Georgian Mathematical Journal

Volume 15 (2008), Number 3, 541-554

ON ONE BOUNDARY VALUE PROBLEM FOR A NONLINEAR EQUATION WITH THE ITERATED WAVE OPERATOR IN THE PRINCIPAL PART

SERGO KHARIBEGASHVILI AND BIDZINA MIDODASHVILI

Dedicated to the memory of Professor J.-L. Lions

Abstract

One boundary value problem for a hyperbolic equation with power nonlinearity and the iterated wave operator in the principal part is considered in a conical domain. Depending on the index of nonlinearity and spatial dimensionality of the equation the question on the existence and uniqueness of a solution of a boundary value problem is investigated. The question as to the absence of a solution of this problem is also considered.

2000 Mathematics Subject Classification: 35L05, 35L35, 35L75.
Key words and phrases: Boundary value problem, hyperbolic equations with power nonlinearity, nonexistence.

1. Statement of the Problem

In the Euclidean space R^{n+1} of independent variables $x_{1}, x_{2}, \ldots, x_{n}, t$ consider a nonlinear equation of the form

$$
\begin{equation*}
L_{\lambda} u:=\square^{2} u=\lambda f(u)+F, \tag{1.1}
\end{equation*}
$$

where λ is a given real constant, $f: R \rightarrow R$ is a given continuous nonlinear function, $f(0)=0, F$ is a given, and u is an unknown real function, $\square=$ $\frac{\partial^{2}}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}, n \geq 2$.

Let $D_{T}:|x|<t<T$ be the domain which is the intersection of the light cone of future $K_{O}^{+}: t>|x|$ with apex at the origin $O(0,0, \ldots, 0)$ and a half-space $H_{T}: t<T, T=$ const >0. Assume $S_{T}=\partial D_{T} \cap \partial K_{O}^{+}, S_{T}^{0}=\partial D_{T} \cap \partial H_{T}$. It is obvious that $S_{T}: t=|x|, 0 \leq t \leq T$, is a characteristic conical manifold for equation (1.1), $S_{T}^{0}:|x| \leq T, t=T$, and $\partial D_{T}=S_{T} \cup S_{T}^{0}$.

For equation (1.1) consider the boundary value problem on determination of its solution $u\left(x_{1}, \ldots, x_{n}, t\right)$ in the domain D_{T} by the boundary conditions

$$
\begin{gather*}
\left.u\right|_{\partial D_{T}}=0 \tag{1.2}\\
\left.\frac{\partial u}{\partial t}\right|_{S_{T}^{0}}=0 . \tag{1.3}
\end{gather*}
$$

It should be noted that for nonlinear hyperbolic equations the question of the local or global solvability of the Cauchy problem with the initial conditions for $t=0$ is considered in vast literature [see, e.g., 1-20].

As is known, for a nonlinear wave equation of the form $\square u=\lambda f(u)+F$ the characteristic problem in the light cone of future $K_{O}^{+}: t>|x|$ with a boundary condition of the form $\left.u\right|_{\partial K_{O}^{+}}=g$ in the linear case, i.e., with $\lambda=0$ is well-posed and the global solvability takes place in appropriate function spaces [21-25], while in the nonlinear case, when the function $f(u)$ has exponential nature and $\lambda \neq 0$, this problem was considered in [26-28].

Assume $\stackrel{\circ}{C^{k}}\left(\bar{D}_{T}, \partial D_{T}, S_{T}^{0}\right)=\left\{u \in C^{k}\left(\bar{D}_{T}\right):\left.u\right|_{\partial D_{T}}=0,\left.\frac{\partial u}{\partial t}\right|_{S_{T}^{0}}=0\right\}, k \geq 1$.
Let $u \in \stackrel{\circ}{C^{4}}\left(\bar{D}_{T}, \partial D_{T}, S_{T}^{0}\right)$ be a classical solution of problem (1.1), (1.2), (1.3). Multiplying both parts of equation (1.1) by an arbitrary function $\phi \in$ ${ }^{\circ}{ }^{2}\left(\bar{D}_{T}, \partial D_{T}, S_{T}^{0}\right)$ and integrating the resulting equation by parts in the domain D_{T} we obtain

$$
\begin{equation*}
\int_{D_{T}} \square u \square \phi d x d t=\lambda \int_{D_{T}} f(u) \phi d x d t+\int_{D_{T}} F \phi d x d t \tag{1.4}
\end{equation*}
$$

Here we have used the equality

$$
\int_{D_{T}} \square u \square \phi d x d t=\int_{\partial D_{T}} \frac{\partial \phi}{\partial N} \square u d s-\int_{\partial D_{T}} \phi \frac{\partial}{\partial N} \square u d s+\int_{D_{T}} \phi \square^{2} u d x d t
$$

and the fact that since $S_{T}=\partial D_{T} \cap \partial K_{O}^{+}$is a characteristic manifold, the derivative on the conormal $\frac{\partial}{\partial N}=\gamma_{n+1} \frac{\partial}{\partial t}-\sum_{i=1}^{n} \gamma_{i} \frac{\partial}{\partial x_{i}}$, where $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}, \gamma_{n+1}\right)$ is the unit vector of the outer normal to ∂D_{T}, is an inner differential operator on the characteristic manifold S_{T} and thus if $v \in C^{1}\left(\bar{D}_{T}\right)$ and $\left.v\right|_{S_{T}}=0$, then $\left.\frac{\partial v}{\partial N}\right|_{S_{T}}=0$.

Let us introduce the Hilbert space ${ }_{W}^{\circ}{ }_{2, \square}^{1}\left(D_{T}\right)$ as the completion with respect to the norm

$$
\begin{equation*}
\|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2}=\int_{D_{T}}\left[u^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}+(\square u)^{2}\right] d x d t \tag{1.5}
\end{equation*}
$$

of the classical space $\stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \partial D_{T}, S_{T}^{0}\right)$. It follows from (1.5) that if $u \in$ $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$, then $u \in \stackrel{\circ}{W}_{2}^{1}\left(D_{T}\right)$ and $\square u \in L_{2}\left(D_{T}\right)$. Here $W_{2}^{1}\left(D_{T}\right)$ is the known Sobolev space [29, p. 56] consisting of elements from $L_{2}\left(D_{T}\right)$, which have first order generalized derivatives in $L_{2}\left(D_{T}\right)$, and ${ }_{W}^{\circ}{ }_{2}^{1}\left(D_{T}\right)=\left\{u \in W_{2}^{1}\left(D_{T}\right)\right.$: $\left.\left.u\right|_{\partial D_{T}}=0\right\}$, where the equality $\left.u\right|_{\partial D_{T}}=0$ should be understood in the sense of the trace theory [29, p. 70]. Moreover, since from (1.5) it follows that $u \in \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}\right)$ and $\square u \in L_{2}\left(D_{T}\right)$, then an arbitrary function u from the space $\stackrel{\circ}{W}{ }_{2, \square}^{1}\left(D_{T}\right)$ satisfies the homogeneous condition (1.3) in the sense of the trace theory [29, p. 130].

