \mu u + F.$$
(31)

Definition 2. Let $F \in L_2(D_T)$. A function u is called a *weak generalized solution* of problem (31), (4) in the class \mathring{W}_2^1 in the domain D_T if $u \in \mathring{W}_2^1(D_T, S_T)$, $\exp \mu u \in L_2(D_T)$, and the integral relation

$$\int_{D_T} \left[-u_t \varphi_t + \nabla_x u \nabla_x \varphi \right] dx \, dt = \lambda \int_{D_T} \varphi \exp \mu u \, dx \, dt + \int_{D_T} F \varphi \, dx \, dt \tag{32}$$

is valid for any function $\varphi \in W_2^1(D_T)$ such that $\varphi|_{t=T} = 0$.

By performing integration by parts, one can readily show that a classical solution $u \in \mathring{C}^2(\bar{D}_T, S_T)$ of problem (31), (4) is also a weak generalized solution of problem (31), (4) in the class \mathring{W}_2^1 in the sense of Definition 2. Conversely, if a weak generalized solution of this problem belongs to the class $C^2(\bar{D}_T)$, then it is also classical.

Definition 3. Let $F \in L_2(D_T)$. A function u is called a *strong generalized solution* of problem (31), (4) in the class \mathring{W}_2^1 in D_T if $u \in \mathring{W}_2^1(D_T, S_T)$, $\exp \mu u \in L_2(D_T)$ and there exists a sequence of functions $u_m \in \mathring{C}^2(\overline{D}_T, S_T)$ such that $u_m \to u$ in the space $\mathring{W}_2^1(D_T, S_T)$ and $\exp \mu u_m \to \exp \mu u$, $[Lu_m - \lambda \exp \mu u_m] \to F$ in the space $L_2(D_T)$.

Obviously, a classical solution of problem (31), (4) in the space $\mathring{C}^2(\bar{D}_T, S_T)$ is a strong generalized solution of this problem in the class \mathring{W}_2^1 , and, in turn, the latter is a weak generalized solution of problem (31), (4) in the class \mathring{W}_2^1 .

Theorem 2. Let $F \in L_2(D_T)$. If $\lambda \mu < 0$ and $\lambda F|_{D_T} \ge 0$, then problem (31), (4) with n = 2 has a weak generalized solution in the class \mathring{W}_2^1 in the domain D_T .

Theorem 2 is a consequence of the following assertions. First, let $\lambda > 0$ and $\mu < 0$. Instead of (31), we consider Eq. (1) with $f(u) = \lambda \exp \mu |u|$, that is,

$$Lu := \frac{\partial^2 u}{\partial t^2} - \Delta u = \lambda \exp \mu |u| + F.$$
(33)

By analogy with Definition 3, for problem (33), (4), we introduce the notion of a strong generalized solution in the class \mathring{W}_2^1 in the domain D_T .

Lemma 2. Let $F \in L_2(D_T)$. Then any strong generalized solution u of problem (33), (4) in the class \mathring{W}_2^1 in the domain D_T satisfies the estimate

$$\|u\|_{\mathring{W}_{2}^{1}(D_{T},S_{T})} \leq \sqrt{\frac{e}{2}}T\|F\|_{L_{2}(T)} + c_{1}(\lambda,\mu,T), \qquad c_{1}(\lambda,\mu,T) = \left(\frac{e|\lambda|\omega_{n}}{|\mu|n(n+1)}T^{n+1}\right)^{1/2}$$

Proof. The proof reproduces the proof of Lemma 1 almost literally. One should only use the relation

$$I_{\tau} = \lambda \int_{D_{\tau}} \frac{\partial u_m}{\partial t} \exp \mu |u_m| \, dx \, dt = \frac{\lambda}{\mu} \int_{D_{\tau}} \frac{\partial}{\partial t} \left[(\exp \mu |u_m| - 1) \operatorname{sgn} u_m \right] dx \, dt$$
$$= \frac{\lambda}{\mu} \int_{\Omega_{\tau}} (\exp \mu |u_m| - 1) \operatorname{sgn} u_m dx$$

with regard of the boundary condition (4) instead of the relation

$$\lambda \int_{D_{\tau}} \frac{\partial u_m}{\partial t} \sin \mu u_m dx \, dt = -\frac{\lambda}{\mu} \int_{\Omega_{\tau}} \left(\cos \mu u_m - \frac{1}{2} \right) dx$$

used in the proof of Lemma 1. Since $\mu < 0$ and $0 < \exp \mu |u_m| \le 1$, it follows that

$$|I_{\delta}| \leq \left|\frac{\lambda}{\mu}\right| \int_{\Omega_{\delta}} dx = \left|\frac{\lambda}{\mu}\right| \frac{\omega_n}{n} \delta^n.$$

