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1. STATEMENT OF THE PROBLEM

In the plane of the independent variables x and t, consider the nonlinear wave equation

Lλu := utt − uxx + λ|u|αu = f(x, t), (1)

where λ and α are given real constants, λα �= 0, α > −1, f is a given real function, and u is the
unknown real function.

By DT := {(x, t) : − kt < x < t, 0 < t < T ; 0 ≤ k = const < 1}, T ≤ ∞, we denote the
triangular domain lying inside the characteristic angle {(x, t) ∈ R

2 : t > |x|} and bounded by the
characteristic segment γ1,T : x = t, 0 ≤ t ≤ T and by the segments γ2,T : x = −kt, 0 ≤ t ≤ T , and
γ3,T : t = T , −kT ≤ x ≤ T , of time and space type, respectively (Fig. 1).

For Eq. (1), we consider the first Darboux problem of finding a solution u(x, t) of this equation
in the domain DT on the basis of the boundary conditions (e.g., see [1, p. 228])

u|γi,T
= 0, i = 1, 2. (2)

Note that numerous papers (e.g., see [2–11]) deal with the existence or absence of global solutions
of various problems (initial value problems, mixed problems, and nonlocal problems of various
forms, including periodic ones) for nonlinear equations of the hyperbolic type. In the linear case,
i.e., for λα = 0, problem (1), (2) is known to be well posed, and global solvability takes place in
appropriate function spaces [1, 12–15].

We show that if the nonlinearity α and the parameter λ satisfy certain conditions, then prob-
lem (1), (2) is globally solvable in some cases and has no global solution in other cases, although,
as shown below, this problem is locally solvable.

Definition 1. Let f ∈ C
(
D̄T

)
. A function u is called a strong generalized solution of prob-

lem (1), (2) of the class C in the domain DT if u ∈ C
(
D̄T

)
and there exists a sequence of functions

un ∈ C̊2
(
D̄T ,ΓT

)
such that un → u and Lλun → f in the space C

(
D̄T

)
as n → ∞, where

C̊2
(
D̄T ,ΓT

)
:=

{
u ∈ C2

(
D̄T

)
: u|ΓT

= 0
}

and ΓT := γ1,T ∪ γ2,T .
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Fig. 1.

Remark 1. Obviously, a classical solution of problem (1), (2) in the space C̊2
(
D̄T ,ΓT

)
is a

strong generalized solution of this problem of the class C in the domain DT . In turn, if a strong
generalized solution of problem (1), (2) of the class C in the domain DT belongs to the space
C2

(
D̄T

)
, then it is also a classical solution of this problem.

Definition 2. Let f ∈ C
(
D̄∞

)
. We say that problem (1), (2) is globally solvable in the class

C if, for any finite T > 0, this problem has a strong generalized solution of the class C in the
domain DT .

2. A PRIORI ESTIMATE FOR THE SOLUTION OF PROBLEM (1), (2)

Lemma 1. Let −1 < α < 0. If α > 0, then it is additionally assumed that λ > 0. Then any
strong generalized solution of problem (1), (2) of the class C in the domain DT satisfies the a priori
estimate

‖u‖C(D̄T ) ≤ c1‖f‖C(D̄T ) + c2 (3)

with positive constants ci(T, α, λ), i = 1, 2, independent of u and f .

Proof. First, consider the case in which α > 0 and λ > 0. Let u be a strong generalized solution
of problem (1), (2) of the class C in the domain DT . Then, by Definition 1, there exists a sequence
of functions un ∈ C̊2

(
D̄T ,ΓT

)
such that

lim
n→∞

‖un − u‖C(D̄T ) = 0, lim
n→∞

‖Lλun − f‖C(D̄T ) = 0, (4)

and consequently,
lim

n→∞
‖λ |un|α un − λ|u|αu‖C(D̄T ) = 0. (5)

Let us treat the function un ∈ C̊2
(
D̄T ,ΓT

)
as a solution of the problem

Lλun = fn, (6)
un|ΓT

= 0, ΓT := γ1,T ∪ γ2,T . (7)

Here
fn := Lλun. (8)

By multiplying both sides of Eq. (6) by ∂un/∂t and by integrating the resulting relation over the
domain Dτ := {(x, t) ∈ DT : 0 < t < τ}, 0 < τ ≤ T , we obtain

1
2

∫

Dτ

∂

∂t

(
∂un

∂t

)2

dx dt −
∫

Dτ

∂2un

∂x2

∂un

∂t
dx dt

+
λ

α + 2

∫

Dτ

∂

∂t
|un|α+2

dx dt =
∫

Dτ

fn

∂un

∂t
dx dt. (9)
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Set Ωτ := D̄∞ ∩ {t = τ}, 0 < τ ≤ T . Then, by taking into account (7) and by integrating by
parts on the left-hand side in relation (9) in the case k ∈ (0, 1), we obtain

∫

Dτ

fn

∂un

∂t
dx dt =

∫

Γτ

1
2νt

[(
∂un

∂x
νt −

∂un

∂t
νx

)2

+
(

∂un

∂t

)2 (
ν2

t − ν2
x

)
]

ds

+
1
2

∫

Ωτ

[(
∂un

∂t

)2

+
(

∂un

∂x

)2
]

dx +
λ

α + 2

∫

Ωτ

|un|α+2
dx, (10)

where ν := (νx, νt) is the unit outward normal vector on ∂Dτ and Γτ := ΓT ∩ {t ≤ τ}.

