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Abstract. One boundary value problem for a hyperbolic equation with
power nonlinearity and the iterated wave operator in the principal part is
considered in a conical domain. Depending on the index of nonlinearity
and spatial dimensionality of the equation the question on the existence and
uniqueness of a solution of a boundary value problem is investigated. The
question as to the absence of a solution of this problem is also considered.
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1. Statement of the Problem

In the Euclidean space Rn+1 of independent variables x1, x2, . . . , xn, t consider
a nonlinear equation of the form

Lλu := ¤2u = λf(u) + F, (1.1)

where λ is a given real constant, f : R → R is a given continuous nonlinear
function, f(0) = 0, F is a given, and u is an unknown real function, ¤ =

∂2

∂t2
−

n∑
i=1

∂2

∂x2
i
, n ≥ 2.

Let DT : |x| < t < T be the domain which is the intersection of the light cone
of future K+

O : t > |x| with apex at the origin O(0, 0, . . . , 0) and a half-space
HT : t < T, T = const > 0. Assume ST = ∂DT ∩ ∂K+

O , S0
T = ∂DT ∩ ∂HT . It

is obvious that ST : t = |x|, 0 ≤ t ≤ T , is a characteristic conical manifold for
equation (1.1), S0

T : |x| ≤ T , t = T , and ∂DT = ST ∪ S0
T .

For equation (1.1) consider the boundary value problem on determination of
its solution u(x1, . . . , xn, t) in the domain DT by the boundary conditions

u|∂DT
= 0, (1.2)

∂u

∂t

∣∣∣∣
S0

T

= 0. (1.3)

It should be noted that for nonlinear hyperbolic equations the question of the
local or global solvability of the Cauchy problem with the initial conditions for
t = 0 is considered in vast literature [see, e.g., 1–20].
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As is known, for a nonlinear wave equation of the form ¤u = λf(u) + F the
characteristic problem in the light cone of future K+

O : t > |x| with a boundary
condition of the form u|∂K+

O
= g in the linear case, i.e., with λ = 0 is well-posed

and the global solvability takes place in appropriate function spaces [21–25],
while in the nonlinear case, when the function f(u) has exponential nature and
λ 6= 0, this problem was considered in [26–28].

Assume
◦

Ck(DT , ∂DT , S0
T ) =

{
u ∈ Ck(DT ) : u|∂DT

= 0, ∂u
∂t

∣∣
S0

T
= 0

}
, k ≥ 1.

Let u ∈
◦

C4(DT , ∂DT , S0
T ) be a classical solution of problem (1.1), (1.2),

(1.3). Multiplying both parts of equation (1.1) by an arbitrary function φ ∈
◦

C2(DT , ∂DT , S0
T ) and integrating the resulting equation by parts in the domain

DT we obtain
∫

DT

¤u¤φ dx dt = λ

∫

DT

f(u)φ dx dt +

∫

DT

Fφ dx dt. (1.4)

Here we have used the equality
∫

DT

¤u¤φ dx dt =

∫

∂DT

∂φ

∂N
¤u ds−

∫

∂DT

φ
∂

∂N
¤u ds +

∫

DT

φ¤2u dx dt

and the fact that since ST = ∂DT ∩ ∂K+
O is a characteristic manifold, the

derivative on the conormal ∂
∂N

= γn+1
∂
∂t
−

n∑
i=1

γi
∂

∂xi
, where γ = (γ1, . . . , γn, γn+1)

is the unit vector of the outer normal to ∂DT , is an inner differential operator
on the characteristic manifold ST and thus if v ∈ C1(DT ) and v|ST

= 0, then
∂v
∂N

∣∣
ST

= 0.

Let us introduce the Hilbert space
◦

W 1
2,�(DT ) as the completion with respect

to the norm

‖u‖2
◦

W 1
2,�(DT )

=

∫

DT

[
u2 +

(
∂u

∂t

)2

+
n∑

i=1

(
∂u

∂xi

)2

+ (¤u)2

]
dx dt (1.5)

of the classical space
◦

C2(DT , ∂DT , S0
T ). It follows from (1.5) that if u ∈

◦
W 1

2,�(DT ), then u ∈ ◦
W 1

2(DT ) and ¤u ∈ L2(DT ). Here W 1
2 (DT ) is the

known Sobolev space [29, p. 56] consisting of elements from L2(DT ), which have

first order generalized derivatives in L2(DT ), and
◦

W 1
2(DT ) = {u ∈ W 1

2 (DT ) :
u|∂DT

= 0}, where the equality u|∂DT
= 0 should be understood in the sense

of the trace theory [29, p. 70]. Moreover, since from (1.5) it follows that

u ∈ ◦
W 1

2(DT ) and ¤u ∈ L2(DT ), then an arbitrary function u from the space
◦

W 1
2,�(DT ) satisfies the homogeneous condition (1.3) in the sense of the trace

theory [29, p. 130].
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Let us assume that equality (1.4) underlies the determination of a generalized
solution of problem (1.1), (1.2), (1.3).

