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Abstract—We study the first Darboux problem for hyperbolic equations of second order with power
nonlinearity. We consider the question of the existence and nonexistence of global solutions to this
problem depending on the sign of the parameter before the nonlinear term and the degree of its
nonlinearity. We also discuss the question of local solvability of the problem.
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1. STATEMENT OF THE PROBLEM

In the plane of independent variables x and t, consider a nonlinear hyperbolic equation of the form

Lλu := utt − uxx + a1(x, t)ut + a2(x, t)ux + a3(x, t)u + λ|u|αu = f(x, t), (1)

where λ and α are given real constants such that λα �= 0, α > −1, the ai, i = 1, 2, 3, and f are given,
and u is the required real functions.

Denote by DT := {(x, t) : 0 < x < t, 0 < t < T }, T ≤ ∞, the triangular domain bounded by the
characteristic segment γ1,T : x = t, 0 ≤ t ≤ T , and also by the segments γ2,T : x = 0, 0 ≤ t ≤ T and
γ3,T : t = T , 0 ≤ x ≤ T .

For Eq. (1), consider the first Darboux problem of finding its solution u(x, t) in the domain DT from
the boundary conditions (see, for example, [1, p. 228]):

u|γi,T
= 0, i = 1, 2. (2)

Note that, for nonlinear equations of hyperbolic type, there is a vast literature (see, for example, [2]–
[11]) devoted to the existence or nonexistence of global solutions to various problems (such as initial-
value, mixed, nonlocal problems of various types, including periodic ones). As is well known, in the
linear case, i.e., for λα = 0, problem (1), (2), is well posed and has a global solution in the corresponding
function spaces (see, for example, [1], [12]–[15]).

We shall show that, under certain conditions on the exponent of nonlinearity α and the parameter λ,
problem (1), (2) in some cases is globally solvable, while, in other cases, it has no global solution,
although, as will be shown, this problem is locally solvable.

Definition 1. Suppose that ai ∈ C(DT ), i = 1, 2, 3, and f ∈ C(DT ). A function u is called a strong
generalized solution of problem (1), (2) of class C in the domain DT if u ∈ C(DT ) and there exists

a sequence of functions un ∈
◦
C2(DT ,ΓT ) such that un → u and Lλun → f in the space C(DT ) as

n → ∞, where
◦
C2(DT ,ΓT ) := {u ∈ C2(DT ) : u|ΓT

= 0}, ΓT := γ1,T ∪ γ2,T .
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FIRST DARBOUX PROBLEM FOR HYPERBOLIC EQUATIONS 647

Remark 1. Obviously, a classical solution of problem (1), (2) from the space
◦
C2(DT ,ΓT ) is a strong

generalized solution of this problem of class C in the domain DT . In turn, if the strong generalized
solution of problem (1), (2) of class C in the domain DT belongs to the space C2(DT ),, then it is also a
classical solution of this problem.

Definition 2. Suppose that ai ∈ C(D∞), i = 1, 2, 3, and f ∈ C(D∞). Problem (1), (2) is said to be
globally solvable for the class C if, for any finite T > 0, this problem has a strong generalized solution
of class C in the domain DT .

2. A PRIORI ESTIMATE OF THE SOLUTION OF PROBLEM (1), (2)

The following assertion holds.

Lemma 1. Suppose that −1 < α < 0 and, in the case α > 0, it is additionally required that λ > 0.
Then, for a strong generalized solution of problem (1), (2) of class C in the domain DT , the
following a priori estimate holds:

‖u‖C(DT ) ≤ c1‖f‖C(DT ) + c2 (3)

with positive constants ci(T, aj , α, λ), i = 1, 2, j = 1, 2, 3, not depending on u and f .

Proof. First, consider the case in which α > 0 and λ > 0. Suppose that u is a strong generalized
solution of problem (1), (2) of class C in the domain DT . Then, by Definition 1, there exists a sequence

of functions un ∈
◦
C2(DT ,ΓT ) such that

lim
n→∞

‖un − u‖C(DT ) = 0, lim
n→∞

‖Lλun − f‖C(DT ) = 0, (4)

and hence also

lim
n→∞

‖λ|un|αun − λ|u|αu‖C(DT ) = 0. (5)

Consider a function un ∈
◦
C2(DT ,ΓT ), as a solution of the following problem:

Lλun = fn, (6)

un|ΓT
= 0, ΓT := γ1,T ∪ γ2,T . (7)

Here

fn := Lλun. (8)

Multiplying both sides of relation (6) by ∂un/∂t and integrating over the domain

Dτ := {(x, t) ∈ DT : 0 < t < τ}, 0 < τ ≤ T ,

we see that

1
2

∫
Dτ

∂

∂t

(
∂un

∂t

)2

dx dt −
∫

Dτ

∂2un

∂x2

∂un

∂t
dx dt +

λ

α + 2

∫
Dτ

∂

∂t
|un|α+2 dx dt

=
∫

Dτ

(
fn − a1

∂un

∂t
− a2

∂un

∂x
− a3un

)
∂un

∂t
dx dt.

Set Iτ := D∞ ∩ {t = τ}, 0 < τ ≤ T . Then, in view of (7), integrating by parts the left-hand side of
the last equality, we obtain∫

Dτ

(
fn − a1

∂un

∂t
− a2

∂un

∂x
− a3un

)
∂un

∂t
dx dt

MATHEMATICAL NOTES Vol. 84 No. 5 2008



648 DZHOKHADZE, KHARIBEGASHVILI

=
∫

γ1,τ

1
2νt

[(
∂un

∂x
νt −

∂un

∂t
νx

)2

+
(

∂un

∂t

)2

(ν2
t − ν2

x)
]

ds

+
1
2

∫
Iτ

[(
∂un

∂t

)2

+
(

∂un

∂x

)2]
dx +

λ

α + 2

∫
Iτ

|un|α+2 dx, (9)

where ν := (νx, νt) is the unit vector of the outer normal to ∂Dτ and Γτ := ΓT ∩ {t ≤ τ}.
Taking into account the fact that the operator νt∂/∂x − νx∂/∂t is the inner differential operator

on γ1,T and using (7), we find that (
∂un

∂x
νt −

∂un

∂t
νx

)∣∣∣∣
γ1,τ

= 0. (10)

Further, it is obvious that

(ν2
t − ν2

x)|γ1,τ = 0. (11)

In view of (10), (11), from (9) we obtain

wn(τ) :=
∫

Iτ

[(
∂un

∂t

)2

+
(

∂un

∂x

)2]
dx

≤ 2
∫

Dτ

(
fn − a1

∂un

∂t
− a2

∂un

∂x
− a3un

)
∂un

∂t
dx dt. (12)

Taking into account the so-called ε-inequality

2fn
∂un

∂t
≤ ε

(
∂un

∂t

)2

+
1
ε
f2

n

valid for any ε := const > 0 and using (12), we obtain

wn(τ) ≤ ε

∫
Dτ

(
∂un

∂t

)2

dx dt +
1
ε
‖fn‖2

L2(Dτ )