Remark 5. Since $\mu < 0$ and $0 < \exp \mu |u| \le 1$, it follows that Remark 1 is also valid for the Nemytskii operator $\tilde{N} : L_2(D_T) \to L_2(D_T)$ acting by the formula $\tilde{N}u = \lambda \exp \mu |u|$. Therefore, by analogy with Remark 3, which implies Eq. (21), problem (33), (4) is equivalent to the operator equation $u = \tilde{A}u := L^{-1}(\tilde{N}Iu + F)$ in the space $\mathring{W}_2^1(D_T, S_T)$, where $I : \mathring{W}_2^1(D_T, S_T) \to L_2(D_T)$ is the embedding operator and $\tilde{N}I : \mathring{W}_2^1(D_T, S_T) \to L_2(D_T)$ is a continuous compact operator. Further, by Lemma 2, each solution u of the equation $u = \tau \tilde{A}u$ with any value of the parameter τ in the interval [0, 1] admits the a priori estimate $||u||_{\mathring{W}_2^1(D_T, S_T)} \le c_2$ with a positive constant $c_2 = c_2(\lambda, \mu, T, F)$ independent of u and τ . Therefore, by the Leray–Schauder theorem [31, p. 375], the equation $u = \tilde{A}u$ and hence problem (33), (4) has at least one strong generalized solution uin the class \mathring{W}_2^1 in the domain D_T . Obviously, this solution is also a weak generalized solution of problem (33), (4) in the class \mathring{W}_2^1 in the domain D_T ; i.e., the integral relation

$$\int_{D_T} \left[-u_t \varphi_t + \nabla_x u \nabla_x \varphi \right] dx \, dt = \lambda \int_{D_T} \varphi \exp \mu |u| dx \, dt + \int_{D_T} F \varphi \, dx \, dt \tag{34}$$

is valid for any function $\varphi \in W_2^1(D_T)$ such that $\varphi|_{t=T} = 0$.

Therefore, Theorem 2 will be proved for the case in which $\lambda > 0$ and $\mu < 0$ once, for n = 2, we show that the above-mentioned solution u of problem (33), (4) is nonnegative, i.e., $u|_{D_T} \ge 0$, since, in this case, relation (34) implies (32).

Indeed, by setting $g = \lambda \exp \mu |u| + F$, we rewrite relation (34) in the form

$$\int_{D_T} \left[-u_t \varphi_t + \nabla_x u \nabla_x \varphi \right] dx \, dt = \int_{D_T} g \varphi \, dx \, dt \quad \forall \varphi \in W_2^1 \left(D_T \right), \qquad \varphi|_{t=T} = 0.$$
(35)

Let G_T : |x| < T, 0 < t < T, be a cylinder containing D_T . We continue the functions uand g by zero outside D_T into the domain G_T and keep the previous notation for the resulting functions. Obviously, $g \in L_2(G_T)$, and since $u \in \mathring{W}_2^1(D_T, S_T)$, we have $u \in W_{2,0}^1(G_T) :=$ $\{u \in W_2^1(G_T) : u|_{|x|=T} = 0\}$ and $u|_{t=0} = 0$. By taking into account the relations $u|_{G_T \setminus D_T} = 0$ and $g|_{G_T \setminus D_T} = 0$ and formula (35), we obtain

$$\int_{G_T} \left[-u_t \psi_t + \nabla_x u \nabla_x \psi \right] dx \, dt = \int_{G_T} g \psi \, dx \, dt \qquad \forall \psi \in \hat{W}^1_{2,0} \left(G_T \right), \tag{36}$$

where $\hat{W}_{2,0}^1(G_T) := \{ \psi \in W_{2,0}^1(G_T) : \psi|_{t=T} = 0 \}$. Relation (36) implies that u is a generalized solution of the mixed problem [27, p. 210]

 $\Box u = g, \qquad u|_{t=0} = 0, \qquad u_t|_{t=0} = 0, \qquad u|_{|x|=T} = 0$ (37)

in the class $W_2^1(G_T)$ in the domain G_T .