Let us assume that equality (1.4) underlies the determination of a generalized solution of problem (1.1), (1.2), (1.3).

Definition 1. Let $F \in L_{2}\left(D_{T}\right)$. We call a function $u \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ a weak generalized solution of problem (1.1), (1.2), (1.3) if $f(u) \in L_{2}\left(D_{T}\right)$ and for any function $\phi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ the integral equality (1.4) is valid, i.e.

$$
\begin{equation*}
\int_{D_{T}} \square u \square \phi d x d t=\lambda \int_{D_{T}} f(u) \phi d x d t+\int_{D_{T}} F \phi d x d t \quad \forall \phi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \tag{1.6}
\end{equation*}
$$

It is easy to verify that if a solution u of problem (1.1), (1.2), (1.3) in the sense of Definition 1 belongs to the class $C^{4}\left(\bar{D}_{T}\right)$, then it will be a classical solution of this problem.
2. Solvability of Problem (1.1), (1.2), (1.3) in the Case of A Nonlinearity of the Form $f(u)=|u|^{\alpha} \operatorname{sgn} u$
Assume that in equation (1.1) the nonlinear function f has the form

$$
\begin{equation*}
f(u)=|u|^{\alpha} \operatorname{sgn} u, \quad \alpha=\text { const }>0, \quad \alpha \neq 1 \tag{2.1}
\end{equation*}
$$

Then in accordance with (2.1) equation (1.1) and the integral equality (1.6) take the form

$$
\begin{equation*}
L_{\lambda} u:=\square^{2} u=\lambda|u|^{\alpha} \operatorname{sgn} u+F \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{D_{T}} \square u \square \phi d x d t=\lambda \int_{D_{T}} \phi|u|^{\alpha} \operatorname{sgn} u d x d t+\int_{D_{T}} F \phi d x d t \forall \phi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \tag{2.3}
\end{equation*}
$$

Lemma 1. The inequality

$$
\begin{equation*}
\|u\|_{\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)} \leq c\|\square u\|_{L_{2}\left(D_{T}\right)} \forall u \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \tag{2.4}
\end{equation*}
$$

is valid, where the norm of the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ is given by equality (1.5) and the positive constant c does not depend on u.

Proof. Let $\Omega_{\tau}:=\bar{D}_{T} \cap\{t=\tau\}, D_{\tau}=D_{T} \cap\{t<\tau\}, S_{\tau}=\left\{(x, t) \in \partial D_{\tau}\right.$: $t=|x|\}, 0<\tau \leq T$ and $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}, \gamma_{n+1}\right)$ be the unit vector of the outer normal to ∂D_{τ}.

Since the space $\stackrel{\circ}{C^{2}}\left(\bar{D}_{T}, \partial D_{T}, S_{T}^{0}\right)$ is a dense subspace of the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ it is sufficient to prove inequality (2.4) for functions from the space $\stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \partial D_{T}, S_{T}^{0}\right)$. For $u \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \partial D_{T}, S_{T}^{0}\right)$, taking into account the equalities $\left.u\right|_{S_{\tau}}=0, \Omega_{\tau}=\partial D_{\tau} \cap\{t=\tau\}$ and $\left.\gamma\right|_{\Omega_{\tau}}=(0, \ldots, 0,1)$, it is easy to obtain
by integration by parts

$$
\begin{align*}
\int_{D_{\tau}} \frac{\partial^{2} u}{\partial t^{2}} \frac{\partial u}{\partial t} d x d t= & \frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial t}\left(\frac{\partial u}{\partial t}\right)^{2} d x d t=\frac{1}{2} \int_{\partial D_{\tau}}\left(\frac{\partial u}{\partial t}\right)^{2} \gamma_{n+1} d s \\
= & \frac{1}{2} \int_{\Omega_{\tau}}\left(\frac{\partial u}{\partial t}\right)^{2} d x+\frac{1}{2} \int_{S_{\tau}}\left(\frac{\partial u}{\partial t}\right)^{2} \gamma_{n+1} d s, \quad \tau \leq T, \tag{2.5}\\
\int_{D_{\tau}} \frac{\partial^{2} u}{\partial x_{i}^{2}} \frac{\partial u}{\partial t} d x d t= & \int_{\partial D_{\tau}} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial t} \gamma_{i} d s-\frac{1}{2} \int_{D_{\tau}} \frac{\partial}{\partial \tau}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} d x d t \\
= & \int_{\partial D_{\tau}} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial t} \gamma_{i} d s-\frac{1}{2} \int_{\partial D_{\tau}}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \gamma_{n+1} d s \\
= & \int_{\partial D_{\tau}} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial t} \gamma_{i} d s--\frac{1}{2} \int_{S_{\tau}}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} \gamma_{n+1} d s \\
& -\frac{1}{2} \int_{\Omega_{\tau}}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} d s, \quad \tau \leq T . \tag{2.6}
\end{align*}
$$

It follows from (2.5) and (2.6) that

$$
\begin{align*}
\int_{D_{\tau}} \square u \frac{\partial u}{\partial t} d x d t= & \int_{S_{\tau}} \frac{1}{2 \gamma_{n+1}}\left[\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}} \gamma_{n+1}-\frac{\partial u}{\partial t} \gamma_{i}\right)^{2}\right. \\
& \left.+\left(\frac{\partial u}{\partial t}\right)^{2}\left(\gamma_{n+1}^{2}-\sum_{j=1}^{n} \gamma_{j}^{2}\right)\right] d s \\
& +\frac{1}{2} \int_{\Omega_{\tau}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x, \quad \tau \leq T . \tag{2.7}
\end{align*}
$$