− 2
∫

Dτ

(
a1

∂un

∂t
+ a2

∂un

∂x
+ a3un

)
∂un

∂t
dx dt. (13)

Introducing the notation

A := max
1≤i≤3

sup
(x,t)∈DT

|ai(x, t)|,

and using Cauchy’s inequality, we see that

− 2
∫

Dτ

(
a1

∂un

∂t
+ a2

∂un

∂x
+ a3un

)
∂un

∂t
dx dt

≤ A

{
4
∫

Dτ

(
∂un

∂t

)2

dx dt +
∫

Dτ

(
∂un

∂x

)2

dx dt +
∫

Dτ

u2
n dx dt

}
. (14)

Further, using relations (7) and the equality

un(x, t) =
∫ t

x
(∂un(x, τ)/∂t) dτ , (x, t) ∈ DT ,

after standard arguments, we obtain the inequality (see, for example, [16, p. 63])∫
Dτ

u2
n dx dt ≤ τ2

∫
Dτ

(
∂un

∂t

)2

dx dt. (15)

Hence, using (13) and (14), we see that

wn(τ) ≤ (ε + A(τ2 + 4))
∫ τ

0
wn(σ) dσ +

1
ε
‖fn‖2

L2(Dτ ), 0 < τ ≤ T.
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Taking into account the fact that the norm ‖fn‖2
L2(Dτ ) is nondecreasing as a function of τ and using

Gronwall’s lemma (see, for example, [17, p. 13 (Russian transl.)]), we see that this inequality implies
that

wn(τ) ≤ 1
ε
‖fn‖2

L2(Dτ ) exp(τ(ε + A(τ2 + 4))).

Hence, noting the equality

inf
ε>0

exp(τε)
ε

= eτ,

which corresponds to ε = 1/τ , we obtain

wn(τ) ≤ τ‖fn‖2
L2(Dτ ) exp(Aτ(τ2 + 4) + 1), 0 < τ ≤ T. (16)

If (x, t) ∈ DT , then, in view of (7), the following relation holds:

un(x, t) = un(x, t) − un(0, t) =
∫ x

0

∂un(σ, t)
∂x

dσ,

whence, by (16), we have

|un(x, t)|2 ≤
∫ x

0
dσ

∫ x

0

[
∂un(σ, t)

∂x

]2

dσ ≤ x

∫
It

[
∂un(σ, t)

∂x

]2

dσ ≤ xwn(t) ≤ twn(t)

≤ t2‖fn‖2
L2(Dt)

exp(At(t2 + 4) + 1) ≤ t2‖fn‖2
C(Dt)

mes Dt exp(At(t2 + 4) + 1)

≤ 2−1t4‖fn‖2
C(DT )

exp(At(t2 + 4) + 1), (x, t) ∈ DT . (17)

It follows from (17) that

‖un‖C(DT ) ≤
√

2−1 T 2‖fn‖C(DT ) exp(2−1(AT (T 2 + 4) + 1)).

By (4), (8), passing to the limit as n → ∞ in the last inequality, we obtain

‖u‖C(DT ) ≤
√

2−1 T 2‖f‖C(DT ) exp(2−1(AT (T 2 + 4) + 1)). (18)

Estimate (18) implies (3) in the case α > 0 and λ > 0.
Now consider the case −1 < α < 0 for an arbitrary λ. In this case, 1 < α + 2 < 2, and applying the

well-known inequality

ab ≤ ap

p
+

bq

q
, a = |un|α+2, b = 1, p =

2
α + 2

> 1, q = − 2
α

> 1,
1
p

+
1
q

= 1,

we obtain ∫
Iτ

|un|α+2 dx ≤
∫

Iτ

[
α + 2

2
|un|2 −

α

2

]
dx =

α + 2
2

∫
Iτ

|un|2 dx +
|α|τ
2

.

Hence, taking into account the form of the function wn(τ) and (9)–(11), we see that (12) implies that

wn(τ) ≤ |λ|
∫

Iτ

|un|2 dx +
|λα|τ
α + 2

+ 2
∫

Dτ

(
fn − a1

∂un

∂t
− a2

∂un

∂x
− a3un

)
∂un

∂t
dx dt. (19)

According to the theory of the trace, the following estimate holds (see, for example, [16, pp. 77, 86]):

‖un‖L2(Iτ ) ≤
√

τ ‖un‖ ◦
W 1

2 (Dτ ,Γτ )
, 0 < τ ≤ T, (20)

where
◦

W 1
2 (Dτ ,Γτ ) := {u ∈ W 1

2 (Dτ ) : u|Γτ = 0}, W 1
2 (Dτ ) is the well-known Sobolev space, and

‖un‖2
◦

W 1
2 (Dτ ,Γτ )

:=
∫

Dτ

[(
∂un

∂t

)2

+
(

∂un

∂x

)2]
dx dt.
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Since

2fn
∂un

∂t
≤ f2

n +
(

∂un

∂t

)2

,

in view of (14), (15), and (20), it follows from (19) that

wn(τ) ≤ (A(τ2 + 4) + |λ|τ + 1)
∫

Dτ

(
∂un

∂t

)2

dx dt

+ (A + |λ|τ)
∫

Dτ

(
∂un

∂x

)2

dx dt +
∫

Dτ

f2
n dx dt +

|λα|τ
α + 2

.

This yields

wn(τ) ≤ (A(τ2 + 4) + |λ|τ + 1)
∫ τ

0
wn(σ) dσ + ‖fn‖2

L2(Dτ ) +
|λα|τ
α + 2

.

Applying Gronwall’s lemma (see, for example, [17, p. 13 (Russian transl.]), from the last inequality we
obtain

wn(τ) ≤
[
‖fn‖2

L2(DT ) +
|λα|T
α + 2

]
exp{(A(T 2 + 4) + |λ|T + 1)T}. (21)

Just as (16) yields (17), inequality (21) implies

|un(x, t)|2 ≤ twn(t) ≤ T

[
‖fn‖2

C(DT )
mes DT +

|λα|T
α + 2

]
exp{(A(T 2 + 4) + |λ|T + 1)T}

= T 2

[
T

2
‖fn‖2

C(DT )
+

|λα|
α + 2

]
exp{(A(T 2 + 4) + |λ|T + 1)T}.

It follows from this inequality that

‖un‖C(DT ) ≤ T

[√
T

2
‖fn‖C(DT ) +

√
|λα|
α + 2

]
exp

{
T

2
(A(T 2 + 4) + |λ|T + 1)

}
,

whence, by (4), (8), passing to the limit as n → ∞, we obtain the estimate

‖u‖C(DT ) ≤ T

√
T

2
exp

{
T

2
(A(T 2 + 4) + |λ|T + 1)

}
‖f‖C(DT )

+ T

√
|λα|
α + 2

exp
{

T

2
(A(T 2 + 4) + |λ|T + 1)

}
. (22)

The proof of estimate (3) is now complete.