On the other hand, assuming that the function g is continued by zero outside G_T in \mathbb{R}^3 , by $\tilde{u} \in D'(\mathbb{R}^3)$ we denote the generalized function that is a solution of the Cauchy problem

$$\Box \tilde{u} = g, \qquad \tilde{u}|_{t<0} = 0 \tag{38}$$

in \mathbb{R}^3 . Since $g|_{t<0} = 0$, we find that the solution of problem (38) in the space $D'(\mathbb{R}^3)$ of generalized functions exists, is unique, and can be represented in the form [32, p. 225]

$$\tilde{u} = \mathscr{E}_2 * g, \tag{39}$$

where $\mathscr{E}_2(x_1, x_2, t) = \theta(t - |x|)/(2\pi\sqrt{t^2 - |x|^2})$, and θ is the Heaviside function. Since $g \in L_2(\mathbb{R}^3)$ and n = 2, it follows that the function \tilde{u} given by (39) is a locally integrable function that can be represented by the Poisson formula [32, p. 214] for t > 0:

$$\tilde{u}(x_1, x_2, t) = \frac{1}{2\pi} \int_{0}^{t} \int_{|\xi - x| < t - \tau} \frac{g(\xi, t)}{\sqrt{(t - \tau)^2 - |\xi - x|^2}} d\xi \, d\tau, \quad t > 0 \qquad \left(\tilde{u}|_{t < 0} = 0\right). \tag{40}$$

Now, by taking into account the inequalities $\lambda > 0$, $F \ge 0$, and hence by virtue of the aboveperformed construction, $g|_{D_T} = (\lambda \exp \mu |u| + F)|_{D_T} \ge 0$ and $g|_{R^3 \setminus D_T} = 0$, and by using relation (40), we obtain $\tilde{u} \ge 0$ in R^3 . Since \tilde{u} is a solution of the Cauchy problem (38), where $g \in L_2(R^3)$, it follows from [33, p. 189 of the Russian translation] that $\tilde{u} \in W_{2,\text{loc}}^1(R^3)$; moreover, by virtue of the relation $g|_{R^3 \setminus D_T} = 0$, from (40), we have $\tilde{u}|_{G_T \setminus D_T} = 0$. Therefore, the function $\tilde{u}|_{G_T} \in W_2^1(G_T)$ is a solution of the mixed problem (37) in the sense of the integral relation (36). Now, by virtue of the uniqueness theorem for the mixed problem (37) in the class $W_2^1(G_T)$ [27, p. 210], we have $u = \tilde{u}$ in the domain G_T and hence $u = \tilde{u} \ge 0$ in the domain D_T . This completes the proof of Theorem 2 for the case in which $\lambda > 0$ and $\mu < 0$. If $\lambda < 0$ and $\mu > 0$, then the considerations are performed in a similar way.

Remark 6. Let $F \in L_{2,\text{loc}}(D_{\infty})$ and $F \in L_2(D_T)$ for any T > 0. We say that problem (31), (4) is globally solvable in the weak sense if, for any T > 0, this problem has a weak generalized solution of the class \mathring{W}_2^1 in the domain D_T . It follows from Theorem 2 that if the function F satisfies the inclusions $F \in L_{2,\text{loc}}(D_{\infty})$ and $F \in L_2(D_T)$ for any T > 0, then, for $\lambda \mu < 0$, $\lambda F|_{D_T} \ge 0$, and n = 2, problem (31), (4) is globally solvable in the weak sense. In what follows, we show that if $\lambda \mu > 0$, then problem (31), (4) is not necessarily globally solvable in the weak sense.

Theorem 3. Let $F \in L_{2,\text{loc}}(D_{\infty})$ and $F \in L_2(D_T)$ for any T > 0. In addition, let $\lambda F|_{D_{\infty}} \ge 0$ and $F \not\equiv 0$; i.e., $F \neq 0$ on a set of a positive Lebesgue measure. If $\lambda \mu > 0$ and n = 2, then problem (31), (4) is not globally solvable in the weak sense; i.e., there exists a $T_0 = T_0(F) > 0$ such that for $T > T_0$ problem (31), (4) has no weak generalized solutions of the class \mathring{W}_2^1 in the domain D_T .