Since $\left.u\right|_{S_{\tau}}=0$ and the operator $\left(\gamma_{n+1} \frac{\partial}{\partial x_{i}}-\gamma_{i} \frac{\partial}{\partial t}\right), 1 \leq i \leq n$, is an internal differential operator on S_{τ}, we have the equalities

$$
\begin{equation*}
\left.\left(\frac{\partial u}{\partial x_{i}} \gamma_{n+1}-\frac{\partial u}{\partial t} \gamma_{i}\right)\right|_{S_{\tau}}=0, \quad i=1, \ldots, n . \tag{2.8}
\end{equation*}
$$

Therefore, taking into account that $\gamma_{n+1}^{2}-\sum_{j=1}^{n} \gamma_{j}^{2}=0$ on the characteristic manifold S_{τ}, in view of (2.7) and (2.8) we have

$$
\begin{equation*}
\int_{\Omega_{\tau}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x=2 \int_{D_{\tau}} \square u \frac{\partial u}{\partial t} d x d t, \quad \tau \leq T . \tag{2.9}
\end{equation*}
$$

Assuming $w(\delta)=\int_{\Omega_{\delta}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x$, and using inequality $2 \square u \frac{\partial u}{\partial t} \leq$ $\varepsilon\left(\frac{\partial u}{\partial t}\right)^{2}+\frac{1}{\varepsilon}|\square u|^{2}$, which is valid for any $\varepsilon=$ const >0, from (2.9) we obtain

$$
\begin{equation*}
w(\delta) \leq \varepsilon \int_{0}^{\delta} w(\sigma) d \sigma+\frac{1}{\varepsilon}\|\square\|_{L_{2}\left(D_{\delta}\right)}^{2}, \quad 0<\delta \leq T \tag{2.10}
\end{equation*}
$$

From (2.10), taking into account that the value $\|\square\|_{L_{2}\left(D_{\delta}\right)}^{2}$ as a function of δ is non-decreasing, in view of Gronwall's lemma [30, p. 13] it follows that

$$
w(\delta) \leq \frac{1}{\varepsilon}\|\square\|_{L_{2}\left(D_{\delta}\right)}^{2} \exp \delta \varepsilon
$$

Hence, taking into account the fact that $\inf _{\varepsilon>0} \frac{1}{\varepsilon} \exp \delta \varepsilon=e \delta$ and it is reached at $\varepsilon=\frac{1}{\delta}$, we obtain

$$
\begin{equation*}
w(\delta) \leq e \delta\|\square\|_{L_{2}\left(D_{\delta}\right)}^{2}, \quad 0<\delta \leq T \tag{2.11}
\end{equation*}
$$

From (2.11), in turn, it follows that

$$
\begin{equation*}
\int_{D_{T}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right] d x d t=\int_{0}^{T} w(\delta) d \delta \leq \frac{e}{2} T^{2}\|\square u\|_{L_{2}\left(D_{T}\right)}^{2} \tag{2.12}
\end{equation*}
$$

Using the equalities $\left.u\right|_{S_{T}}=0$ and $u(x, t)=\int_{|x|}^{t} \frac{\partial u(x, t)}{\partial t} d \tau,(x, t) \in \bar{D}_{T}$, which are valid for any function $u \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \partial D_{T}, S_{T}^{0}\right)$, by a standard reasoning [29, p. 63] we easily obtain the inequality

$$
\begin{equation*}
\int_{D_{T}} u^{2}(x, t) d x d t \leq T^{2} \int_{D_{T}}\left(\frac{\partial u}{\partial t}\right)^{2} d x d t \tag{2.13}
\end{equation*}
$$

By virtue of (2.11) and (2.13) we have

$$
\begin{aligned}
\|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2} & =\int_{D_{T}}\left[u^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial u}{\partial x_{i}}\right)^{2}+(\square u)^{2}\right] d x d t \\
& \leq\left(1+\frac{e}{2} T^{2}+\frac{e}{2} T^{4}\right)\|\square\|_{L_{2}\left(D_{T}\right)}^{2}
\end{aligned}
$$

whence inequality (2.4) with the constant $c^{2}=1+\frac{e}{2} T^{2}+\frac{e}{2} T^{4}$ follows.
Lemma 2. Assume $F \in L_{2}\left(D_{T}\right), 0<\alpha<1$, and in the case $\alpha>1$ additionally require that $\lambda<0$. Then in the case with a nonlinearity of form (2.1) for a weak generalized solution $u \in \stackrel{\circ}{W}{ }_{2, \square}^{1}\left(D_{T}\right)$ of problem (1.1), (1.2), (1.3) , i.e., problem (2.2), (1.2), (1.3) in the sense of the integral equality (2.3) with $|u|^{\alpha} \in L_{2}\left(D_{T}\right)$, we have an a priori estimate

$$
\begin{equation*}
\|u\|_{\dot{W}_{2, \square}^{1}\left(D_{T}\right)} \leq c_{1}\|F\|_{L_{2}\left(D_{T}\right)}+c_{2} \tag{2.14}
\end{equation*}
$$

with non-negative constants $c_{i}(T, \alpha, \lambda), i=1,2$, which do not depend on u, F and $c_{1}>0$.

Proof. First, let $\alpha>1$ and $\lambda<0$. Assuming in equality (2.3) that $\phi=u \in$ $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ and taking into account (1.5), for any $\varepsilon>0$ we have

$$
\begin{align*}
\|\square u\|_{L_{2}\left(D_{T}\right)}^{2} & =\int_{D_{T}}(\square u)^{2} d x d t=\lambda \int_{D_{T}}|u|^{\alpha+1} d x d t+\int_{D_{T}} F u d x d t \\
& \leq \int_{D_{T}} F u d x d t \leq \frac{1}{4 \varepsilon} \int_{D_{T}} F^{2} d x d t+\varepsilon\|u\|_{L_{2}\left(D_{T}\right)}^{2} \\
& \leq \frac{1}{4 \varepsilon}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+\varepsilon\|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2} \tag{2.15}
\end{align*}
$$

Due to (2.4) and (2.15) we have

$$
\|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2} \leq c^{2}\|\square u\|_{L_{2}\left(D_{T}\right)}^{2} \leq \frac{c^{2}}{4 \varepsilon}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+c^{2} \varepsilon\|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2},
$$

from which for $\varepsilon=\frac{1}{2 c^{2}}<\frac{1}{c^{2}}$ we obtain

$$
\begin{equation*}
\|u\|_{\dot{W}_{2, \square}^{1}\left(D_{T}\right)}^{2} \leq \frac{c^{2}}{4 \varepsilon\left(1-\varepsilon c^{2}\right)}\|F\|_{L_{2}\left(D_{T}\right)}^{2}=c^{4}\|F\|_{L_{2}\left(D_{T}\right)}^{2} . \tag{2.16}
\end{equation*}
$$

From (2.16) in the case $\alpha>1$ and $\lambda<0$ follows inequality (2.14) with $c_{1}=c^{2}$ and $c_{2}=0$.