Remark 2. It follows from (18) and (22) that the constants c1 and c2 in estimate (3) are as follows:

c1 =
√

2−1 T 2 exp(2−1(AT (T 2 + 4) + 1)), c2 = 0, for α > 0, λ > 0; (23)

c1 = T

√
T

2
exp

{
T

2
(A(T 2 + 4) + |λ|T + 1)

}
, c2 = T

√
|λα|
α + 2

exp
{

T

2
(A(T 2 + 4) + |λ|T + 1)

}
,

for − 1 < α < 0, −∞ < λ < +∞. (24)

3. EQUIVALENT REDUCTION OF PROBLEM (1), (2)
TO A NONLINEAR INTEGRAL EQUATION OF VOLTERRA TYPE

Suppose that P := P (x, t) is an arbitrary point of the domain DT . Denote by Dx,t the quadrangle
with vertices at the points O := O(0, 0), P as well as at the points P1 and P3 lying, respectively, on the
supports of γ2,T and γ1,T i.e.,

P1 := P1(0, t − x), P3 := P3

(
x + t

2
,
x + t

2

)
.
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FIRST DARBOUX PROBLEM FOR HYPERBOLIC EQUATIONS 651

Obviously, the domain Dx,t consists of the characteristic rectangle D1;x,t := PP1P2P3 and the triangle
D2;x,t := OP1P2, where P2 := P2((t − x)/2, (t − x)/2).

Consider the smoothness conditions imposed on the coefficients of Eq. (1):

ai ∈ Ck+1(D∞), i = 1, 2, a3 ∈ Ck(D∞), k ≥ 1. (25)

Remark 3. It is well known that, under conditions (25), the Green–Hadamard function G(x, t;x′, t′) for
problem (1), (2) for λ = 0 is well defined and, together with its partial derivatives up to (k + 1)th order
inclusive, is bounded and piecewise continuous, with discontinuities of the first kind only in passing
through the singular manifold t′ + x′ − t + x = 0 (see, for example, [18], [19, p. 230], [20, p. 38]).

Below, unless otherwise stated, we assume that, in condition (25), the smoothness exponent k = 1.

Moreover, if u ∈ C2(DT ) is a classical solution of problem (1), (2), then it satisfies the following
integral equality:

u(x, t) + λ

∫
Dx,t

G(x′, t′;x, t)|u|αu dx′ dt′

=
∫

Dx,t

G(x′, t′;x, t)f(x′, t′) dx′ dt′, (x, t) ∈ DT . (26)

Remark 4. Relation (26) can be regarded as a nonlinear integral equation of Volterra type; it can be
rewritten in the form

u(x, t) + λ(L−1
0 |u|αu)(x, t) = F (x, t), (x, t) ∈ DT . (27)

Here L−1
0 is the linear operator acting by the formula

(L−1
0 v)(x, t) :=

∫
Dx,t

G(x′, t′;x, t)v(x′, t′) dx′ dt′, (x, t) ∈ DT , (28)

F (x, t) := (L−1
0 f)(x, t), (x, t) ∈ DT . (29)

Lemma 2. The function u ∈ C(DT ) is a strong generalized solution of problem (1), (2) of class C
in the domain DT if and only if it is a continuous solution of the nonlinear integral equation (27).

Proof. Indeed, suppose that u ∈ C(DT ) is a solution of Eq. (27). Since f ∈ C(DT ), and the
space C2(DT ) is dense in C(DT ) (see, for example, [21, p. 37]), there exists a sequence of functions
fn ∈ C2(DT ) such that fn → f in the space C(DT ) as n → ∞. Similarly, since u ∈ C(DT ), there
exists a sequence of functions wn ∈ C2(DT ) such that wn → u in the space C(DT ) as n → ∞. Set

un := −λ(L−1
0 |wn|αwn) + L−1

0 fn, n = 1, 2, . . . .

It is easily verified that un ∈
◦
C2(DT ,ΓT ), and since L−1

0 is a linear continuous operator in the
space C(DT ) and

lim
n→∞

‖wn − u‖C(DT ) = 0, lim
n→∞

‖fn − f‖C(DT ) = 0,

we have

un → −λ(L−1
0 |u|αu) + L−1

0 f

in the space C(DT ) as n → ∞. But it follows from relation (26) that

−λ(L−1
0 |u|αu) + L−1

0 f = u.

Thus, we have

lim
n→∞

‖un − u‖C(DT ) = 0.
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652 DZHOKHADZE, KHARIBEGASHVILI

On the other hand, L0un = −λ|wn|αwn + fn; hence, noting the equalities

lim
n→∞

‖un − u‖C(DT ) = 0, lim
n→∞

‖wn − u‖C(DT ) = 0, lim
n→∞

‖fn − f‖C(DT ) = 0,

we obtain

Lλun = L0un + λ|un|αun = −λ|wn|αwn + fn + λ|un|αun

= −λ[|wn|αwn − |u|αu] + λ[|un|αun − |u|αu] + fn → f

in the space C(DT ) as n → ∞. The converse statement is obvious.

4. THE CASE OF GLOBAL SOLVABILITY OF PROBLEM (1), (2)
FOR THE CLASS OF CONTINUOUS FUNCTIONS

As noted above, the operator L−1
0 from (28) is a linear continuous operator acting in the space C(DT ).

Let us now show that, in fact, this operator is a linear and continuous operator from the space C(DT )
to the space C1(DT ) of continuously differentiable functions. To do this, let us pass to the plane of the
variables ξ, τ by using the linear nonsingular transformation of the independent variables t = ξ + τ and
x = ξ − τ . As a result of this transformation:

1) the triangular domain DT becomes the triangle ΩT with vertices at the points with
coordinates (0, 0), (T, 0) and (T/2, T/2);

2) the quadrangle Dx,t becomes the quadrangle Ωξ,τ with vertices at the points Q(ξ, τ),
Q1(τ, τ), Q2(τ, 0), Q3(ξ, 0);

3) the characteristic rectangle D1;x,t becomes the rectangle Ω1;ξ,τ with vertices at the
points Q, Q1, Q2, and Q3;

4) the triangular domain D2;x,t becomes the triangle Ω2;ξ,τ := OQ1Q2.

We preserve the old notation G(ξ, τ ; ξ′, τ ′) for the Green–Hadamard function G(x, t;x′, t′) in the new
variables ξ, τ ; ξ′, τ ′ (t′ = ξ′ + τ ′, x′ = ξ′ − τ ′).