Definition 1. Let F ∈ L2(DT ). We call a function u ∈ ◦
W 1

2,�(DT ) a weak
generalized solution of problem (1.1), (1.2), (1.3) if f(u) ∈ L2(DT ) and for any

function φ ∈ ◦
W 1

2,�(DT ) the integral equality (1.4) is valid, i.e.

∫

DT

¤u¤φ dx dt = λ

∫

DT

f(u)φ dx dt +

∫

DT

Fφ dx dt ∀φ ∈ ◦
W

1
2,�(DT ). (1.6)

It is easy to verify that if a solution u of problem (1.1), (1.2), (1.3) in the
sense of Definition 1 belongs to the class C4(DT ), then it will be a classical
solution of this problem.

2. Solvability of Problem (1.1), (1.2), (1.3) in the Case of a
Nonlinearity of the Form f(u) = |u|α sgn u

Assume that in equation (1.1) the nonlinear function f has the form

f(u) = |u|α sgn u, α = const > 0, α 6= 1. (2.1)

Then in accordance with (2.1) equation (1.1) and the integral equality (1.6)
take the form

Lλu := ¤2u = λ|u|α sgn u + F (2.2)

and
∫

DT

¤u¤φ dx dt = λ

∫

DT

φ|u|α sgn u dx dt +

∫

DT

Fφ dx dt ∀φ ∈ ◦
W

1
2,�(DT ). (2.3)

Lemma 1. The inequality

‖u‖ ◦
W 1

2,�(DT )
≤ c‖¤u‖L2(DT ) ∀u ∈

◦
W

1
2,�(DT ) (2.4)

is valid, where the norm of the space
◦

W 1
2,�(DT ) is given by equality (1.5) and

the positive constant c does not depend on u.

Proof. Let Ωτ := DT ∩ {t = τ}, Dτ = DT ∩ {t < τ}, Sτ = {(x, t) ∈ ∂Dτ :
t = |x|}, 0 < τ ≤ T and γ = (γ1, . . . , γn, γn+1) be the unit vector of the outer
normal to ∂Dτ .

Since the space
◦

C2 (DT , ∂DT , S0
T ) is a dense subspace of the space

◦
W 1

2,�(DT )
it is sufficient to prove inequality (2.4) for functions from the space
◦

C2(DT , ∂DT , S0
T ). For u ∈

◦
C2(DT , ∂DT , S0

T ), taking into account the equali-
ties u|Sτ

= 0, Ωτ = ∂Dτ ∩ {t = τ} and γ|Ωτ
= (0, . . . , 0, 1), it is easy to obtain
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by integration by parts

∫

Dτ

∂2u

∂t2
∂u

∂t
dx dt =

1

2

∫

Dτ

∂

∂t

(
∂u

∂t

)2

dx dt =
1

2

∫

∂Dτ

(
∂u

∂t

)2

γn+1ds

=
1

2

∫

Ωτ

(
∂u

∂t

)2

dx +
1

2

∫

Sτ

(
∂u

∂t

)2

γn+1ds, τ ≤ T, (2.5)

∫

Dτ

∂2u

∂x2
i

∂u

∂t
dx dt =

∫

∂Dτ

∂u

∂xi

∂u

∂t
γids− 1

2

∫

Dτ

∂

∂τ

(
∂u

∂xi

)2

dx dt

=

∫

∂Dτ

∂u

∂xi

∂u

∂t
γids− 1

2

∫

∂Dτ

(
∂u

∂xi

)2

γn+1ds

=

∫

∂Dτ

∂u

∂xi

∂u

∂t
γids−−1

2

∫

Sτ

(
∂u

∂xi

)2

γn+1ds

− 1

2

∫

Ωτ

(
∂u

∂xi

)2

ds, τ ≤ T. (2.6)

It follows from (2.5) and (2.6) that

∫

Dτ

¤u
∂u

∂t
dx dt =

∫

Sτ

1

2γn+1

[
n∑

i=1

(
∂u

∂xi

γn+1 − ∂u

∂t
γi

)2

+

(
∂u

∂t

)2
(

γ2
n+1 −

n∑
j=1

γ2
j

)]
ds

+
1

2

∫

Ωτ

[(
∂u

∂t

)2

+
n∑

i=1

(
∂u

∂xi

)2]
dx, τ ≤ T. (2.7)