Let now $0<\alpha<1$. Using the known inequality

$$
a b \leq \frac{\varepsilon a^{p}}{p}+\frac{b^{q}}{q \varepsilon^{q-1}}
$$

with a parameter $\varepsilon>0$ for $a=|u|^{\alpha+1}, b=1, p=\frac{2}{\alpha+1}>1, q=\frac{2}{1-\alpha}, \frac{1}{p}+\frac{1}{q}=1$, in the same way as for inequality (2.15) we have

$$
\begin{align*}
& \|\square u\|_{L_{2}\left(D_{T}\right)}^{2}=\int_{D_{T}}(\square u)^{2} d x d t=\lambda \int_{D_{T}}|u|^{\alpha+1} d x d t+\int_{D_{T}} F u d x d t \\
& \quad \leq|\lambda| \int_{D_{T}}\left[\varepsilon \frac{1+\alpha}{2}|u|^{2}+\frac{1-\alpha}{2 \varepsilon^{q-1}}\right] d x d t+\frac{1}{4 \varepsilon} \int_{D_{T}} F^{2} d x d t+\varepsilon \int_{D_{T}} u^{2} d x d t \\
& \quad=\frac{1}{4 \varepsilon}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+\varepsilon\left(|\lambda| \frac{1+\alpha}{2}+1\right)\|u\|_{L_{2}\left(D_{T}\right)}^{2}+|\lambda| \frac{1-\alpha}{2 \varepsilon^{q-1}} \operatorname{mes} D_{T} \tag{2.17}
\end{align*}
$$

In view of (1.5) and (2.4) it follows from (2.17) that

$$
\begin{aligned}
& \|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2} \leq c^{2}\|\square u\|_{L_{2}\left(D_{T}\right)}^{2} \leq \frac{c^{2}}{4 \varepsilon}\|F\|_{L_{2}\left(D_{T}\right)}^{2} \\
& \quad+\varepsilon c^{2}\left(|\lambda| \frac{1+\alpha}{2}+1\right)\|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2}+c^{2}|\lambda| \frac{1-\alpha}{2 \varepsilon^{q-1}} \operatorname{mes} D_{T}, \quad q=\frac{2}{1-\alpha},
\end{aligned}
$$

whence for $\varepsilon=\frac{1}{2} c^{-2}\left(|\lambda| \frac{1+\alpha}{2}+1\right)^{-1}$ we obtain

$$
\begin{align*}
\|u\|_{W_{2, \square}^{1}\left(D_{T}\right)}^{2} \leq & {\left[1-\varepsilon c^{2}\left(|\lambda| \frac{1+\alpha}{2}+1\right)\right]^{-1} } \\
& \times\left(\frac{c^{2}}{4 \varepsilon}\|F\|_{L_{2}\left(D_{T}\right)}^{2}+c^{2}|\lambda| \frac{1-\alpha}{2 \varepsilon^{q-1}} \operatorname{mes} D_{T}\right) \\
= & c^{4}\left(|\lambda| \frac{1+\alpha}{2}+1\right)\|F\|_{L_{2}\left(D_{T}\right)}^{2}+2 c^{2}|\lambda| \frac{1-\alpha}{2 \varepsilon^{q-1}} \operatorname{mes} D_{T} . \tag{2.18}
\end{align*}
$$

From (2.18), in the case $0<\alpha<1$, follows inequality (2.14) with $c_{1}=$ $c^{2}\left(|\lambda| \frac{1+\alpha}{2}+1\right)^{\frac{1}{2}}$ and $c_{2}=c\left(2|\lambda| \frac{1-\alpha}{2 \varepsilon^{q-1}} \text { mes } D_{T}\right)^{\frac{1}{2}}$, where $q=\frac{1}{1-\alpha}$. Lemma 2 is completely proved.

Remark 1. From the proof of Lemma 2 it follows that in estimate (2.14) the constants c_{1} and c_{2} are equal:

1) $\alpha>1, \quad \lambda<0: \quad c_{1}=c^{2}, \quad c_{2}=0$;
2) $0<\alpha<1, \quad-\infty<\lambda<+\infty$:

$$
\begin{equation*}
c_{1}=c^{2}\left(|\lambda| \frac{1+\alpha}{2}+1\right)^{\frac{1}{2}}, \quad c_{2}=c\left(2|\lambda| \frac{1-\alpha}{2 \varepsilon^{q-1}} \operatorname{mes} D_{T}\right)^{\frac{1}{2}} \tag{2.20}
\end{equation*}
$$

where the constant $c=\left(1+\frac{e}{2} T^{2}+\frac{e}{2} T^{4}\right)^{\frac{1}{2}}$ is taken from estimate (2.4) and $q=\frac{2}{1-\alpha}$.

Remark 2. Below we will consider the linear problem corresponding to (1.1), (1.2), (1.3), when $\lambda=0$. In that case, for $F \in L_{2}\left(D_{T}\right)$ we analogously to the above introduce the concept of a weak generalized solution $u \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$, when the integral equality

$$
\begin{equation*}
(u, \phi)_{\square}:=\int_{D_{T}} \square u \square \phi d x d t=\int_{D_{T}} F \phi d x d t \forall \phi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \tag{2.21}
\end{equation*}
$$

holds.
Remark 3. In view of (1.5) and (2.4), taking into account that

$$
\begin{aligned}
\left|(\square u, \square \phi)_{L_{2}\left(D_{T}\right)}\right| & =\left|\int_{D_{T}} \square u \square \phi d x d t\right| \leq\|\square u\|_{L_{2}\left(D_{T}\right)}\|\square \phi\|_{L_{2}\left(D_{T}\right)} \\
& \leq\|\square u\|_{W_{2, \square}^{1}\left(D_{T}\right)}\|\square \phi\|_{\dot{W}_{2, \square}^{1}\left(D_{T}\right)},
\end{aligned}
$$