Moreover, the operator L−1
0 from (28) becomes the operator K acting in the space C(ΩT ) by the

formula

(Kw)(ξ, τ) = 2
∫

Ωξ,τ

G(ξ′, τ ′; ξ, τ)w(ξ′, τ ′) dξ′ dτ ′

= 2
∫

Ω1;ξ,τ

G(ξ′, τ ′; ξ, τ)w(ξ′, τ ′) dξ′ dτ ′ + 2
∫

Ω2;ξ,τ

G(ξ′, τ ′; ξ, τ)w(ξ′, τ ′) dξ′ dτ ′

= 2
∫ ξ

τ
dξ′

∫ τ

0
G(ξ′, τ ′; ξ, τ)w(ξ′, τ ′) dτ ′

+ 2
∫ τ

0
dξ′

∫ ξ′

0
G(ξ′, τ ′; ξ, τ)w(ξ′, τ ′) dτ ′, (ξ, τ) ∈ ΩT . (30)

If w ∈ C(ΩT ), then, in view of Remark 3, it immediately follows from (30) that

∂

∂ξ
(Kw)(ξ, τ) = 2

∫ τ

0
G(ξ, τ ′; ξ, τ)w(ξ, τ ′) dτ ′ + 2

∫ ξ

τ
dξ′

∫ τ

0

∂

∂ξ′
G(ξ′, τ ′; ξ, τ)w(ξ′, τ ′) dτ ′

+ 2
∫ τ

0
dξ′

∫ ξ′

0

∂

∂ξ′
G(ξ′, τ ′; ξ, τ)w(ξ′, τ ′) dτ ′, (ξ, τ) ∈ ΩT , (31)

∂

∂τ
(Kw)(ξ, τ) = −2

∫ τ

0
G(τ, τ ′; ξ, τ)w(τ, τ ′) dτ ′ + 2

∫ ξ

τ
G(ξ′, τ ; ξ, τ)w(ξ′, τ) dξ′
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FIRST DARBOUX PROBLEM FOR HYPERBOLIC EQUATIONS 653

+ 2
∫ ξ

τ
dξ′

∫ τ

0

∂

∂τ ′ G(ξ′, τ ′; ξ, τ)w(ξ′, τ ′) dτ ′ + 2
∫ τ

0
G(τ, τ ′; ξ, τ)w(τ, τ ′) dτ ′

+ 2
∫ τ

0
dξ′

∫ ξ′

0

∂

∂τ ′ G(ξ′, τ ′; ξ, τ)w(ξ′, τ ′) dτ ′, (ξ, τ) ∈ ΩT . (32)

Now, taking into account the fact that, for (ξ, τ) ∈ ΩT , we have 0 ≤ ξ ≤ T and 0 ≤ τ ≤ T/2 and
using (30)–(32), we obtain

|(Kw)(ξ, τ)| +
∣∣∣∣ ∂

∂ξ
(Kw)(ξ, τ)

∣∣∣∣ +
∣∣∣∣ ∂

∂τ
(Kw)(ξ, τ)

∣∣∣∣
≤ 2τ(ξ − τ)G0‖w‖C(ΩT ) + τ2G0‖w‖C(ΩT ) + 2τG0‖w‖C(ΩT )

+ 2τ(ξ − τ)G1‖w‖C(ΩT ) + τ2G1‖w‖C(ΩT ) + 2τG0‖w‖C(ΩT )

+ 2(ξ − τ)G0‖w‖C(ΩT ) + 2τ(ξ − τ)G2‖w‖C(ΩT )

+ 2τG0‖w‖C(ΩT ) + 2τ2G2‖w‖C(ΩT )

≤ 2(3τξ − τ2 + 2τ + ξ)G3‖w‖C(ΩT ) ≤ (3T 2 + 4T )G3‖w‖C(ΩT ),

where
G0 := sup

t′+x′−t+x �=0
|G|, G1 := sup

t′+x′−t+x �=0
|∂G/∂x′|,

G2 := sup
t′+x′−t+x �=0

|∂G/∂t′|

and G3 := G0 + G1 + G2 < +∞ by Remark 3. Thus,

‖K‖C(ΩT )→C1(ΩT ) ≤ (3T 2 + 4T )G3, (33)

which proves the assertion.
Further, since the space C1(ΩT ) is compactly embedded in the space C(ΩT ) (see, for example, [22,

p. 135 (Russian transl.], in view of (33), the operator K : C(ΩT ) → C(ΩT ) is a linear and compact
operator. Thus, returning now from the variables ξ and τ to the variables x and t, we obtain the following
statement for the operator K from (28).

Lemma 3. The operator K : C(DT ) → C(DT ) acting by formula (32), is a linear compact oper-
ator. Moreover, by (33), the same operator takes the space C(DT ) to the space C1(DT ) and is
bounded.

In view of (29), Eq. (27) can be rewritten as

u = Au := K(−λ|u|αu + f), (34)

where the operator A : C(DT ) → C(DT ) is continuous and compact, because the nonlinear operator
K : C(DT ) → C(DT ), acting by the formula

Ku := −λ|u|αu + f , α > −1

is bounded and continuous, while the linear operator K : C(DT ) → C(DT ) is compact by Lemma 3. At
the same time, by Lemmas 1 and 2 and relations (23) and (24), the a priori estimate

‖u‖C(DT ) ≤ c̃1‖f‖C(DT ) + c̃2

with positive constants c̃1 and c̃2 not depending on u, τ , and f holds for any parameter τ ∈ [0, 1] and for
any solution u ∈ C(DT ) of the equation u = τAu. Therefore, by the Leray–Schauder theorem (see, for
example, [23, p. 375]) under the conditions of Lemma 1, Eq. (34) has at least one solution u ∈ C(DT ).
Thus, by Lemma 2, we have proved the following statement.

Theorem 1. Suppose that −1 < α < 0, while, in the case α > 0, the parameter λ is positive. Then
problem (1), (2) is globally solvable for the class C in the sense of Definition 2, i.e., the inclusion
f ∈ C(D∞) implies that, for any T > 0, problem (1), (2) has a strong generalized solution of
class C in the domain DT .
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5. SMOOTHNESS AND UNIQUENESS OF THE SOLUTION OF PROBLEM (1), (2).
EXISTENCE OF A GLOBAL SOLUTION IN D∞

By Lemmas 2 and 3 and Remark 3, relations (27)–(29) imply the following statement.

Lemma 4. Suppose that u is a strong generalized solution of problem (1), (2) of class C in the
domain DT in the sense of Definition 1. In that case, if a1, a2 ∈ Ck+1(DT ), a3, f ∈ Ck(DT ), then
u ∈ Ck+1(DT ), k ≥ 1.

In particular, it follows from this lemma that, for k ≥ 1, the strong generalized solution of prob-
lem (1), (2) of class C in the domain DT is a classical solution of this problem.

Lemma 5. For α > 0, problem (1), (2) cannot have more than one strong generalized solution of
class C in the domain DT .