Since νt

∂

∂x
− νx

∂

∂t
is an interior differential operator on ΓT , it follows from (7) that

(
∂un

∂x
νt −

∂un

∂t
νx

)∣
∣
∣∣
Γτ

= 0. (11)

Since Dτ : −kt < x < t, 0 < t < τ , we obviously have
(
ν2

t − ν2
x

)∣∣
Γτ

≤ 0, νt|Γτ
< 0. (12)

(One can readily see that (ν2
t − ν2

x)|γ1,τ
= 0, (ν2

t − ν2
x)|γ2,τ

< 0.) If λ > 0, then, by (11) and (12),
from (10), we obtain the estimate

wn(τ) :=
∫

Ωτ

[(
∂un

∂t

)2

+
(

∂un

∂x

)2
]

dx ≤ 2
∫

Dτ

fn

∂un

∂t
dx dt. (13)

One can readily see that the estimate (13) is valid for k = 0. By using the inequality

2fn

∂un

∂t
≤ ε

(
∂un

∂t

)2

+
1
ε
f 2

n,

valid for any ε = const > 0, we obtain

wn(τ) ≤ ε

τ∫

0

wn(σ)dσ +
1
ε
‖fn‖2

L2(Dτ ) , 0 < τ ≤ T. (14)

Since, by (14), the quantity ‖fn‖2

L2(Dτ ) is a nondecreasing function of τ , it follows from the Gronwall
lemma (e.g., see [16, p. 13 of the Russian translation]) that

wn(τ) ≤ 1
ε
‖fn‖2

L2(Dτ ) exp(τε).

This, together with the relation inf
ε>0

exp(τε)
ε

= eτ attained for ε =
1
τ
, implies the estimate

wn(τ) ≤ eτ ‖fn‖2

L2(Dτ ) , 0 < τ ≤ T. (15)

If (x, t) ∈ D̄T , then, by (7), we have

un(x, t) = un(x, t) − un(−kt, t) =

x∫

−kt

∂un(σ, t)
∂x

dσ,
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which, together with (150, implies the inequalities

|un(x, t)|2 ≤
x∫

−kt

dσ

x∫

−kt

[
∂un(σ, t)

∂x

]2

dσ ≤ (x + kt)
∫

Ωt

[
∂un(σ, t)

∂x

]2

dσ ≤ (x + kt)wn(t)

≤ (1 + k)twn(t) ≤ (1 + k)et2 ‖fn‖2

L2(Dt)
≤ (1 + k)et2 ‖fn‖2

C(D̄t)
mes Dt

≤ 1
2
(1 + k)2et4 ‖fn‖2

C(D̄T ) . (16)

It follows from (16) that

‖un‖C(D̄T ) ≤
√

e

2
(1 + k)T 2 ‖fn‖C(D̄T ) . (17)

By using (4)–(8) and by passing in inequality (17) to the limit as n → ∞, we obtain the estimate

‖u‖C(D̄T ) ≤
√

e

2
(1 + k)T 2‖f‖C(D̄T ). (18)

From (18), we find that the estimate (3) is valid for α > 0 and λ > 0.
Now consider the case in which −1 < α < 0 for an arbitrary λ. If −1 < α < 0, i.e., 1 < α+2 < 2,

then we use the well-known inequality

ab ≤ ap

p
+

bq

q

(
a = |un|α+2

, b = 1, p =
2

α + 2
> 1, q = − 2

α
> 1,

1
p

+
1
q

= 1
)

and obtain the relations
∫

Ωτ

|un|α+2
dx ≤

∫

Ωτ

[
α + 2

2
|un|2 −

α

2

]
dx =

α + 2
2

∫

Ωτ

|un|2 dx +
|α|
2

(1 + k)τ. (19)

By virtue of (11), (12), and (19), it follows from (10) that

1
2

∫

Ωτ

[(
∂un

∂t

)2

+
(

∂un

∂x

)2
]

dx ≤ |λ|
2

∫

Ωτ

|un|2 dx +
|λα|

2(α + 2)
(1 + k)τ +

∫

Dτ

fn

∂un

∂t
dx dt. (20)

By the trace theory, we have the estimate (e.g., see [17, pp. 77, 86])

‖un‖L2(Ωτ ) ≤ c0(τ) ‖un‖W̊ 1
2 (Dτ ,Γτ ) , (21)

where W̊ 1
2 (Dτ ,Γτ ) := {u ∈ W 1

2 (Dτ) : u|Γτ
= 0}, W 1

2 (Dτ) is the well-known Sobolev space, and

‖un‖W̊ 1
2 (Dτ ,Γτ ) :=

∫

Dτ

[(
∂un

∂t

)2

+
(

∂un

∂x

)2
]

dx dt.

Here c0(τ) is a positive constant independent of un, which can be estimated from above as follows:

c0(τ) ≤
√

τ , 0 < τ ≤ T. (22)

Since 2fn

∂un

∂t
≤ f 2

n +
(

∂un

∂t

)2

, it follows from (21), (22), and (20) that

∫

Ωτ

[(
∂un

∂t

)2

+
(

∂un

∂x

)2
]

dx ≤ |λ|τ
∫

Dτ

[(
∂un

∂t

)2

+
(

∂un

∂x

)2
]

dx dt

+
∫

Dτ

(
∂un

∂t

)2

dx dt +
∫

Dτ

f 2
ndx dt +

|λα|
α + 2

(1 + k)τ. (23)
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By using the form of the function wn(τ), from (23), we obtain

wn(τ) ≤ (|λ|τ + 1)