the bilinear form

$$
(u, \phi)_{\square}:=\int_{D_{T}} \square u \square \phi d x d t
$$

of (2.21) can be considered as a scalar product in the Hilbert space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$. Therefore, since for $F \in L_{2}\left(D_{T}\right)$

$$
\left|\int_{D_{T}} F \phi d x d t\right| \leq\|F\|_{L_{2}\left(D_{T}\right)}\|\phi\|_{L_{2}\left(D_{T}\right)} \leq\|F\|_{L_{2}\left(D_{T}\right)}\|\phi\|_{\dot{W}_{2, \square}^{1}\left(D_{T}\right)},
$$

due to the theorem of Riesz [31, p. 83] there is a unique function u in the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ that satisfies equality (2.21) for any $\phi \in \stackrel{\circ}{W}_{2, \square}\left(D_{T}\right)$ and for whose norm an estimate

$$
\begin{equation*}
\|u\|_{\stackrel{W}{W}_{2, \square}^{1}\left(D_{T}\right)} \leq\|F\|_{L_{2}\left(D_{T}\right)} \tag{2.22}
\end{equation*}
$$

is valid. Thus, being introduced the notation $u=L_{0}^{-1} F$, we find that to the linear problem corresponding to (1.1), (1.2), (1.3), when $\lambda=0$, there corresponds a linear bounded operator

$$
L_{0}^{-1}: L_{2}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right),
$$

for whose norm, by virtue of (2.22), an estimate

$$
\begin{equation*}
\left\|L_{0}^{-1}\right\|_{L_{2}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)} \leq\|F\|_{L_{2}\left(D_{T}\right)} \tag{2.23}
\end{equation*}
$$

is true.
Taking into account Definition 1 and Remark 3, equality (2.3), which is equivalent to problem (2.2), (1.2), (1.3), can be rewritten in the form of an equivalent equation

$$
\begin{equation*}
u=L_{0}^{-1}\left[\lambda|u|^{\alpha} \operatorname{sgn} u+F\right] \tag{2.24}
\end{equation*}
$$

in the Hilbert space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$.
Remark 4. The embedding operator $I:{ }_{W}^{W}{ }_{2}^{1}\left(D_{T}\right) \rightarrow L_{q}\left(D_{T}\right)$ is a linear continuous compact operator for $1<q<\frac{2(n+1)}{n-1}$ when $n \geq 2$ [29, p. 81]. At the same time, the operator of Nemytskii $N: L_{q}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$, which acts according to the formula $N u=\lambda|u|^{\alpha} \operatorname{sgn} u, \alpha>1$, is continuous and bounded for $q \geq 2 \alpha$ [32, p. 349], [33, pp. 66, 67]. Thus, if $1<\alpha<\frac{n+1}{n-1}$, then there exists a number q such that $1<2 \alpha \leq q<\frac{2(n+1)}{n-1}$ and hence the operator

$$
\begin{equation*}
N_{1}=N I: \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right) \tag{2.25}
\end{equation*}
$$

is a continuous and compact operator. In that case, since $u \in{ }_{W}^{\circ}{ }_{2}^{1}\left(D_{T}\right)$, it is clear that $f(u)=|u|^{\alpha} \operatorname{sgn} u \in L_{2}\left(D_{T}\right)$. Further, since in view of (1.5) the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ is continuously embedded into the space ${ }_{W}^{W}{ }_{2}^{1}\left(D_{T}\right)$, taking into account (2.25) the operator

$$
\begin{equation*}
N_{2}=N I I_{1}: \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right), \tag{2.26}
\end{equation*}
$$

where $I_{1}: \stackrel{\circ}{W}{ }_{2, \square}^{1}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W}{ }_{2}^{1}\left(D_{T}\right)$ is the embedding operator, is continuous and compact for $1<\alpha<\frac{n+1}{n-1}$. For $0<\alpha<1$, operator (2.26) is also continuous
and compact, since according to the theorem of Rellich [29, p. 64] the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}\right)$ is continuously and compactly embedded into $L_{2}\left(D_{T}\right)$, and the space $L_{2}\left(D_{T}\right)$, in turn, is continuously embedded into $L_{p}\left(D_{T}\right)$ for $0<p<2$.

Let us rewrite equation (2.24) in the form

$$
\begin{equation*}
u=A u:=L_{0}^{-1}\left(N_{2} u+F\right), \tag{2.27}
\end{equation*}
$$

where the operator $N_{2}: \stackrel{\circ}{W}{ }_{2, \square}^{1}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$, for $0<\alpha<\frac{n+1}{n-1}, \alpha \neq 1$, is continuous and compact in view of Remark 4. Then taking into account (2.23) the operator $A: \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \rightarrow \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ in (2.27) is also continuous and compact. At the same, time according to the a priori estimate (2.14) of Lemma 2, in which the constants c_{1} and c_{2} are given by equalities (2.19) and (2.20), for any parameter $\tau \in[0,1]$ and for any solution $u \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ of the equation $u=\tau A u$ with this parameter we have the a priori estimation (2.14) with constants $c_{1}>0$ and $c_{2} \geq 0$ not depending on u, τ and F. Therefore, according to the theorem of Lere-Schauder [34, p. 375], equation (2.27) and, consequently, problem (2.2), (1.2), (1.3) have at least one weak generalized solution u in the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$.

Thus the following statement is valid.
Theorem 1. Let $0<\alpha<\frac{n+1}{n-1}, \alpha \neq 1, \lambda \neq 0$ and in the case $\alpha>1$ additionally require that $\lambda<0$. Then for any $F \in L_{2}\left(D_{T}\right)$ problem (2.2), (1.2), (1.3) has at least one weak generalized solution $u \in \stackrel{\circ}{W}{ }_{2, \square}^{1}\left(D_{T}\right)$.
3. the Uniqueness of a Solution of Problem (1.1), (1.2), (1.3) in the Case of A Nonlinearity of the Form $f(u)=|u|^{\alpha} \operatorname{sgn} u$