Since u|Sτ
= 0 and the operator (γn+1

∂
∂xi

− γi
∂
∂t

), 1 ≤ i ≤ n, is an internal
differential operator on Sτ , we have the equalities

(
∂u

∂xi

γn+1 − ∂u

∂t
γi

)∣∣∣∣
Sτ

= 0, i = 1, . . . , n. (2.8)

Therefore, taking into account that γ2
n+1 −

n∑
j=1

γ2
j = 0 on the characteristic

manifold Sτ , in view of (2.7) and (2.8) we have

∫

Ωτ

[(
∂u

∂t

)2

+
n∑

i=1

(
∂u

∂xi

)2
]

dx = 2

∫

Dτ

¤u
∂u

∂t
dx dt, τ ≤ T. (2.9)



A NONLINEAR EQUATION WITH ITERATED WAVE OPERATOR 545

Assuming w(δ) =
∫
Ωδ

[(
∂u
∂t

)2
+

n∑
i=1

(
∂u
∂xi

)2
]

dx, and using inequality 2 ¤u∂u
∂t
≤

ε
(

∂u
∂t

)2
+ 1

ε
|¤u|2, which is valid for any ε = const > 0, from (2.9) we obtain

w(δ) ≤ ε

δ∫

0

w(σ)dσ +
1

ε
‖¤‖2

L2(Dδ), 0 < δ ≤ T. (2.10)

From (2.10), taking into account that the value ‖¤‖2
L2(Dδ) as a function of δ

is non-decreasing, in view of Gronwall’s lemma [30, p. 13] it follows that

w(δ) ≤ 1

ε
‖¤‖2

L2(Dδ) exp δε.

Hence, taking into account the fact that inf
ε>0

1
ε
exp δε = eδ and it is reached at

ε = 1
δ
, we obtain

w(δ) ≤ eδ‖¤‖2
L2(Dδ), 0 < δ ≤ T. (2.11)

From (2.11), in turn, it follows that

∫

DT

[(
∂u

∂t

)2

+
n∑

i=1

(
∂u

∂xi

)2
]

dx dt =

T∫

0

w(δ)dδ ≤ e

2
T 2‖¤u‖2

L2(DT ). (2.12)

Using the equalities u|ST
= 0 and u(x, t) =

t∫
|x|

∂u(x,t)
∂t

dτ , (x, t) ∈ DT , which

are valid for any function u ∈
◦

C2(DT , ∂DT , S0
T ), by a standard reasoning [29,

p. 63] we easily obtain the inequality
∫

DT

u2(x, t) dx dt ≤ T 2

∫

DT

(
∂u

∂t

)2

dx dt. (2.13)

By virtue of (2.11) and (2.13) we have

‖u‖2
◦

W 1
2,�(DT )

=

∫

DT

[
u2 +

(
∂u

∂t

)2

+
n∑

i=1

(
∂u

∂xi

)2

+ (¤u)2

]
dx dt

≤
(
1 +

e

2
T 2 +

e

2
T 4

)
‖¤‖2

L2(DT ),

whence inequality (2.4) with the constant c2 = 1 + e
2
T 2 + e

2
T 4 follows. ¤

Lemma 2. Assume F ∈ L2 (DT ), 0 < α < 1, and in the case α > 1
additionally require that λ < 0. Then in the case with a nonlinearity of form

(2.1) for a weak generalized solution u ∈ ◦
W 1

2,�(DT ) of problem (1.1), (1.2),
(1.3) , i.e., problem (2.2), (1.2), (1.3) in the sense of the integral equality (2.3)
with |u|α ∈ L2 (DT ), we have an a priori estimate

‖u‖ ◦
W 1

2,�(DT )
≤ c1‖F‖L2(DT ) + c2 (2.14)
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with non-negative constants ci (T, α, λ), i = 1, 2, which do not depend on u, F
and c1 > 0.