τ∫

0

wn(σ)dσ + ‖fn‖2

L2(Dτ ) +
|λα|
α + 2

(1 + k)τ,

which, together with the Gronwall lemma (e.g., see [16, p. 13 of the Russian translation]), implies
the inequality

wn(τ) ≤
[
‖fn‖2

L2(DT ) +
|λα|
α + 2

(1 + k)T
]

exp(|λ|T + 1)τ. (24)

By analogy with the derivation of (16) from (15), from (24), we obtain

|un(x, t)|2 ≤ (1 + k)twn(t)

≤ (1 + k)T
[
‖fn‖2

C(D̄T ) mes DT +
|λα|
α + 2

(1 + k)T
]

exp(|λ|T + 1)T

= (1 + k)T
[
1
2
(1 + k)T 2 ‖fn‖2

C(D̄T ) +
|λα|
α + 2

(1 + k)T
]

exp
(
|λ|T 2 + T

)
. (25)

It follows from (25) that

‖un‖C(D̄T ) ≤
[√

T

2
T (1 + k) ‖fn‖C(D̄T ) +

√
|λα|
α + 2

(1 + k)T

]

exp
{

1
2

(
|λ|T 2 + T

)}
,

which, together with (4)–(8) and after the passage to the limit as n → ∞, implies the estimate

‖u‖C(D̄T ) ≤
√

T

2
T (1 + k) exp

{
1
2

(
|λ|c2

0(1)T
3 + T

)
}
‖f‖C(D̄T )

+

√
|λα|
α + 2

(1 + k)T exp
{

1
2

(
|λ|T 2 + T

)}
. (26)

The proof of the estimate (3) is complete.
Remark 2. It follows from (18) and (26) that the constants c1 and c2 occurring in the esti-

mate (3) have the form

c1 =
√

e

2
(1 + k)T 2, c2 = 0 if α > 0, λ > 0, (27)

c1 =

√
T

2
T (1 + k) exp

{
1
2

(
|λ|T 2 + T

)
}

,

c2 =

√
|λα|
α + 2

(1 + k)T exp
{

1
2

(
|λ|T 2 + T

)}
if − 1 < α < 0, −∞ < λ < +∞.

(28)

3. EQUIVALENT REDUCTION OF PROBLEM (1), (2)
TO A NONLINEAR INTEGRAL VOLTERRA EQUATION

Let P0 := P0 (x0, t0) be an arbitrary point of the domain DT . By Gx0,t0 we denote the charac-
teristic quadrangle with vertices at the point P0 (x0, t0) and at the points P1, P2, and P3 lying on
the supports of the data γ2,T and γ1,T , respectively; i.e., (see Fig. 2)

P1 := P1

(
k (x0 − t0)

k + 1
,
t0 − x0

k + 1

)
,

P2 := P2

(
(1 − k) (t0 − x0)

2(1 + k)
,
(1 − k) (t0 − x0)

2(1 + k)

)
,

P3 := P3

(
x0 + t0

2
,
x0 + t0

2

)
.

DIFFERENTIAL EQUATIONS Vol. 44 No. 3 2008
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Fig. 2.

Let u ∈ C2
(
D̄T

)
be a classical solution of problem (1), (2). By integrating Eq. (1) over the

domain Gx0,t0 , which is the characteristic quadrangle of this equation, by using the homogeneous
boundary conditions (2), and by returning to the original variables x and t, one can readily obtain
the relation

u(x, t) +
λ

2

∫

Gx,t

|u|αu dx′dt′ =
1
2

∫

Gx,t

f (x′, t′) dx′dt′, (x, t) ∈ D̄T . (29)

Remark 3. Relation (29) can be treated as a nonlinear integral Volterra equation, which can
be represented in the form

u(x, t) + λ
(
L−1

0 |u|αu
)
(x, t) = F (x, t), (x, t) ∈ D̄T . (30)

Here L−1
0 is the linear operator acting by the formula

(
L−1

0 v
)
(x, t) :=

1
2

∫

Gx,t

v (x′, t′) dx′dt′, (x, t) ∈ D̄T , (31)

and
F (x, t) :=

(
L−1

0 f
)
(x, t), (x, t) ∈ D̄T . (32)

Lemma 2. A function u ∈ C
(
D̄T

)
is a strong generalized solution of problem (1), (2) of the

class C in the domain DT if and only if it is a continuous solution of the nonlinear integral equa-
tion (30).

Proof. Indeed, let u ∈ C
(
D̄T

)
be a solution of Eq. (30). Since f ∈ C

(
D̄T

)
, and the space

C2
(
D̄T

)
is dense in C

(
D̄T

)
(e.g., see [18, p. 37 of the Russian translation]), it follows that there

exists a function sequence fn ∈ C2
(
D̄T

)
such that fn → f in the space C

(
D̄T

)
as n → ∞. Likewise,

since u ∈ C
(
D̄T

)
, it follows that there exists a function sequence wn ∈ C2

(
D̄T

)
such that wn → u

in the space C
(
D̄T

)
as n → ∞. We set

un := −λ
(
L−1

0 |wn|α wn

)
+ L−1

0 fn, n = 1, 2, . . .