Let $F \in L_{2}\left(D_{T}\right)$, and u_{1}, u_{2} be two weak generalized solutions of problem (2.2), (1.2), (1.3) in the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$, i.e., according to (2.3) the following equalities

$$
\begin{equation*}
\int_{D_{T}} \square u_{i} \square \phi d x d t=\lambda \int_{D_{T}} \phi\left|u_{i}\right|^{\alpha} \operatorname{sgn} u_{i} d x d t+\int_{D_{T}} F \phi d x d t \forall \phi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \tag{3.1}
\end{equation*}
$$

are fulfilled and $\left|u_{i}\right|^{\alpha} \in L_{2}\left(D_{T}\right), i=1,2$.
For the difference $v=u_{2}-u_{1}$, from (3.1) it follows that

$$
\begin{align*}
& \int_{D_{T}} \square v \square \phi d x d t \\
& \quad=\lambda \int_{D_{T}} \phi\left(\left|u_{2}\right|^{\alpha} \operatorname{sgn} u_{2}-\left|u_{1}\right|^{\alpha} \operatorname{sgn} u_{1}\right) d x d t \quad \forall \phi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) . \tag{3.2}
\end{align*}
$$

Assuming $\phi=v \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ in equality (3.2), we obtain

$$
\begin{equation*}
\int_{D_{T}}(\square v)^{2} d x d t=\lambda \int_{D_{T}}\left(\left|u_{2}\right|^{\alpha} \operatorname{sgn} u_{2}-\left|u_{1}\right|^{\alpha} \operatorname{sgn} u_{1}\right)\left(u_{2}-u_{1}\right) d x d t \tag{3.3}
\end{equation*}
$$

Note that for the finite values of u_{1} and u_{2} with $\alpha>0$ the inequality

$$
\begin{equation*}
\left(\left|u_{2}\right|^{\alpha} \operatorname{sgn} u_{2}-\left|u_{1}\right|^{\alpha} \operatorname{sgn} u_{1}\right)\left(u_{2}-u_{1}\right) \geq 0 \tag{3.4}
\end{equation*}
$$

holds.
From (3.3) and inequality (3.4), which is true for almost all points $(x, t) \in D_{T}$ with $u_{i} \in \stackrel{\circ}{W} \underset{2, \square}{1}\left(D_{T}\right), i=1,2$, when $\alpha>0$ and $\lambda<0$, it follows that

$$
\int_{D_{T}}(\square v)^{2} d x d t \leq 0
$$

whence, due to (2.4), we obtain $v=0$, i.e. $u_{1}=u_{2}$.
Thus the following statement is valid.
Theorem 2. Let $\alpha>0, \alpha \neq 1$ and $\lambda<0$. Then for any $F \in L_{2}\left(D_{T}\right)$, problem (2.2), (1.2), (1.3) cannot have more than one generalized solution in the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$.

In turn, Theorems 1 and 2 give rise to
Theorem 3. Let $0<\alpha<\frac{n+1}{n-1}, \alpha \neq 1$ and $\lambda<0$. Then for any $F \in$ $L_{2}\left(D_{T}\right)$, problem (2.2), (1.2), (1.3) has a unique weak generalized solution $u \in$ $\stackrel{\circ}{W}{ }_{2, \square}^{1}\left(D_{T}\right)$.
4. The Absence of a Solution of Problem (1.1), (1.2), (1.3) in the Case of a Nonlinearity of the Form $f(u)=|u|^{\alpha}$
Assume now in equation (1.1) and therefore in the integral equality (1.3) that $f(u)=|u|^{\alpha}, \alpha>1$.

Theorem 4. Let $F^{0} \in L_{2}\left(D_{T}\right),\left\|F^{0}\right\|_{L_{2}\left(D_{T}\right)} \neq 0, F^{0} \geq 0$, and $F=\mu F^{0}, \mu=$ const >0. Then in the case $f(u)=|u|^{\alpha}, \alpha>1$, with $\lambda>0$ there exists a number $\mu_{0}=\mu_{0}\left(F^{0}, \lambda, \alpha\right)>0$ such that for $\mu>\mu_{0}$ problem (1.1), (1.2), (1.3) cannot have a weak generalized solution in the space $\stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$.

Proof. Let us assume that when the conditions of the theorem are satisfied the solution $u \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ of problem (1.1), (1.2), (1.3) exists for any fixed $\mu>0$. Then equality (1.6) takes the form

$$
\begin{equation*}
\int_{D_{T}} \square u \square \phi d x d t=\lambda \int_{D_{T}}|u|^{\alpha} \phi d x d t+\mu \int_{D_{T}} F^{0} \phi d x d t \quad \forall \phi \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right) \tag{4.1}
\end{equation*}
$$

It is easy to verify that

$$
\begin{equation*}
\int_{D_{T}} \square u \square \phi d x d t=\int_{D_{T}} u \square^{2} \phi d x d t \quad \forall \phi \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}, \partial D_{T}, S_{T}^{0}\right), \tag{4.2}
\end{equation*}
$$

where $\stackrel{\circ}{C}^{4}\left(\bar{D}_{T}, \partial D_{T}, S_{T}^{0}\right)=\left\{u \in C^{4}\left(\bar{D}_{T}\right):\left.u\right|_{\partial D_{T}}=0,\left.\frac{\partial u}{\partial t}\right|_{S_{T}^{0}}=0\right\} \subset \stackrel{\circ}{W}{ }_{2, \square}^{1}\left(D_{T}\right)$. Indeed, since $u \in \stackrel{\circ}{W}_{2, \square}^{1}\left(D_{T}\right)$ and the space $\stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \partial D_{T}, S_{T}^{0}\right)$ is dense in $\stackrel{\circ}{W}{ }_{2, \square}^{1}\left(D_{T}\right)$, there exists a sequence $u_{k} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, \partial D_{T}, S_{T}^{0}\right)$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|u_{k}-u\right\|_{\dot{W}_{2, \square}^{1}\left(D_{T}\right)}=0 \tag{4.3}
\end{equation*}
$$

Taking into account that

$$
\begin{equation*}
\int_{D_{T}} \square u_{k} \square \phi d x d t=\int_{\partial D_{T}} \frac{\partial u_{k}}{\partial N} \square \phi d s-\int_{\partial D_{T}} u_{k} \frac{\partial}{\partial N} \square \phi d s+\int_{D_{T}} u_{k} \square^{2} \phi d x d t, \tag{4.4}
\end{equation*}
$$

where the derivative on the conormal $\frac{\partial}{\partial N}=\gamma_{n+1} \frac{\partial}{\partial t}-\sum_{i=1}^{n} \gamma_{i} \frac{\partial}{\partial x_{i}}$ is an inner differential operator on the characteristic manifold S_{T} and therefore $\left.\frac{\partial u_{k}}{\partial N}\right|_{S_{T}}=0$ since $\left.u_{k}\right|_{S_{T}}=0$, from (4.4), due to the fact that $\left.u_{k}\right|_{S_{T}^{0}}=\left.\frac{\partial u_{k}}{\partial t}\right|_{S_{T}^{0}}=0$, and $\partial D_{T}=S_{T} \cup S_{T}^{0}$, we obtain

$$
\begin{equation*}
\int_{D_{T}} \square u_{k} \square \phi d x d t=\int_{D_{T}} u_{k} \square^{2} \phi d x d t \tag{4.5}
\end{equation*}
$$