Proof. We restrict our considerations to the case in which $\lambda > 0$ and $\mu > 0$, since the case in which $\lambda < 0$ and $\mu < 0$ can be considered in a similar way. Let u be a weak generalized solution of problem (31), (4) in the class \mathring{W}_2^1 in the domain D_T . Since $\lambda > 0$ and hence, by the assumptions of Theorem 3, the right-hand side $(\lambda \exp \mu u + F)$ of Eq. (31) is nonnegative in the domain D_T , it follows from the considerations performed in the proof of Theorem 2 in the case n = 2 that the solution u of problem (31), (4) is nonnegative in the domain D_T as well. Therefore, by using the formula $\exp \mu u = \sum_{k=0}^{\infty} (\mu u)^k / k!$, we obtain

$$\exp \mu u(x,t) > \frac{\mu^2}{2} u^2(x,t), \qquad (x,t) \in D_T,$$
(41)

for the case in which $\mu > 0$.

By performing integration by parts on the left-hand side in (32) and by taking into account the boundary conditions (4) and $\varphi|_{t=T} = 0$, we obtain the relation

$$\int_{D_T} u \Box \varphi \, dx \, dt = \lambda \int_{D_T} \varphi \exp \mu u \, dx \, dt + \int_{D_T} F \varphi \, dx \, dt.$$
(42)

We assume that $\varphi \ge 0$ in (42) and use the Cauchy inequality with the parameter $\varepsilon > 0$:

$$ab \leq \frac{\varepsilon}{2}a^2 + \frac{1}{2\varepsilon}b^2, \qquad a \geq 0, \qquad b \geq 0,$$

where $a = |u|\varphi^{1/2}$ and $b = |\Box \varphi|/\varphi^{1/2}$; then we obtain

$$|u\Box\varphi| = |u|\varphi^{1/2} \frac{|\Box\varphi|}{\varphi^{1/2}} \le \frac{\varepsilon}{2} |u|^2 \varphi + \frac{1}{2\varepsilon} \frac{|\Box\varphi|^2}{\varphi}.$$
(43)

By (41), (43) and the inequality $\varphi \ge 0$, from (42), we have

$$\left(\frac{1}{2}\lambda\mu^2 - \frac{\varepsilon}{2}\right)\int_{D_T} u^2\varphi \,dx\,dt \le \frac{1}{2\varepsilon}\int_{D_T} \frac{|\Box\varphi|^2}{\varphi} dx\,dt - \int_{D_T} F\varphi \,dx\,dt.$$
(44)

If $\varepsilon = \lambda \mu^2/2$, then inequality (44) acquires the form

$$\int_{D} u^{2} \varphi \, dx \, dt \leq \frac{4}{\lambda^{2} \mu^{4}} \int_{D_{T}} \frac{|\Box \varphi|^{2}}{\varphi} dx \, dt - \frac{4}{\lambda \mu^{2}} \int_{D_{T}} F \varphi \, dx \, dt.$$
(45)

We use the method of trial functions [12, pp. 10–12]. For the trial function in (45), we take the function

$$\varphi(x,t) = \varphi_0 \left[\frac{2}{T^2} \left(t^2 + |x|^2 \right) \right],$$

where $\varphi_0 \in C^2((-\infty, +\infty))$, $\varphi_0 \geq 0$, $\varphi'_0 \leq 0$, $\varphi_0(\sigma) = 1$ for $0 \leq \sigma \leq 1$, and $\varphi_0(\sigma) = 0$ for $\sigma \geq 2$ [12, p. 22]. Since $\varphi(x,t) = 0$ for $r = (t^2 + |x|^2)^{1/2} \geq T$, after the change of variables $t = \sqrt{2}T\xi_0$, $x = \sqrt{2}T\xi$ $[n = 2, x = (x_1, x_2), \xi = (\xi_1, \xi_2)]$, for the first integral on the right-hand side in inequality (45), we have