One can readily see that un ∈ C̊2
(
D̄T ,ΓT

)
; and since L−1

0 is a linear continuous operator act-
ing in the space C

(
D̄T

)
, and moreover, limn→∞ ‖wn − u‖C(D̄T ) = 0, limn→∞ ‖fn − f‖C(D̄T ) = 0,

we have un → −λ
(
L−1

0 |u|αu
)

+ L−1
0 f in the space C

(
D̄T

)
as n → ∞. But it follows from (30)

that −λ
(
L−1

0 |u|αu
)

+ L−1
0 f = u. Therefore, we have limn→∞ ‖un − u‖C(D̄T ) = 0. On the other

DIFFERENTIAL EQUATIONS Vol. 44 No. 3 2008
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Fig. 3.

hand, L0un = −λ |wn|α wn + fn, which, together with the relations limn→∞ ‖un − u‖C(D̄T ) = 0,
limn→∞ ‖wn − u‖C(D̄T ) = 0, and limn→∞ ‖fn − f‖C(D̄T ) = 0, implies that

Lλun = L0un + λ |un|α un = −λ |wn|α wn + fn + λ |un|α un

= −λ [|wn|α wn − |u|αu] + λ [|un|α un − |u|αu] + fn → f

in the space C
(
D̄T

)
as n → ∞. The converse is obvious.

4. THE CASE OF GLOBAL SOLVABILITY OF PROBLEM (1), (2)
IN THE CLASS OF CONTINUOUS FUNCTIONS

As was mentioned above, the operator L−1
0 occurring in (31) is a linear continuous operator acting

in the space C
(
D̄T

)
. Let us now show that this operator is actually a linear continuous mapping

of the space C
(
D̄T

)
into the space C1

(
D̄T

)
of continuously differentiable functions. To this end,

we use the linear nonsingular transformation t = ξ + τ , x = ξ − τ of independent variables and
pass into the plane of the variables ξ, τ . After that the triangular domain DT becomes the triangle

D′
T with vertices at the points O(0, 0), N ′

1(T, 0), and N ′
2

(
1 − k

2
T,

1 + k

2
T

)
, and the characteristic

quadrangle Gx,t occurring in Section 3 becomes the rectangle G′
x,t with vertices

P ′
(

t + x

2
,
t − x

2

)
, P ′

1

(
(1 − k)(t − x)

2(1 + k)
,
t − x

2

)
, P ′

2

(
(1 − k)(t − x)

2(1 + k)
, 0

)
, P ′

3

(
t + x

2
, 0

)
,

i.e., in the variables ξ and τ , the rectangle G′
ξ,τ (= G′

x,t) with vertices

P ′(ξ, τ), P ′
1

(
1 − k

1 + k
τ, τ

)
, P ′

2

(
1 − k

1 + k
τ, 0

)
,

and P ′
3(ξ, 0) (Fig. 3). Moreover, the operator L−1

0 occurring in (31) becomes the operator
(
L−1

0

)′

acting in the space C
(
D̄′

T

)
by the formula

((
L−1

0

)′
w

)
(ξ, τ) =

∫

G′
ξ,τ

w (ξ′, τ ′) dξ′dτ ′ =

ξ∫

(1−k)τ/(1+k)

dξ′
τ∫

0

w (ξ′, τ ′) dτ ′, (ξ, τ) ∈ D̄′
T . (33)

If w ∈ C
(
D̄′

T

)
, then it readily follows from (33) that

∂

∂ξ

((
L−1

0

)′
w

)
(ξ, τ) =

τ∫

0

w (ξ, τ ′) dτ ′, (ξ, τ) ∈ D̄′
T , (34)

DIFFERENTIAL EQUATIONS Vol. 44 No. 3 2008



ON THE EXISTENCE AND ABSENCE OF GLOBAL SOLUTIONS 381

∂

∂τ

((
L−1

0

)′
w

)
(ξ, τ) =

k − 1
1 + k

τ∫

0

w

(
ξ′,

1 − k

1 + k
τ

)
dξ′

+

ξ∫

(1−k)τ/(1+k)

w (ξ′, τ) dξ′, (ξ, τ) ∈ D̄′
T .

(35)

Now, since 0 ≤ ξ ≤ T and 0 ≤ τ ≤ 1 + k

2
T for (ξ, τ) ∈ D̄′

T , it follows from (33)–(35) and the
inequality 0 ≤ k < 1 that

∥∥
∥
(
L−1

0

)′
w

∥∥
∥

C(D̄′
T )

+
∥
∥
∥∥

∂

∂ξ

(
L−1

0

)′
w

∥
∥
∥∥

C(D̄′
T )

+
∥
∥
∥∥

∂

∂τ

(
L−1

0

)′
w

∥
∥
∥∥

C(D̄′
T )

≤
(

ξ − 1 − k

1 + k
τ

)
τ‖w‖C(D̄′

T ) + τ‖w‖C(D̄′
T ) +

1 − k

1 + k
τ‖w‖C(D̄′

T )

+
(

ξ − 1 − k

1 + k
τ

)
‖w‖C(D̄′

T ) ≤
(
T 2 + 2T

)
‖w‖C(D̄′

T );

i.e., ∥
∥∥
(
L−1

0

)′∥∥∥
C(D̄′

T )→C1(D̄′
T )

≤ T 2 + 2T, (36)

which completes the proof.
Further, since the space C1

(
D̄′

T

)
is compactly embedded in the space C

(
D̄′

T

)
(e.g., see [19, p. 135

of the Russian translation]), it follows from (36) that the operator
(
L−1

0

)′
: C

(
D̄′

T

)
→ C

(
D̄′

T

)
is a

linear compact operator. Therefore, by returning from the variables ξ and τ to the variables x and
t for the operator L−1

0 in (31), we obtain the following assertion.

Lemma 3. The operator L−1
0 : C

(
D̄T

)
→ C

(
D̄T

)
given by (31) is a linear compact operator

and maps the space C
(
D̄T

)
into the space C1

(
D̄T

)
.