Proof. Indeed, suppose that problem (1), (2) has two strong generalized solutions u1 and u2 of class C
in the domain DT . By Definition 1, there exists a sequence of functions

uin ∈
◦
C2(DT ,ΓT ), i = 1, 2

such that

lim
n→∞

‖uin − ui‖C(DT ) = 0, lim
n→∞

‖Lλuin − f‖C(DT ) = 0, i = 1, 2. (35)

Let ωnm := u2n − u1m. We can easily see that the function ωnm ∈
◦
C2(DT ,ΓT ) satisfies the following

identities:
L0ωnm + gnmωnm = fnm, (36)

ωnm|ΓT
= 0. (37)

Here

gnm := λ(1 + α)
∫ 1

0
|u1m + t(u2n − u1m)|α dt, (38)

fnm := Lλu2n − Lλu1m, (39)

where we have used the obvious equality

ϕ(x2) − ϕ(x1) = (x2 − x1)
∫ 1

0
ϕ′(x1 + t(x2 − x1)) dt

for the function ϕ(x) := |x|αx for x2 = u2n, x1 = u1m, α > 0. By the first equality in (35), there exists
a number M := const > 0 not depending on the indices i and n such that ‖uin‖C(DT ) ≤ M ; hence, in
turn, by (38) we have

‖gn,m‖C(DT ) ≤ |λ|(1 + α)Mα ∀n,m. (40)

In view of (39) and the second equality, it follows from (35) that

lim
n,m→∞

‖fnm‖C(DT ) = 0. (41)

Multiplying both sides of relation (36) by ∂ωnm/∂t, integrating over the domain

Dτ := {(x, t) ∈ DT : 0 < t < τ}, 0 < τ ≤ T ,

using the boundary conditions (37), just as in the derivation of inequality (12), from (6), (7) we obtain

wnm(τ) :=
∫

Iτ

[(
∂ωnm

∂t

)2

+
(

∂ωnm

∂x

)2]
dx

≤ 2
∫

Dτ

(
fnm − a1

∂ωnm

∂t
− a2

∂ωnm

∂x
− a3ωnm − gnmωnm

)
∂ωnm

∂t
dx dt, (42)
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where Iτ := D∞ ∩ {t = τ}, 0 < τ ≤ T .
By estimate (40) and Cauchy’s inequality, we have

2
∫

Dτ

(
fnm − a1

∂ωnm

∂t
− a2

∂ωnm

∂x
− a3ωnm − gnmωnm

)
∂ωnm

∂t
dx dt

= −2
∫

Dτ

(
a1

∂ωnm

∂t
+ a2

∂ωnm

∂x
+ a3ωnm

)
∂ωnm

∂t
dx dt

+ 2
∫

Dτ

(
fnm − gnmωnm

)
∂ωnm

∂t
dx dt

≤ 2A
∫

Dτ

(
∂ωnm

∂t

)2

dx dt + A

{∫
Dτ

(
∂ωnm

∂t

)2

dx dt +
∫

Dτ

(
∂ωnm

∂x

)2

dx dt

}

+ A

{∫
Dτ

(
∂ωnm

∂t

)2

dx dt +
∫

Dτ

ω2
nm dx dt

}

+ 2
∫

Dτ

(
∂ωnm

∂t

)2

dx dt +
∫

Dτ

f2
nm dx dt +

∫
Dτ

g2
nmω2

nm dx dt

= 2(2A + 1)
∫

Dτ

(
∂ωnm

∂t

)2

dx dt + A

∫
Dτ

(
∂ωnm

∂x

)2

dx dt

+
∫

Dτ

f2
nm dx dt + (λ2(1 + α)2M2α + A)

∫
Dτ

ω2
nm dx dt. (43)

Since the function ωnm satisfies the same homogeneous boundary conditions as un, by the same
arguments, we obtain estimate (15) for it. Taking into account this estimate as well as inequali-
ties (42), (43), we see that

wnm(τ) ≤ (A(τ2 + 4) + 2 + λ2(1 + α)2M2ατ2)
∫

Dτ

(
∂ωnm

∂t

)2

dx dt

+ A

∫
Dτ

(
∂ωnm

∂x

)2

dx dt +
∫

Dτ

f2
nm dx dt

≤ (A(τ2 + 4) + 2 + λ2(1 + α)2M2ατ2)
∫ τ

0
wnm(σ) dσ +

∫
DT

f2
nm dx dt. (44)

Hence by Gronwall’s lemma (see, for example, [17, p. 13 (Russian transl.]), we find that

wnm(τ) ≤ c‖fnm‖2
L2(DT ), 0 < τ ≤ T, (45)

where

c := exp(A(τ2 + 4) + 2 + λ2(1 + α)2M2αT 2)T .

Using the same arguments as those leading to inequality (17) and taking into account the obvious
inequality

‖fnm‖2
L2(DT ) ≤ ‖fnm‖2

C(DT )
mes DT ,

from (45) we obtain

|ωnm(x, t)|2 ≤ twnm(t) ≤ cT mes DT ‖fnm‖2
C(DT )

= 2−1cT 3‖fnm‖2
C(DT )

, (x, t) ∈ DT .

This implies that

‖ωnm‖C(DT ) ≤ T
√

2−1cT ‖fnm‖C(DT ). (46)

Since ωnm := u2n − u1m, by the first equality from (35), we have

lim
n,m→∞

‖ωnm‖C(DT ) = ‖u2 − u1‖C(DT ).
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Hence by (41), passing to the limit as n,m → ∞ in inequality (46), we obtain ‖u2 − u1‖C(DT ) = 0, i.e.,
u1 = u2, which proves Lemma 5.

Theorem 2. Suppose that α > 0 and λ > 0. Then, under condition (25), in the case k = 1 and for

any f ∈ C1(D∞), problem (1), (2) has a unique global classical solution u ∈
◦
C2(D∞,Γ∞) in the

domain D∞.

Proof. If α > 0, λ > 0 and a1, a2 ∈ C2(D∞), a3, f ∈ C1(D∞), then, by Theorem 1 and Lemmas 4

and 5, there exists a unique classical solution un ∈
◦
C2(Dn,Γn) of problem (1), (2) for T = n in the

domain DT . Since un+1 is also a classical solution of problem (1), (2) in the domain Dn, by Lemma 5
we have un+1|Dn = un. Therefore, the function u constructed in the domain D∞ by means of the rule
u(x, t) = un(x, t) for n = [t] + 1, where [t] is the integer part of the number t, and the point (x, t) belongs

to D∞, is the unique classical solution of problem (1), (2) in the domain D∞ of class
◦
C2(D∞,Γ∞). The

proof of Theorem 2 is complete.