Proof. First, let α > 1 and λ < 0. Assuming in equality (2.3) that φ = u ∈
◦

W 1
2,�(DT ) and taking into account (1.5), for any ε > 0 we have

‖¤u‖2
L2(DT ) =

∫

DT

(¤u)2 dx dt = λ

∫

DT

|u|α+1 dx dt +

∫

DT

Fu dx dt

≤
∫

DT

Fu dx dt ≤ 1

4ε

∫

DT

F 2 dx dt + ε‖u‖2
L2(DT )

≤ 1

4ε
‖F‖2

L2(DT ) + ε‖u‖2
◦

W 1
2,�(DT )

. (2.15)

Due to (2.4) and (2.15) we have

‖u‖2
◦

W 1
2,�(DT )

≤ c2‖¤u‖2
L2(DT ) ≤

c2

4ε
‖F‖2

L2(DT ) + c2ε‖u‖2
◦

W 1
2,�(DT )

,

from which for ε = 1
2c2

< 1
c2

we obtain

‖u‖2
◦

W 1
2,�(DT )

≤ c2

4ε (1− εc2)
‖F‖2

L2(DT ) = c4‖F‖2
L2(DT ). (2.16)

From (2.16) in the case α > 1 and λ < 0 follows inequality (2.14) with c1 = c2

and c2 = 0.
Let now 0 < α < 1. Using the known inequality

ab ≤ εap

p
+

bq

qεq−1

with a parameter ε > 0 for a = |u|α+1, b = 1, p = 2
α+1

> 1, q = 2
1−α

, 1
p

+ 1
q

= 1,

in the same way as for inequality (2.15) we have

‖¤u‖2
L2(DT ) =

∫

DT

(¤u)2 dx dt = λ

∫

DT

|u|α+1 dx dt +

∫

DT

Fu dx dt

≤ |λ|
∫

DT

[
ε
1 + α

2
|u|2 +

1− α

2εq−1

]
dx dt +

1

4ε

∫

DT

F 2 dx dt + ε

∫

DT

u2 dx dt

=
1

4ε
‖F‖2

L2(DT ) + ε

(
|λ|1 + α

2
+ 1

)
‖u‖2

L2(DT ) + |λ|1− α

2εq−1
mes DT . (2.17)

In view of (1.5) and (2.4) it follows from (2.17) that

‖u‖2
◦

W 1
2,�(DT )

≤ c2‖¤u‖2
L2(DT ) ≤

c2

4ε
‖F‖2

L2(DT )

+ εc2

(
|λ|1 + α

2
+ 1

)
‖u‖2

◦
W 1

2,�(DT )
+ c2|λ|1− α

2εq−1
mes DT , q =

2

1− α
,
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whence for ε = 1
2
c−2

(|λ|1+α
2

+ 1
)−1

we obtain

‖u‖2
◦

W 1
2,�(DT )

≤
[
1− εc2

(
|λ|1 + α

2
+ 1

)]−1

×
(

c2

4ε
‖F‖2

L2(DT ) + c2|λ|1− α

2εq−1
mes DT

)

= c4

(
|λ|1 + α

2
+ 1

)
‖F‖2

L2(DT ) + 2c2|λ|1− α

2εq−1
mes DT . (2.18)

From (2.18), in the case 0 < α < 1, follows inequality (2.14) with c1 =

c2
(|λ|1+α

2
+ 1

) 1
2 and c2 = c

(
2|λ| 1−α

2εq−1 mes DT

) 1
2 , where q = 1

1−α
. Lemma 2 is

completely proved. ¤

Remark 1. From the proof of Lemma 2 it follows that in estimate (2.14) the
constants c1 and c2 are equal:

1) α > 1, λ < 0 : c1 = c2, c2 = 0; (2.19)

2) 0 < α < 1, −∞ < λ < +∞ :

c1 = c2

(
|λ|1 + α

2
+ 1

) 1
2

, c2 = c

(
2|λ|1− α

2εq−1
mes DT

) 1
2

, (2.20)

where the constant c =
(
1 + e

2
T 2 + e

2
T 4

) 1
2 is taken from estimate (2.4) and

q = 2
1−α

.

Remark 2. Below we will consider the linear problem corresponding to (1.1),
(1.2), (1.3), when λ = 0. In that case, for F ∈ L2 (DT ) we analogously to

the above introduce the concept of a weak generalized solution u ∈ ◦
W 1

2,�(DT ),
when the integral equality

(u, φ)� :=

∫

DT

¤u¤φ dx dt =

∫

DT

Fφ dx dt ∀φ ∈ ◦
W

1
2,�(DT ) (2.21)

holds.

Remark 3. In view of (1.5) and (2.4), taking into account that

∣∣∣(¤u, ¤φ)L2(DT )

∣∣∣ =

∣∣∣∣∣∣

∫

DT

¤u¤φ dx dt

∣∣∣∣∣∣
≤ ‖¤u‖L2(DT ) ‖¤φ‖L2(DT )

≤ ‖¤u‖ ◦
W 1

2,�(DT )
‖¤φ‖ ◦

W 1
2,�(DT )

,

the bilinear form

(u, φ)� :=

∫

DT

¤u¤φ dx dt
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of (2.21) can be considered as a scalar product in the Hilbert space
◦

W 1
2,�(DT ).