By using (32), we rewrite Eq. (30) in the form

u = Au := L−1
0 (−λ|u|αu + f) , (37)

where A : C
(
D̄T

)
→ C

(
D̄T

)
is a continuous compact operator, since the nonlinear operator

K : C
(
D̄T

)
→ C

(
D̄T

)
acting by the formula Ku := −λ|u|αu + f is bounded and continuous for

α > −1, and, by virtue of Lemma 3, the linear operator L−1
0 : C

(
D̄T

)
→ C

(
D̄T

)
is a compact

operator. At the same time, by Lemmas 1 and 2 and relations (27) and (28), the a priori estimate

‖u‖C(D̄T ) ≤ c‖f‖C(D̄T ) + c̃

with positive constants c and c̃ independent of u, τ , and f is valid for any parameter τ ∈ [0, 1]
and any solution u ∈ C

(
D̄T

)
of the equation u = τAu. Therefore, by the Leray–Schauder theorem

(e.g., see [20, p. 375]), Eq. (37) has at least one solution u ∈ C
(
D̄T

)
under the assumptions of

Lemma 1. Therefore, by virtue of Lemma 2, we have justified the following assertion.

Theorem 1. Let −1 < α < 0, and let λ > 0 if α > 0. Then problem (1), (2) is globally solvable
in the class C in the sense of Definition 2; i.e., if f ∈ C

(
D̄∞

)
, then for any T > 0, problem (1), (2)

has a strong generalized solution of the class C in the domain DT .
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5. SMOOTHNESS AND UNIQUENESS OF THE SOLUTION OF PROBLEM (1), (2).
THE EXISTENCE OF A GLOBAL SOLUTION IN D∞

Relations (30)–(32), together with Lemmas 2 and 3, readily imply the following assertion.

Lemma 4. Let u be a strong generalized solution of problem (1), (2) of the class C in the domain
DT in the sense of Definition 1. If α > 0 and f ∈ C1

(
D̄T

)
, then u ∈ C2

(
D̄T

)
; therefore, it is a

classical solution of this problem.

Lemma 5. If α > 0, then problem (1), (2) has at most one strong generalized solution of the
class C in the domain DT .

Proof. Indeed, suppose that problem (1), (2) has two strong generalized solutions u1 and u2

of the class C in the domain DT . By Definition 1, there exists a sequence of functions uin ∈
C̊2

(
D̄T ,ΓT

)
, i = 1, 2, such that

lim
n→∞

‖uin − ui‖C(D̄T ) = 0, lim
n→∞

‖Lλuin − f‖C(D̄T ) = 0, i = 1, 2. (38)

We set ωnm := u2n−u1m. One can readily see that the function ωnm ∈ C̊2
(
D̄T ,ΓT

)
is a classical

solution of the problem

L0ωnm + gnmωnm = fnm, (39)
ωnm|ΓT

= 0, ΓT := γ1,T ∪ γ2,T . (40)

Here

gnm := λ(1 + α)

1∫

0

|u1m + t (u2n − u1m)|α dt, (41)

fnm := Lλu2n − Lλu1m, (42)

where we have used the obvious relation

ϕ (x2) − ϕ (x1) = (x2 − x1)

1∫

0

ϕ′ (x1 + t (x2 − x1)) dt

for the function ϕ(x) := |x|αx with x2 = u2n, x1 = u1m, and α > 0. By virtue of the first
relation in (38), there exists a number M := const > 0, independent of indices i and n, such that
‖uin‖C(D̄T ) ≤ M , which, in turn, by (41), implies the estimate

‖gn,m‖C(D̄T ) ≤ |λ|(1 + α)Mα ∀n,m. (43)

By (42), it follows from the second relation in (38) that

lim
n,m→∞

‖fnm‖C(D̄T ) = 0. (44)

If we multiply both sides of Eq. (39) by ∂ωnm/∂t, integrate the resulting relation over the
domain Dτ := {(x, t) ∈ DT : 0 < t < τ}, 0 < τ ≤ T , use the boundary conditions (40), and follow
the derivation of inequality (13) from (6) and (7), then we obtain

∫

Ωτ

[(
∂ωnm

∂t

)2

+
(

∂ωnm

∂x

)2
]

dx ≤ 2
∫

Dτ

(fnm − gnmωnm)
∂ωnm

∂t
dx dt, (45)

where Ωτ := D̄∞ ∩ {t = τ}, 0 < τ ≤ T .
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By virtue of the estimate (43) and the Cauchy inequality, we obtain the relations

2
∫

Dτ

(fnm − gnmωnm)
∂ωnm

∂t
dx dt ≤

∫

Dτ

(
∂ωnm

∂t

)2

dx dt +
∫

Dτ

(fnm − gnmωnm)2 dx dt

≤
∫

Dτ

(
∂ωnm

∂t

)2

dx dt + 2
∫

Dτ

f 2
nmdx dt + 2

∫

Dτ

g2
nmω2

nmdx dt

≤
∫

Dτ

(
∂ωnm

∂t

)2

dx dt + 2
∫

Dτ

f 2
nmdx dt + 2λ2(1 + α)2M2α

∫

Dτ

ω2
nmdx dt. (46)

Further, by applying standard considerations to the relations

ωnm|ΓT
= 0, ωnm(x, t) =

t∫

ψ(x)

∂ωnm(x, τ)
∂t

dτ, (x, t) ∈ D̄T ,

where t−ψ(x) = 0 for k �= 0 is an equation of the support ΓT := γ1,T ∪ γ2,T of data of problem (1),
(2), we obtain the inequality (e.g., see [17, p. 63])