$$\int_{D_T} \frac{|\Box\varphi|^2}{\varphi} dx \, dt = \int_{\substack{r=(t^2+|x|^2)^{1/2} \le T, \\ t>|x|}} \frac{|\Box\varphi|^2}{\varphi} dx \, dt = \frac{1}{\sqrt{2}T} \varkappa_0, \tag{46}$$

where

$$\varkappa_{0} = \int_{\substack{1 \le |\xi_{0}|^{2} + |\xi|^{2} \le 2, \\ \xi_{0} > |\xi|}} \frac{\left|-2\varphi_{0}' + 4\left(\xi_{0}^{2} - |\xi|^{2}\right)\varphi_{0}''\right|^{2}}{\varphi_{0}}d\xi \, d\xi_{0}$$

is a finite quantity [12, p. 22] for an appropriate choice of the function φ_0 .

Since $\varphi_0(\sigma) = 1$ for $0 \le \sigma \le 1$, it follows from (46) and (45) that

$$\int_{\substack{r \le T/\sqrt{2}, \\ t > |x|}} u^2 dx \, dt \le \int_{D_T} u^2 \varphi \, dx \, dt \le \frac{4}{\lambda^2 \mu^4} \frac{1}{\sqrt{2} T} \varkappa_0 - \frac{4}{\lambda \mu^2} \int_{D_T} F\varphi \, dx \, dt.$$
(47)

Since $\lambda > 0$ and, by assumption, $F \ge 0$, $F \not\equiv 0$, and $F \in L_2(D_T)$ for any T > 0, it follows from the absolute continuity of the integral that $\gamma(T) = \int_{D_T} F\varphi \, dx \, dt$ is a nonnegative continuous nondecreasing function; moreover,

$$\lim_{T \to 0} \gamma(T) = 0, \qquad \lim_{T \to +\infty} \gamma(T) > 0.$$
(48)

One can readily see that the equation

$$\psi(T) = \frac{4}{\lambda^2 \mu^4} \frac{1}{\sqrt{2}T} \varkappa_0 - \frac{4}{\lambda \mu^2} \gamma(T) = 0$$
(49)

has a unique positive root $T = T_0 > 0$, since

$$\psi_1(T) = \frac{4}{\lambda^2 \mu^4} \frac{1}{\sqrt{2} T} \varkappa_0$$

is a positive continuous strictly decreasing function on the interval $(0, \infty)$; moreover,

$$\lim_{T \to 0} \psi_1(T) = +\infty, \qquad \lim_{T \to +\infty} \psi_1(T) = 0,$$

and, as was mentioned above, $\gamma(T)$ is a nonnegative continuous nondecreasing function satisfying condition (48). In addition, $\psi(T) < 0$ for $T > T_0$ and $\psi(T) > 0$ for $0 < T < T_0$. Consequently, if $T > T_0$, then the right-hand side of inequality (47) is negative, which is impossible. This completes the proof of Theorem 3 for the case in which $\lambda > 0$ and $\mu > 0$. If $\lambda < 0$ and $\mu < 0$, then, as was mentioned above, considerations are performed in a similar way.

Remark 7. It follows from the proof of Theorem 3 that if there exists a weak generalized solution of problem (31), (4) of the class \mathring{W}_2^1 in the domain D_T , then, under the assumptions of this theorem, $T \leq T_0$, where T_0 is the unique positive root of Eq. (49).

ACKNOWLEDGMENTS

The work was financially supported by the INTAS grant (project no. 03-51-5007).