6. SOME PROPERTIES OF THE GREEN–HADAMARD FUNCTION
OF PROBLEM (1), (2) FOR λ = 0

Let us present a sufficient condition imposed on the coefficients a1, a2, and a3 of Eq. (1) guaranteeing
that the Green–Hadamard function of problem (1) (2) is nonnegative for λ = 0, i.e.,

G(x, t;x′, t′) ≥ 0, (x, t) ∈ DT , (x′, t′) ∈ Dx,t. (47)

To do this, let us rewrite problem (1), (2) for λ = 0 in the characteristic variables ξ and τ given in
Sec. 4:

LU := Uξτ + A(ξ, τ)Uξ + B(ξ, τ)Uτ + C(ξ, τ)U = F (ξ, τ), (ξ, τ) ∈ ΩT , (48)

U(ξ, 0) = 0, 0 ≤ ξ ≤ T, U(τ, τ) = 0, 0 ≤ τ ≤ T

2
. (49)

Here

U(ξ, τ) := u(ξ − τ, ξ + τ), A :=
a1 + a2

2
, B :=

a1 − a2

2
, C := a3, F := f. (50)

In addition, note that, by relation (30), the solution U(ξ, τ) of problem (48), (49) can be expressed as

U(ξ, τ) = 2
∫

Ωξ,τ

G(ξ′, τ ′; ξ, τ)F (ξ′, τ ′) dξ′ dτ ′, (ξ, τ) ∈ ΩT . (51)

Lemma 6. Suppose that

k ≥ 0, (52)

where k := Bτ + AB − C is the Laplace invariant of Eq. (48). Then condition (47) holds.

Proof. The operator L from (48) can be expressed as

LU = lU − kU, (53)

where

lU :=
(

∂

∂τ
+ A

)(
∂

∂ξ
+ B

)
U. (54)

By direct integration, we can easily verify that the solution of the problem

lV = F1, V (ξ, 0) = 0, 0 ≤ ξ ≤ T, V (τ, τ) = 0, 0 ≤ τ ≤ T

2
(55)
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can be expressed as

V (ξ, τ) =
∫

Ω1;ξ,τ

R(ξ′, τ ′; ξ, τ)F1(ξ′, τ ′) dξ′ dτ ′. (56)

Here

R(ξ, τ ; ξ′, τ ′) := exp
{∫ τ

τ ′
A(ξ, τ1) dτ1 +

∫ ξ

ξ′
B(ξ1, τ

′) dξ1

}
≥ 0 (57)

is the Riemann function of the operator l acting by formula (54) (see, for example, [24, p. 16]).
In view of (53) and (56), the solution of problem (48), (49) satisfies the following integral equation:

U(ξ, τ) =
∫

Ω1;ξ,τ

R(ξ′, τ ′; ξ, τ)k(ξ′, τ ′)U(ξ′, τ ′) dξ′ dτ ′

+
∫

Ω1;ξ,τ

R(ξ′, τ ′; ξ, τ)F (ξ′, τ ′) dξ′ dτ ′, (ξ, τ) ∈ ΩT . (58)

As is well known, the integral Volterra equation (58) can be solved by the method of successive
approximations:

U0 = 0, Un(ξ, τ) =
∫

Ω1;ξ,τ

R(ξ′, τ ′; ξ, τ)k(ξ′, τ ′)Un−1(ξ′, τ ′) dξ′ dτ ′

+
∫

Ω1;ξ,τ

R(ξ′, τ ′; ξ, τ)F (ξ′, τ ′) dξ′ dτ ′, n ≥ 1, (ξ, τ) ∈ ΩT . (59)

In view of (52) and (57), it follows from the recurrence relations (59) for F ≥ 0 that

Un(ξ, τ) ≥ 0, n = 0, 1, . . . , (ξ, τ) ∈ ΩT . (60)

Since

lim
n→∞

‖Un − U‖C(ΩT ) = 0,

by (60), we have

U(ξ, τ) ≥ 0 for F (ξ, τ) ≥ 0, (ξ, τ) ∈ ΩT . (61)

Thus, by (61), for any nonnegative function F ∈ C(ΩT ), the right-hand sides of relation (51) is also
nonnegative. This implies the validity of condition (47). The proof of lemma 7 is complete.

Remark 5. As is well known (see, for example, [19, p. 230]), the Green–Hadamard function in the
characteristic rectangle Ω1;ξ,τ is identical with the Riemann function of the operator L from (48). At the
same time, it follows from expression (56) that the Green–Hadamard function of problem (55) in the
triangular part Ω2;ξ,τ of the domain Ωξ,τ is zero.

Remark 6. Note that, for the case in which the coefficients of the operator L0 are constant„ the sufficient
condition (52) for the for the nonnegativity of the Green–Hadamard function of problem (1), (2) for λ = 0
is also a necessary one.

Indeed, suppose that the coefficients A, B, and C of Eq. (48) are constant and the Laplace invariant
is

k := AB − C < 0. (62)

Problem (48), (49) with respect to the new unknown function V = U exp(Aτ + Bξ) can be rewritten as

Vξτ + (C − AB)V = F exp(Aτ + Bξ), (ξ, τ) ∈ ΩT , (63)

V (ξ, 0) = 0, 0 ≤ ξ ≤ T, V (τ, τ) = 0, 0 ≤ τ ≤ T

2
. (64)
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The solution of this problem can be expressed as follows:

V (ξ, τ) = 2
∫

Ωξ,τ

G̃(ξ′, τ ′; ξ, τ)F (ξ′, τ ′) exp(Aτ ′ + Bξ′) dξ′ dτ ′, (ξ, τ) ∈ ΩT . (65)

where G̃(ξ, τ ; ξ′, τ ′) is the Green–Hadamard function of problem (63), (64).
Comparing the representations (51) and (65), we can easily establish that

G(ξ, τ ; ξ′, τ ′) = G̃(ξ, τ ; ξ′, τ ′) exp{A(τ − τ ′) + B(ξ − ξ′)}.

By Remark 5, the Green–Hadamard function G̃(ξ, τ ; ξ′, τ ′) of problem (63), (64) in the characteristic
rectangle Ω1;ξ,τ is identical with the Riemann function of Eq. (63), which can be expressed by using
formula [25, p. 455 (Russian transl.] involving the Bessel function J0:

G̃(ξ, τ ; ξ′, τ ′) = J0(2
√

k(ξ − ξ′)(τ − τ ′)), (ξ′, τ ′) ∈ Ω1;ξ,τ .

It only remains to note that the Bessel function J0 is one with alternating signs, having infinitely many
zeros.

Similar results concerning the nonnegativity of the Riemann function were obtained in [18].

7. THE CASE OF THE NONEXISTENCE OF GLOBAL SOLUTIONS
OF PROBLEM (1), (2)

Consider the case for which, in Eq. (1), the parameter λ < 0, the exponent of nonlinearity α > 0, and
conditions (25) hold for k = 1.

Lemma 7. Suppose that u is a strong generalized solution of problem (1), (2) of class C in the
domain DT in the sense of Definition 1. Then the following integral equality holds:∫

DT

uL∗
0ϕdx dt = −λ

∫
DT

|u|αuϕdx dt +
∫

DT

fϕdx dt (66)

for any function ϕ such that

ϕ ∈ C2(DT ), ϕ|γ3,T
= 0, ϕt|γ3,T

= 0, ϕ|γ2,T
= 0, (67)

where L∗
0 is the operator conjugate in the sense of Lagrange and acting by the formula

L∗
0ϕ := ϕtt − ϕxx − (a1ϕ)t − (a2ϕ)x + a3ϕ.