∫

Dτ

ω2
nmdx dt ≤ τ 2

∫

Dτ

(
∂ωnm

∂t

)2

dx dt. (47)

If k = 0, then, in a similar way, we obtain (47). By setting

wnm(τ) :=
∫

Ωτ

[(
∂ωnm

∂t

)2

+
(

∂ωnm

∂x

)2
]

dx

and by using (46) and (47), from inequality (45), we obtain

wnm(τ) ≤
[
1 + 2λ2(1 + α)2M2ατ 2

] ∫

Dτ

(
∂ωnm

∂t

)2

dx dt + 2
∫

Dτ

f 2
nmdx dt

≤
[
1 + 2λ2(1 + α)2M2αT 2

]
τ∫

0

wnm(σ)dσ + 2
∫

DT

f 2
nmdx dt. (48)

This, together with the Gronwall lemma (e.g., see [16, p. 13 of the Russian translation]), implies
the estimate

wnm(τ) ≤ c ‖fnm‖2

L2(DT ) , 0 < τ ≤ T, (49)

where c := 2 exp [1 + 2λ2(1 + α)2M2αT 2]T .
By performing the same considerations as those used in the derivation of inequality (16), by tak-

ing into account the obvious inequality

‖fnm‖2

L2(DT ) ≤ ‖fnm‖2

C(D̄T ) mes DT

and by using (49), we obtain

|ωnm(x, t)|2 ≤ (1 + k)twnm(t) ≤ (1 + k)Tcmes DT ‖fnm‖2

C(D̄T )

=
c

2
(1 + k)2T 3 ‖fnm‖2

C(D̄T ) , (x, t) ∈ D̄T . (50)
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It follows from (50) that

‖ωnm‖C(D̄T ) ≤
√

cT

2
T (1 + k) ‖fnm‖C(D̄T ) . (51)

Since ωnm := u2n − u1m, it follows from the first relation in (38) that

lim
n,m→∞

‖ωnm‖C(D̄T ) = ‖u2 − u1‖C(D̄T ) . (52)

By using (44) and (52) and by passing in inequality (51) to the limit as n,m → ∞, we obtain the
relation ‖u2 − u1‖C(D̄T ) = 0, i.e., u1 = u2, which completes the proof of Lemma 5.

Theorem 2. Let α > 0 and λ > 0. Then, for any function f ∈ C1
(
D̄∞

)
, problem (1), (2) has

a unique global classical solution u ∈ C̊2
(
D̄∞,Γ∞

)
in the domain D∞.

Proof. If α > 0, λ > 0, and f ∈ C1
(
D̄∞

)
, then, by Theorem 1 and Lemmas 4 and 5, in the

domain DT with T = n, there exists a unique classical solution un ∈ C̊2
(
D̄n,Γn

)
of problem (1), (2).

Since un+1 is a classical solution of problem (1), (2) in the domain Dn as well, it follows from
Lemma 5 that un+1|Dn

= un. Therefore, the function u constructed in the domain D∞ by the rule
u(x, t) = un(x, t) for n = [t] + 1, where [t] is the integer part of the number t and (x, t) ∈ D∞,
is the unique classical solution of problem (1), (2) of the class C̊2

(
D̄∞,Γ∞

)
in the domain D∞.

The proof of Theorem 2 is complete.

6. THE CASE OF ABSENCE OF A GLOBAL SOLUTION OF PROBLEM (1), (2)

In what follows, we consider the case in which λ < 0 in Eq. (1) and the nonlinearity exponent
satisfies α > 0.

Lemma 6. Let u be a strong generalized solution of problem (1), (2) of the class C in the domain
DT in the sense of Definition 1. Then one has the integral relation

∫

DT

u�ϕdx dt = −λ

∫

DT

|u|αuϕdx dt +
∫

DT

fϕdx dt (53)

for any function ϕ such that

ϕ ∈ C2
(
D̄T

)
, ϕ|t=T = 0, ϕt|t=T = 0, ϕ|γ2,T

= 0, (54)

where � := ∂2/∂t2 − ∂2/∂x2.

Proof. By the definition of a strong generalized solution u of problem (1), (2) of the class C in
the domain DT , u ∈ C

(
D̄T

)
, and there exists a sequence of functions un ∈ C̊2

(
D̄T ,ΓT

)
such that

lim
n→∞

‖un − u‖C(D̄T ) = 0, lim
n→∞

‖Lλun − f‖C(D̄T ) = 0. (55)

We set fn := Lλun. We multiply both sides of the relation Lλun = fn by the function ϕ and
integrate the resulting relation over the domain DT . After the integration of the left-hand side of
this relation by parts in view of (54) and the boundary conditions un|γi,T

= 0, i = 1, 2, we obtain
∫

DT

un�ϕdx dt = −λ

∫

DT

|un|α unϕdx dt +
∫

DT

fnϕdx dt. (56)

By using (55) and by passing to the limit as n → ∞ in (56), we obtain (53). The proof of
Lemma 6 is complete.
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Lemma 7. Let λ < 0 and α > 0, and let the function u ∈ C
(
D̄T

)
be a strong generalized

solution of problem (1), (2) of the class C in the domain DT . If f ≥ 0 in the domain DT , then
u ≥ 0 in the domain DT .