REFERENCES

- 1. Jörgens, K., Math. Z., 1961, vol. 77, pp. 295–308.
- 2. Levin, H.A., Trans. Amer. Math. Soc., 1974, vol. 192, pp. 1-21.
- 3. John, F., Manuscripta Math., 1979, vol. 28, no. 1-3, pp. 235-268.
- 4. John, F., Comm. Pure Appl. Math., 1981, vol. 34, no. 1, pp. 29-51.
- 5. John, F. and Klainerman, S., Comm. Pure Appl. Math., 1984, vol. 37, no. 4, pp. 443–455.
- 6. Kato, T., Comm. Pure Appl. Math., 1980, vol. 33, no. 4, pp. 501-505.
- 7. Ginibre, J., Soffer, A., and Velo, G., J. Funct. Anal., 1982, vol. 110, no. 1, pp. 96–130.
- 8. Strauss, W.A., J. Funct. Anal., 1981, vol. 41, no. 1, pp. 110–133.
- 9. Georgiev, V., Lindblad, H., and Sogge, C., Amer. J. Math., 1977, vol. 119, no. 6, pp. 1291–1319.
- 10. Sideris, T.G., J. Differential Equations, 1984, vol. 52, no. 3, pp. 378–406.
- 11. Hörmander, L., Lectures on Nonlinear Hyperbolic Differential Equations, Berlin, 1997 (Math. and Appl.; vol. 26).
- Mitidieri, E. and Pokhozhaev, S.I., A Priori Estimates and the Absence of Solutions of Nonlinear Partial Differential Equations and Inequalities, *Tr. Mat. Inst. Steklova*, 2001, vol. 234. Translation in *Proc. Steklov Inst.*, 2001, vol. 234, no. 3, pp. 1–362.
- 13. Belchev, E., Kepka, M., and Zhou, Z., J. Funct. Anal., 2002, vol. 190, no. 1, pp. 233-254.
- 14. Miao, C., Zhang, B., and Fang, D., J. Partial Differential Equations, 2004, vol. 17, no. 2, pp. 91–121.
- 15. Yin, Z., J. Evol. Equ., 2004, vol. 4, no. 3, pp. 391-419.
- 16. Keel, M., Smith, H.F., and Sogge, C.D., J. Amer. Math. Soc., 2004, vol. 17, no. 1, pp. 109–153.
- 17. Todorova, G. and Vitillaro, E., J. Math. Anal. Appl., 2005, vol. 303, no. 1, pp. 242–257.
- 18. Merle, F. and Zaag, H., Math. Ann., 2005, vol. 331, no. 2, pp. 395-416.
- 19. Zhou, Y., Appl. Math. Lett., 2005, vol. 18, pp. 281-286.
- 20. Gan, Z. and Zhang, J., J. Math. Anal. Appl., 2005, vol. 307, pp. 219–231.
- Hadamard, J., Problème de Cauchy et les Équations aux Dérivées Linéares Hyperboliques, Paris: Hermann, 1932. Translated under the title Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Moscow: Nauka, 1978.
- 22. Courant, R., Partial Differential Equations, New York: Interscience, 1962. Translated under the title Uravneniya s chastnymi proizvodnymi, Moscow: Mir, 1964.
- 23. Cagnac, F., Ann. Mat. Pura Appl., 1975, vol. 104, pp. 355-393.
- 24. Lundberg, L., Comm. Math. Phys., 1978, vol. 62, no. 2, pp. 107-118.
- 25. Bitsadze, A.V., *Nekotorye klassy uravnenii v chastnykh proizvodnykh* (Some Classes of Partial Differential Equations), Moscow: Nauka, 1981.

KHARIBEGASHVILI

- 26. Kharibegashvili, S.S., Differ. Uravn., 2006, vol. 42, no. 2, pp. 261–271.
- 27. Ladyzhenskaya, O.A., Kraevye zadachi matematicheskoi fiziki (Boundary Value Problems of Mathematical Physics), Moscow: Nauka, 1973.
- 28. Krasnosel'skii, M.A., Zabreiko, P.P., Pustyl'nik, E.I., and Sobolevskii, P.E., *Integral'nye operatory v* prostranstvakh summiruemykh funktsii (Integral Operators in Spaces of Summable Functions), Moscow: Nauka, 1966.
- 29. Fučik, S. and Kufner, A., Nonlinear Differential Equations, Amsterdam: Elsevier, 1980. Translated under the title Nelineinye differentsial'nye uravneniya, Moscow: Nauka, 1988.
- Henry, D., Geometric Theory of Semilinear Parabolic Equations, Berlin: Springer, 1981. Translated under the title Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Moscow: Mir, 1985.
 Trenogin, V.A., Funktsional'nyi analiz (Functional Analysis), Moscow: Nauka, 1993.
- 51. Henogin, V.A., Funktstonat Rigt analize (Functional Analysis), Moscow. Nauka, 1995
- 32. Vladimirov, V.S., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1971.
- 33. Hörmander, L., Linear Partial Differential Operators, New York: Academic, 1963. Translated under the title Lineinye differentsial'nye uravneniya s chastnymi proizvodnymi, Moscow: Mir, 1965.