Passing in (4.5) to the limit as $k \rightarrow \infty$, in view of (1.5) and (4.3) we obtain (4.2).
Taking into account (4.2), we rewrite equality (4.1) as

$$
\begin{align*}
& \lambda \int_{D_{T}}|u|^{\alpha} \phi d x d t=\int_{D_{T}} u \square^{2} \phi d x d t \\
& \quad-\mu \int_{D_{T}} F^{0} \phi d x d t \quad \forall \phi \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}, \partial D_{T}, S_{T}^{0}\right) \tag{4.6}
\end{align*}
$$

Below we use the method of test functions [12, p. 10-12]. Let us select a test function $\phi \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}, \partial D_{T}, S_{T}^{0}\right)$ such that $\left.\phi\right|_{D_{T}}>0$. If in Young's inequality with a parameter $\varepsilon>0$

$$
a b \leq \frac{\varepsilon}{\alpha} a^{\alpha}+\frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} b^{\alpha^{\prime}} ; \quad a, b \geq 0, \quad \alpha^{\prime}=\frac{\alpha}{\alpha-1}
$$

we take $a=|u| \phi^{\frac{1}{\alpha}}, b=\frac{\left|\square^{2} \phi\right|}{\phi^{\frac{1}{\alpha}}}$, then due to the fact that $\frac{\alpha^{\prime}}{\alpha}=\alpha^{\prime}-1$ we have

$$
\begin{equation*}
\left|u \square^{2} \phi\right|=|u| \phi^{\frac{1}{\alpha}} \frac{\left|\square^{2} \phi\right|}{\phi^{\frac{1}{\alpha}}} \leq \frac{\varepsilon}{\alpha}|u|^{\alpha} \phi+\frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \frac{\left|\square^{2} \phi\right|^{\alpha^{\prime}}}{\phi^{\alpha^{\prime}-1}} . \tag{4.7}
\end{equation*}
$$

By virtue of (4.7) and (4.6) we obtain the inequality

$$
\left(\lambda-\frac{\varepsilon}{\alpha}\right) \int_{D_{T}}|u|^{\alpha} \phi d x d t \leq \frac{1}{\alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \int_{D_{T}} \frac{\left|\square^{2} \phi\right|^{\alpha^{\prime}}}{\phi^{\alpha^{\prime}-1}} d x d t-\mu \int_{D_{T}} F^{0} \phi d x d t
$$

which, for $\varepsilon<\lambda \alpha$, implies

$$
\begin{equation*}
\int_{D_{T}}|u|^{\alpha} \phi d x d t \leq \frac{\alpha}{(\lambda \alpha-\varepsilon) \alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}} \int_{D_{T}} \frac{\left|\square^{2} \phi\right|^{\alpha^{\prime}}}{\phi^{\alpha^{\prime}-1}} d x d t-\frac{\alpha \mu}{\lambda \alpha-\varepsilon} \int_{D_{T}} F^{0} \phi d x d t \tag{4.8}
\end{equation*}
$$

Taking into account the equalities $\alpha^{\prime}=\frac{\alpha}{\alpha-1}, \alpha=\frac{\alpha^{\prime}}{\alpha^{\prime}-1}$ and $\min _{0<\varepsilon<\lambda \alpha} \frac{\alpha}{(\lambda \alpha-\varepsilon) \alpha^{\prime} \varepsilon^{\alpha^{\prime}-1}}=$ $\frac{1}{\lambda^{\alpha^{\prime}}}$ which is obtained at $\varepsilon=\lambda$, it follows from (4.8) that

$$
\begin{equation*}
\int_{D_{T}}|u|^{\alpha} \phi d x d t \leq \frac{1}{\lambda^{\alpha^{\prime}}} \int_{D_{T}} \frac{\left|\square^{2} \phi\right|^{\alpha^{\prime}}}{\phi^{\alpha^{\prime}-1}} d x d t-\frac{\alpha^{\prime} \mu}{\lambda} \int_{D_{T}} F^{0} \phi d x d t . \tag{4.9}
\end{equation*}
$$

Note that the existence of a test function ϕ such that

$$
\begin{equation*}
\phi \in \stackrel{\circ}{C}^{4}\left(\bar{D}_{T}, \partial D_{T}, S_{T}^{0}\right),\left.\phi\right|_{D_{T}}>0, \kappa=\int_{D_{T}} \frac{\left|\square^{2} \phi\right|^{\alpha^{\prime}}}{\phi^{\alpha^{\prime}-1}} d x d t<+\infty \tag{4.10}
\end{equation*}
$$

is not difficult to show. Indeed, it is easy to verify that the function

$$
\phi(x, t)=\left[\left(t^{2}-|x|^{2}\right)\left((T-t)^{2}-|x|^{2}\right)\right]^{m}
$$

satisfies conditions (4.10) for a sufficiently large positive m.
Since, by assumption, $F^{0} \in L_{2}\left(D_{T}\right),\left\|F^{0}\right\|_{L_{2}\left(D_{T}\right)} \neq 0, F^{0} \geq 0$, and mes $D_{T}<$ $+\infty$, due to the fact that $\left.\phi\right|_{D_{T}}>0$ we have

$$
\begin{equation*}
0<\kappa_{1}=\int_{D_{T}} F^{0} \phi d x d t<+\infty \tag{4.11}
\end{equation*}
$$

Let us denote by $g(\mu)$ the right side of inequality (4.9) which is a linear function with respect to μ, then in view of (4.10) and (4.11)

$$
\begin{equation*}
g(\mu)<0 \text { for } \mu>\mu_{0} \text { and } g(\mu)>0 \text { for } \mu<\mu_{0} \tag{4.12}
\end{equation*}
$$

where

$$
g(\mu)=\frac{\kappa_{0}}{\lambda^{\alpha^{\prime}}}-\frac{\alpha^{\prime} \mu}{\lambda} \kappa_{1}, \quad \mu_{0}=\frac{\lambda}{\alpha^{\prime} \lambda^{\alpha^{\prime}}} \frac{\kappa_{0}}{\kappa_{1}}>0 .
$$

According to (4.12) with $\mu>\mu_{0}$, the right side of inequality (4.9) is negative, while the left side of this inequality is non-negative. The obtained contradiction proves Theorem 4.