Proof. By Lemma 2 and relations (30)–(32), the function u is a solution of the Volterra integral
equation

u(x, t) =
∫

Gx,t

K (x′, t′)u (x′, t′) dx′dt′ + F (x, t), (x, t) ∈ D̄T . (57)

Here K(x, t) := −(λ/2)|u(x, t)|α ∈ C
(
D̄T

)
, F (x, t) := (1/2)

∫
Gx,t

f (x′, t′) dx′dt′, and, by virtue of
the assumptions of Lemma 7,

K(x, t) ≥ 0, F (x, t) ≥ 0 ∀(x, t) ∈ D̄T . (58)

We assume that K(x, t) is a given function and consider the linear integral Volterra equation

v(x, t) =
∫

Gx,t

K (x′, t′) v (x′, t′) dx′dt′ + F (x, t), (x, t) ∈ D̄T , (59)

for the unknown function v(x, t) in the class C
(
D̄T

)
. It is known (e.g., see [15]) that, in the class

C
(
D̄T

)
, Eq. (59) has a unique continuous solution v(x, t), which can be obtained by the successive

approximation method

v0(x, t) = 0,

vn+1(x, t) =
∫

Gx,t

K (x′, t′) vn (x′, t′) dx′dt′ + F (x, t), n ≥ 1, (x, t) ∈ D̄T . (60)

By virtue of (58), from (60), we have vn(x, t) ≥ 0 in D̄T for all n = 0, 1, . . . But vn → v in the
class C

(
D̄T

)
as n → ∞. Therefore, the limit function satisfies v ≥ 0 in the domain DT . It remains

to note that, by virtue of relation (57), the function u is also a solution of Eq. (59); therefore,
by virtue of the uniqueness of the solution of this equation, we finally obtain u = v ≥ 0 in the
domain DT . The proof of Lemma 7 is complete.

If λ < 0, then, by virtue of Lemma 7, Eq. (53) can be represented in the form
∫

DT

|u|�ϕdx dt = |λ|
∫

DT

|u|α+1ϕdx dt +
∫

DT

fϕdx dt. (61)

Let us introduce a function ϕ0 := ϕ0(x, t) such that

ϕ0 ∈ C2
(
D̄∞

)
, ϕ0

∣∣
DT=1

> 0, ϕ0
∣∣
γ2,∞

= 0, ϕ0
∣∣
t≥1

= 0, (62)

κ0 :=
∫

DT=1

|�ϕ0|p
′

|ϕ0|p′−1
dx dt < +∞, p′ = 1 +

1
α

. (63)

One can readily see that a function ϕ0 satisfying conditions (62) and (63) can be chosen in the
form

ϕ0(x, t) =
{

(x + kt)n(1 − t)m if (x, t) ∈ DT=1

0 if t ≥ 1

for sufficiently large positive constants n and m.
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By setting ϕT (x, t) := ϕ0

(
x

T
,

t

T

)
, T > 0, and by using (62), we obtain

ϕT ∈ C2
(
D̄T

)
, ϕT |DT

> 0, ϕT |γ2,T
= 0, ϕT |t=T = 0,

∂ϕT

∂t

∣
∣∣
∣
t=T

= 0. (64)

We assume that f is a fixed function and introduce the following function of a single variable T :

ζ(T ) :=
∫

DT

fϕT dx dt, T > 0. (65)

We have the following assertion on the absence of global solvability of problem (1), (2).

Theorem 3. Let λ < 0, α > 0, f ∈ C
(
D̄∞

)
, and f ≥ 0 in the domain D∞. If

lim inf
T→+∞

ζ(T ) > 0, (66)

then there exists a positive number T0 := T0(f) such that for T > T0 problem (1), (2) has no strong
generalized solution u of the class C in the domain DT .

Proof. Suppose that, under the assumptions of this theorem, there exists a strong generalized
solution u of problem (1), (2) of the class C in the domain DT . Then, by virtue of Lemmas 6 and 7,
we have relation (61), where, by virtue of (64), the function ϕ can be chosen in the form ϕ = ϕT ,
i.e., ∫

DT

|u|�ϕT dx dt = |λ|
∫

DT

|u|pϕT dx dt +
∫

DT

fϕT dx dt, p := α + 1. (67)

By using (65), we rewrite relation (67) in the form

|λ|
∫

DT

|u|pϕT dx dt =
∫

DT

|u|�ϕT dx dt − ζ(T ). (68)

If we set a = |u|ϕ1/p
T , b = |�ϕT |/ϕ1/p

T in the Young inequality

ab ≤ ε

p
ap +

1
p′εp′−1

bp′
, a, b ≥ 0,

1
p

+
1
p′ = 1, p := α + 1 > 1,

with the parameter ε > 0, then, by using the relation p′/p = p′ − 1, we obtain

|u�ϕT | = |u|ϕ1/p
T

|�ϕT |
ϕ

1/p
T

≤ ε

p
|u|pϕT +

1
p′εp′−1

|�ϕT |p
′

ϕp′−1
T

. (69)

By virtue of (68) and (69), we have

(
|λ| − ε

p

) ∫

DT

|u|pϕT dx dt ≤ 1
p′εp′−1

∫

DT

|�ϕT |p
′

ϕp′−1
T

dx dt − ζ(T ),

which, for ε < |λ|p, implies the inequality

∫

DT

|u|pϕT dx dt ≤ p

(|λ|p − ε)p′εp′−1

∫

DT

|�ϕT |p
′

ϕp′−1
T

dx dt − p

|λ|p − ε
ζ(T ). (70)
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By using the relations

p′ =
p

p − 1
, p =

p′

p′ − 1
, min

0<ε<|λ|p

p

(|λ|p − ε)p′εp′−1
=

1
|λ|p′

(the minimum is attained for ε = |λ|), from (70), we obtain
∫

DT

|u|pϕT dx dt ≤ 1
|λ|p′

∫

DT

|�ϕT |p
′

ϕp′−1
T

dx dt − p′

|λ|ζ(T ). (71)