Proof. By the definition of a strong generalized solution u of problem (1), (2) of class C in the

domain DT , the function u belongs to C(DT ) and there exists a sequence of functions un ∈
◦
C2(DT ,ΓT )

such that relation (4) hold.
Set fn := Lλun. Let us multiply both sides of the equality Lλun = fn by the function ϕ and integrate

the resulting equality over the domain DT . Integrating by parts the left-hand side of this equality,
noting (67), and using the boundary conditions un|γi,T = 0, i = 1, 2, we find that∫

DT

unL∗
0ϕdx dt = −λ

∫
DT

|un|αunϕdx dt +
∫

DT

fnϕdx dt.

Passing to the limit as n → ∞ in this equality and taking (4) into account, we obtain (66). Lemma 7
is proved.

In what follows, condition (52) will be considered in the original variables x, t according to
formulas (50).

Lemma 8. Suppose that λ < 0 and α > 0, while the function u ∈ C(DT ) is a strong generalized
solution of problem (1), (2) of class C in the domain DT . In that case, if condition (52) holds and
f ≥ 0, then u ≥ 0 in the domain DT .
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Proof. By Lemma 2 and relations (27)–(29), the function u is a solution of the following integral
equation of Volterra type:

u(x, t) =
∫

Dx,t

K(x, t;x′, t′)u(x′, t′) dx′ dt′ + F (x, t), (x, t) ∈ DT . (68)

Here

K(x, t;x′, t′) := −λ

2
G(x′, t′;x, t)|u(x′, t′)|α,

F (x, t) :=
1
2

∫
Dx,t

G(x′, t′;x, t)F (x′, t′) dx′ dt′.

Taking into account the assumptions of Lemma 8 and Lemma 6, we obtain inequality (47) and,
therefore,

K(x, t;x′, t′) ≥ 0, (x, t) ∈ DT , (x′, t′) ∈ Dx,t, F (x, t) ≥ 0, (x, t) ∈ DT . (69)

Given the function K(x, t;x′, t′), consider the following linear integral equation of Volterra type:

v(x, t) =
∫

Dx,t

K(x, t;x′, t′)v(x′, t′) dx′ dt′ + F (x, t), (x, t) ∈ DT , (70)

for the class C(DT ) with respect to the unknown function v(x, t). As is well known (see, for example,
[15]), Eq. (70) has a unique continuous solution v(x, t) for the class C(DT ), so that, for (x, t) ∈ DT , we
can use the method of successive approximations, obtaining

v0(x, t) = 0, vn+1(x, t) =
∫

Dx,t

K(x, t;x′, t′)vn(x′, t′) dx′ dt′ + F (x, t), n = 0, 1, . . . . (71)

In view of (69), from (71) we find vn(x, t) ≥ 0 in DT for all n = 0, 1, . . . . But, for the class C(DT ),
vn → v as n → ∞. Therefore, the limit function v is nonnegative in the domain DT . It only remains to
note that, by relation (68), the function u is also a solution of Eq. (70) and, therefore, by the uniqueness
of the solution of this equation, we finally obtain u = v ≥ 0 in the domain DT . Lemma 8 is proved.

Under the assumptions of Lemma 8, relation (66) can be rewritten as∫
DT

|u|L∗
0ϕdx dt = |λ|

∫
DT

|u|pϕdx dt +
∫

DT

fϕdx dt, p := α + 1. (72)

Let us use the method of trial functions [10, pp. 10–12]. Consider a function ϕ0 := ϕ0(x, t) such that

ϕ0 ∈ C2(D∞),

ϕ0|DT=1
> 0, ϕ0

x|DT=1
≥ 0, ϕ0

t |DT=1
≤ 0, ϕ0|γ2,∞ = 0, ϕ0|t≥1 = 0

(73)

and

κ0 :=
∫

DT=1

|�ϕ0|p′

|ϕ0|p′−1
dx dt < +∞, p′ = 1 +

1
α

, (74)

where � := ∂2/∂t2 − ∂2/∂x2.
It is easily verified that the function ϕ0 satisfying conditions (73) and (74) can be taken to be

ϕ0(x, t) =

{
xn(1 − t)m, (x, t) ∈ DT=1,

0, t ≥ 1,

for sufficiently large positive constants n and m.
Setting ϕT (x, t) := ϕ0(x/T, t/T ), T > 0, and taking (73) into account, we can easily see that

ϕT ∈ C2(DT ), ϕT |DT
> 0,

∂ϕT

∂x

∣∣∣∣
DT

≥ 0,
∂ϕT

∂t

∣∣∣∣
DT

≤ 0, (75)
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ϕT |γ2,T
= 0, ϕT |t=T = 0,

∂ϕT

∂t

∣∣∣∣
t=T

= 0. (76)

Assuming the function f to be fixed, consider the function of one variable T ,

ζ(T ) :=
∫

DT

fϕT dx dt, T > 0. (77)

The following theorem on the nonexistence of global solvability of problem (1), (2) is valid.

Theorem 3. Suppose that condition (52) is satisfied, λ < 0, α > 0, the function f ∈ C(D∞) is
nonnegative, and a1 ≤ 0, a2 ≥ 0, a3 − ∂a1/∂t − ∂a2/∂x ≤ 0 in the domain D∞. In that case, if

lim inf
T→+∞

ζ(T ) > 0, (78)

then there exists a positive number T0 := T0(f) such that, for T > T0, problem (1), (2) cannot have
a strong generalized solution of class C in the domain DT .

Proof. Suppose that, under the assumptions of this theorem, there exists a strong generalized solu-
tion u of problem (1), (2) of class C in the domain DT . Then, by Lemma 7 and 8, relation (72) holds in
which, by (75), (76), the function ϕ can be taken as the function ϕ = ϕT i.e.,∫

DT

|u|L∗
0ϕT dx dt = |λ|

∫
DT

|u|pϕT dx dt +
∫

DT

fϕT dx dt.

In view of the notation (77), the definitions of the operators L∗
0 and �, we can rewrite the last equality

in the form

|λ|
∫

DT

|u|pϕT dx dt =
∫

DT

|u|�ϕT dx dt −
∫

DT

|u|
(

a1
∂ϕT

∂t
+ a2

∂ϕT

∂x

)
dx dt

+
∫

DT

|u|
(

a3 −
∂a1

∂t
− ∂a2

∂x

)
ϕT dx dt − ζ(T );

hence, by the assumptions of Theorem 3 and (75), we obtain the inequality

|λ|
∫

DT

|u|pϕT dx dt ≤
∫

DT

|u|�ϕT dx dt − ζ(T ). (79)

If, in Young’s inequality with the parameter ε > 0,

ab ≤ ε

p
ap +

1
p′εp′−1

bp′ , a, b ≥ 0,
1
p

+
1
p′

= 1, p := α + 1 > 1,

we take a = |u|ϕ1/p
T , b = |�ϕT |/ϕ1/p

T , then, in view of the fact that p′/p = p′ − 1, we obtain

|u�ϕT | = |u|ϕ1/p
T

|�ϕT |
ϕ

1/p
T

≤ ε

p
|u|pϕT +

1
p′εp′−1

|�ϕT |p
′

ϕp′−1
T

.