Acknowledgement

The work was financially supported by the Georgian National Scientific Foundation project no. GNSF/ST06/3-105 (2006-2008).

References

1. J. L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires. Dunod, Gauthier-Villars, Paris, 1969.
2. H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $P u_{t t}=-A u+\mathcal{F}(u)$. Trans. Amer. Math. Soc. 192(1974), 1-21.
3. F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math. 28(1979), No. 1-3, 235-268.
4. F. John, Blow-up for quasilinear wave equations in three space dimensions. Comm. Pure Appl. Math. 34(1981), no. 1, 29-51.
5. F. John and S. Klainerman, Almost global existence to nonlinear wave equations in three space dimensions. Comm. Pure Appl. Math. 37(1984), No. 4, 443-455.
6. T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations. Comm. Pure Appl. Math. 33(1980), No. 4, 501-505.
7. W. A. Strauss, Nonlinear scattering theory at low energy. J. Funct. Anal. 41(1981), No. 1, 110-133.
8. T. C. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions. J. Differential Equations 52(1984), No. 3, 378-406.
9. J. Ginibre, A. Soffer, and G. Velo, The global Cauchy problem for the critical nonlinear wave equation. J. Funct. Anal. 110(1992), No. 1, 96-130.
10. V. Georgiev, H. Lindblad, and C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations. Amer. J. Math. 119(1997), No. 6, 12911319.
11. L. Hörmander, Lectures on nonlinear hyperbolic differential equations. Mathematiques \& Applications (Berlin) [Mathematics \& Applications], 26. Springer-Verlag, Berlin, 1997.
12. È. Mitidieri and S. I. Pohozhaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. (Russian) Tr. Mat. Inst. Steklova 234(2001), 1-384; English transl.: Proc. Steklov Inst. Math. 2001, No. 3 (234), 1-362.
13. R. Ikehata and K. Tanizawa, Global existence of solutions for semilinear damped wave equations in $\mathbf{R}^{\mathbf{N}}$ with noncompactly supported initial data. Nonlinear Anal. 61(2005), No. 7, 1189-1208.
14. B. Yordanov and Qi S. Zhang, Finite-time blowup for wave equations with a potential. SIAM J. Math. Anal. 36(2005), No. 5, 1426-1433 (electronic).
15. Y. Zhou, Global existence and nonexistence for a nonlinear wave equation with damping and source terms. Math. Nachr. 278(2005), No. 11, 1341-1358.
16. P. Karageorgis, Existence and blow up of small-amplitude nonlinear waves with a sign-changing potential. J. Differential Equations 219(2005), No. 2, 259-305.
17. G. Todorova and E. Vitillaro, Blow-up for nonlinear dissipative wave equations in \mathbb{R}^{n}. J. Math. Anal. Appl. 303(2005), No. 1, 242-257.
18. F. Merle and H. ZaAg, Determination of the blow-up rate for a critical semilinear wave equation. Math. Ann. 331(2005), no. 2, 395-416.
19. B. Yordanov and Q. S. Zhang, Finite time blow up for critical wave equations in high dimensions. J. Funct. Anal. 231(2006), No. 2, 361-374.
20. J. W. Cholewa and T. Dlotko, Strongly damped wave equation in uniform spaces. Nonlinear Anal. 64(2006), No. 1, 174-187.
21. J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques. Hermann, Paris, 1932.
22. R. Courant, Partial differential equations. (Translated from the English into Russian) Mir, Moscow, 1964.
23. F. Cagnac, Probléme de Cauchy sur un conoïde caractéeristique. Ann. Mat. Pura Appl. (4) 104(1975), 355-393.
24. L.-E. Lundberg, The Klein-Gordon equation with light-cone data. Comm. Math. Phys. 62(1978), No. 2, 107-118.
25. A. V. Bitsadze, Some classes of partial differential equations. (Russian) Nauka, Moscow, 1981.
26. S. Kharibegashvili, On the existence or the absence of global solutions of the Cauchy characteristic problem for some nonlinear hyperbolic equations. Bound. Value Probl. 2005, No. 3, 359-376.
27. S. Kharibegashvili, On the nonexistence of global solutions of the characteristic Cauchy problem for a nonlinear wave equation in a conical domain. (Russian) Differ. Uravn. 42(2006), No. 2, 261-271; English transl.: Differ. Equ. 42(2006), No. 2, 279-290.
28. S. Kharibegashvili, Some multidimensional problems for hyperbolic partial differential equations and systems. Mem. Differential Equations Math. Phys. 37(2006), 1-136.
29. O. A. Ladyzhenskaya, Boundary value problems of mathematical physics. (Russian) Nauka, Moscow, 1973.
30. D. Henry, Geometrical theory of semi-linear parabolic equations. (Translated into Russian) Mir, Moscow, 1985; English original: Lecture Notes in Mathematics, 840. SpringerVerlag, Berlin-New York, 1981.
31. D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order. (Translated from the second English edition into Russian) Nauka, Moscow, 1989; English original: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224. Springer-Verlag, Berlin, 1983.
32. M. A. Krasnosel'skĭ̆, P. P. Zabreiko, E. I. Pustyl'nik, and P. E. Sobolevskĭ́, Integral operators in spaces of summable functions. (Russian) Nauka, Moscow, 1966.
33. A. Kufner and S. Futchik, Nonlinear differential equations. (Translated into Russian) Nauka, Moscow, 1988; English original: Studies in Applied Mechanics, 2. Elsevier Scientific Publishing Co., Amsterdam-New York, 1980.
34. V. A. Trenogin, Functional analysis. 2nd ed. (Russian) Nauka, Moscow, 1993.
(Received 23.01.2008)
Authors' address:

S. Kharibegashvili

A. Razmadze Mathematical Institute

1, M. Aleksidze St., Tbilisi 0193, Georgia
I. Javakhishvili Tbilisi State University

2, University St., Tbilisi 0143, Georgia
E-mail: khar@rmi.acnet.ge
B. Midodashvili
A. Razmadze Mathematical Institute

1, M. Aleksidze St., Tbilisi 0193, Georgia
E-mail: bidmid@hotmail.com