Since ϕT (x, t) := ϕ0

(
x

T
,

t

T

)
, it follows from (62) and (63) that

∫

DT

|�ϕT |p
′

ϕp′−1
T

dx dt = T−2(p′−1)

∫

DT=1

|�ϕ0|p
′

|ϕ0|p′−1 dx′ dt′ = T−2(p′−1)
κ0 < +∞ (72)

after the change of variables x = Tx′, t = Tt′. By virtue of (64) and (72), from (71), we have

0 ≤
∫

DT

|u|pϕT dx dt ≤ 1
|λ|p′ T

−2(p′−1)
κ0 −

p′

|λ|ζ(T ). (73)

Since p′ = p/(p − 1) > 1, we have −2 (p′ − 1) < 0, and it follows from (63) that

lim
T→∞

1
|λ|p′ T

−2(p′−1)
κ0 = 0.

Therefore, by virtue of inequality (66), there exists a positive number T0 := T0(f) such that
if T > T0, then the right-hand side of inequality (73) is negative, while the left-hand side of
this inequality is nonnegative. It follows that if there exists a strong generalized solution u of
problem (1), (2) of the class C in the domain DT , then necessarily T ≤ T0, which completes the
proof of Theorem 3.

Remark 4. One can readily see that if f ∈ C
(
D̄∞

)
, f ≥ 0, and f(x, t) ≥ ct−m for t ≥ 1, where

c := const > 0 and 0 ≤ m := const ≤ 2, then condition (66) is satisfied, and hence problem (1), (2)
with sufficiently large T has no strong generalized solution u of the class C in the domain DT for
λ < 0 and α > 0.

Indeed, by introducing the transformation of the independent variables x and t by the formulas
x = Tx′ and t = Tt′ in (65) and by performing simple estimates, we obtain

ζ(T ) = T 2

∫

D1

f (Tx′, T t′)ϕ0 (x′, t′) dx′ dt′

≥ cT 2−m

∫

D1∩{t′≥T−1}

t′−mϕ0 (x′, t′) dx′ dt′

+ T 2

∫

D1∩{t′<T−1}

f (Tx′, T t′) ϕ0 (x′, t′) dx′ dt′

under the assumption that T > 1. Further, let T1 > 1 be an arbitrary fixed number. Then from
the last inequality for the function ζ, we have

ζ(T ) ≥ cT 2−m

∫

D1∩{t′≥T−1}

t′
−m

ϕ0 (x′, t′) dx′ dt′ ≥ cT 2−m

∫

D1∩{t′≥T−1
1 }

t′
−m

ϕ0 (x′, t′) dx′ dt′

if T ≥ T1 > 1. The last inequality readily implies relation (66).
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7. LOCAL SOLVABILITY OF PROBLEM (1), (2) FOR THE CASE
IN WHICH λ < 0 AND α > 0

Theorem 4. Suppose that λ < 0, α > 0, f ∈ C
(
D̄∞

)
, and f �≡ 0. Then there exists a positive

number T∗ := T∗(f) such that for T ≤ T∗ problem (1), (2) has at least one strong generalized
solution u of the class C in the domain DT .

Proof. In Section 4, we have equivalently reduced problem (1), (2) in the space C
(
D̄T

)
to

the functional equation (37), where A : C
(
D̄T

)
→ C

(
D̄T

)
is a continuous compact operator.

Therefore, by the Schauder theorem, to justify the solvability of Eq. (37), it suffices to show that
the operator A maps some ball BR := {v ∈ C

(
D̄T

)
: ‖v‖C(D̄T ) ≤ R} of radius R > 0, which is a

closed convex set in the Banach space C
(
D̄T

)
, into itself. Let us show that this is the case for

sufficiently small T .
Indeed, by virtue of (31) and (37), we have

‖Au‖C(D̄T ) ≤
∥∥L−1

0

∥∥
C(D̄T )→C(D̄T )

[
|λ| ‖u‖α+1

C(D̄T )
+ ‖f‖C(D̄T )

]

≤ 1
2

sup
(x,t)∈D̄T

mes Gx,t

[
|λ| ‖u‖α+1

C(D̄T )
+ ‖f‖C(D̄T )

]

≤ 1
2

mes DT

[
|λ| ‖u‖α+1

C(D̄T )
+ ‖f‖C(D̄T )

]

=
1 + k

4
T 2

[
|λ| ‖u‖α+1

C(D̄T )
+ ‖f‖C(D̄T )

]
≤ 1 + k

4
T 2

[
|λ|Rα+1 + ‖f‖C(D̄T )

]
(74)

for ‖u‖C(D̄T ) ≤ R.
We fix an arbitrary positive number T2. Then, by virtue of the estimate (74), we have

‖Au‖C(D̄T ) ≤
1 + k

4
T 2

[
|λ|Rα+1 + ‖f‖C(D̄T2)

]

for 0 < T ≤ T2, which, in turn, implies that if

T 2
∗ := min

{

T 2
2 ,

4R
(1 + k)

(
|λ|Rα+1 + ‖f‖C(D̄T2)

)

}

,

then ‖Au‖C(D̄T ) ≤ R for ‖u‖C(D̄T ) ≤ R, 0 < T ≤ T∗. The proof of Theorem 4 is complete.
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