By (79) and the last inequality, we have
(
|λ| − ε

p

)∫
DT

|u|pϕT dx dt ≤ 1
p′εp′−1

∫
DT

|�ϕT |p
′

ϕp′−1
T

dx dt − ζ(T ),

whence, for ε < |λ|p, we obtain
∫

DT

|u|pϕT dx dt ≤ p

(|λ|p − ε)p′εp′−1

∫
DT

|�ϕT |p
′

ϕp′−1
T

dx dt − p

|λ|p − ε
ζ(T ). (80)
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In view of the equalities p′ = p/(p − 1), p = p′/(p′ − 1), and the relation

min
0<ε<|λ|p

p

(|λ|p − ε)p′εp′−1
=

1
|λ|p′ ,

which is attained at ε = |λ|, inequality (80) implies that
∫

DT

|u|pϕT dx dt ≤ 1
|λ|p′

∫
DT

|�ϕT |p
′

ϕp′−1
T

dx dt − p′

|λ| ζ(T ). (81)

Since ϕT (x, t) := ϕ0(x/T, t/T ), using (73), (74), and making the change of variables x = Tx′,
t = Tt′, we can easily verify that

∫
DT

|�ϕT |p
′

ϕp′−1
T

dx dt = T−2(p′−1)

∫
DT=1

|�ϕ0|p′

|ϕ0|p′−1
dx′ dt′ = T−2(p′−1)κ0 < +∞.

Hence, using (75) and inequality (81), we obtain

0 ≤
∫

DT

|u|pϕT dx dt ≤ 1
|λ|p′ T

−2(p′−1)κ0 −
p′

|λ| ζ(T ). (82)

Since p′ = p/(p − 1) > 1, it follows that −2(p′ − 1) < 0, and, by (74), we have

lim
T→∞

1
|λ|p′ T

−2(p′−1)κ0 = 0.

Therefore, in view of (78), there exists a positive number T0 := T0(f) such that, for T > T0, the right-
hand side of inequality (82) is negative, while the left-hand side of this inequality is nonnegative. This
implies that if there exists a strong generalized solution u of problem (1), (2) of class C in the domain DT ,
then necessarily T ≤ T0, which proves Theorem 3.

Remark 7. Note that the conditions imposed on the coefficients a1, a2, and a3 in Theorem 3, hold if, for
example, a1 = a2 = 0 and a3 ≤ 0.

Remark 8. It is easily verified that if

f ∈ C(D∞), f ≥ 0, and f(x, t) ≥ ct−m, t ≥ 1,

where c := const > 0, 0 ≤ m := const ≤ 2, then condition (77) holds, and thus, for

λ < 0, α > 0, k ≥ 0, a1 ≤ 0, a2 ≥ 0, a3 −
∂a1

∂t
− ∂a2

∂x
≤ 0,

for sufficiently large T , problem (1), (2) does not have a strong generalized solution u of class C in the
domain DT .

Indeed, in (77), introducing the transformation of the independent variables x and t by the formula
x = Tx′, t = Tt′, after a few manipulations, we obtain

ζ(T ) = T 2

∫
DT=1

f(Tx′, T t′)ϕ0(x′, t′) dx′ dt′

≥ cT 2−m

∫
DT=1∩{t′≥T−1}

t′−mϕ0(x′, t′) dx′ dt′ + T 2

∫
DT=1∩{t′<T−1}

f(Tx′, T t′)ϕ0(x′, t′) dx′ dt′

under the assumption that T > 1. Further, suppose that T1 > 1 is an arbitrary fixed number. Then the
last inequality for the function ζ implies

ζ(T ) ≥ cT 2−m

∫
DT=1∩{t′≥T−1}

t′−mϕ0(x′, t′) dx′ dt′ ≥ c

∫
DT=1∩{t′≥T−1

1 }
t′−mϕ0(x′, t′) dx′ dt′ (83)

if T ≥ T1 > 1 and m ≤ 2. In view of (75), inequality (78) immediately follows from (83).

MATHEMATICAL NOTES Vol. 84 No. 5 2008



662 DZHOKHADZE, KHARIBEGASHVILI

8. LOCAL SOLVABILITY OF PROBLEM (1), (2) IN THE CASE λ < 0 AND α > 0

Theorem 4. Suppose that condition (25) holds for k = 1, λ < 0, α > 0, and f ∈ C(D∞), f �≡ 0.
Then there exists a positive number T∗ := T∗(f) such that, for T ≤ T∗, problem (1), (2) has at least
one strong generalized solution u of class C in the domain DT .

Proof. In Sec. 4, problem (1), (2) considered in the space C(DT ) was reduced, in an equivalent way,
to the functional equation (34), where the operator A : C(DT ) → C(DT ) is continuous and compact.
Therefore, by Schauder’s theorem, in order to prove the solvability of Eq. (34), it suffices to show that
the operator A takes some ball

BR := {v ∈ C(DT ) : ‖v‖C(DT ) ≤ R}

of radius R > 0 which is a closed and convex set in the Banach space C(DT ) into itself. Let us show
that this holds for sufficiently small T .

Indeed„ by (28) and (34), for ‖u‖C(DT ) ≤ R we have

‖Au‖C(DT ) ≤ ‖L−1
0 ‖C(DT )→C(DT )[|λ|‖u‖

α+1
C(DT )

+ ‖f‖C(DT )]

≤ GT sup
(x,t)∈DT

mes Dx,t[|λ|‖u‖α+1
C(DT )

+ ‖f‖C(DT )]

≤ GT mes DT [|λ|‖u‖α+1
C(DT )

+ ‖f‖C(DT )]

=
1
2
GT T 2[|λ|‖u‖α+1

C(DT )
+ ‖f‖C(DT )] ≤

1
2

GT T 2[|λ|Rα+1 + ‖f‖C(DT )], (84)

where

GT := sup
(x,t)∈DT , (x′,t′)∈Dx,t

|G(x, t;x′, t′)| < +∞.

Choose arbitrarily a positive number T0. Then, by estimate (84), for 0 < T ≤ T0, we have

‖Au‖C(DT ) ≤
1
2
GT0T

2[|λ|Rα+1 + ‖f‖C(DT0
)].

Hence, in turn, it follows that if

T 2
∗ := min

{
T 2

0 ,
2RGT0

|λ|Rα+1 + ‖f‖C(DT0
)

}
,

then

‖Au‖C(DT ) ≤ R for ‖u‖C(DT ) ≤ R, 0 < T ≤ T∗.

The proof of Theorem 4 is complete.
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