Therefore, since for F ∈ L2 (DT )∣∣∣∣∣
∫

DT

Fφdx dt

∣∣∣∣∣ ≤ ‖F‖L2(DT ) ‖φ‖L2(DT ) ≤ ‖F‖L2(DT ) ‖φ‖ ◦
W 1

2,�(DT )
,

due to the theorem of Riesz [31, p. 83] there is a unique function u in the space
◦

W 1
2,�(DT ) that satisfies equality (2.21) for any φ ∈ ◦

W 2,�(DT ) and for whose
norm an estimate

‖u‖ ◦
W 1

2,�(DT )
≤ ‖F‖L2(DT ) (2.22)

is valid. Thus, being introduced the notation u = L−1
0 F , we find that to the lin-

ear problem corresponding to (1.1), (1.2), (1.3), when λ = 0, there corresponds
a linear bounded operator

L−1
0 : L2 (DT ) → ◦

W
1
2,�(DT ),

for whose norm, by virtue of (2.22), an estimate∥∥L−1
0

∥∥
L2(DT )→ ◦

W 1
2,�(DT )

≤ ‖F‖L2(DT ) (2.23)

is true.
Taking into account Definition 1 and Remark 3, equality (2.3), which is equiv-

alent to problem (2.2), (1.2), (1.3), can be rewritten in the form of an equivalent
equation

u = L−1
0 [λ|u|α sgn u + F ] (2.24)

in the Hilbert space
◦

W 1
2,�(DT ).

Remark 4. The embedding operator I :
◦

W 1
2(DT ) → Lq(DT ) is a linear con-

tinuous compact operator for 1 < q < 2(n+1)
n−1

when n ≥ 2 [29, p. 81]. At the
same time, the operator of Nemytskii N : Lq(DT ) → L2(DT ), which acts ac-
cording to the formula Nu = λ|u|α sgn u, α > 1, is continuous and bounded for
q ≥ 2α [32, p. 349], [33, pp. 66, 67]. Thus, if 1 < α < n+1

n−1
, then there exists a

number q such that 1 < 2α ≤ q < 2(n+1)
n−1

and hence the operator

N1 = NI :
◦

W
1
2(DT ) → L2(DT ) (2.25)

is a continuous and compact operator. In that case, since u ∈ ◦
W 1

2(DT ), it
is clear that f(u) = |u|α sgn u ∈ L2(DT ). Further, since in view of (1.5) the

space
◦

W 1
2,�(DT ) is continuously embedded into the space

◦
W 1

2(DT ), taking into
account (2.25) the operator

N2 = NII1 :
◦

W
1
2,�(DT ) → L2(DT ), (2.26)

where I1 :
◦

W 1
2,�(DT ) → ◦

W 1
2(DT ) is the embedding operator, is continuous and

compact for 1 < α < n+1
n−1

. For 0 < α < 1, operator (2.26) is also continuous
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and compact, since according to the theorem of Rellich [29, p. 64] the space
◦

W 1
2(DT ) is continuously and compactly embedded into L2(DT ), and the space

L2(DT ), in turn, is continuously embedded into Lp(DT ) for 0 < p < 2.

Let us rewrite equation (2.24) in the form

u = Au := L−1
0 (N2u + F ) , (2.27)

where the operator N2 :
◦

W 1
2,�(DT ) → L2(DT ), for 0 < α < n+1

n−1
, α 6= 1,

is continuous and compact in view of Remark 4. Then taking into account

(2.23) the operator A :
◦

W 1
2,�(DT ) → ◦

W 1
2,�(DT ) in (2.27) is also continuous

and compact. At the same, time according to the a priori estimate (2.14) of
Lemma 2, in which the constants c1 and c2 are given by equalities (2.19) and

(2.20), for any parameter τ ∈ [0, 1] and for any solution u ∈ ◦
W 1

2,�(DT ) of the
equation u = τAu with this parameter we have the a priori estimation (2.14)
with constants c1 > 0 and c2 ≥ 0 not depending on u, τ and F . Therefore,
according to the theorem of Lere–Schauder [34, p. 375], equation (2.27) and,
consequently, problem (2.2), (1.2), (1.3) have at least one weak generalized

solution u in the space
◦

W 1
2,�(DT ).

Thus the following statement is valid.

Theorem 1. Let 0 < α < n+1
n−1

, α 6= 1, λ 6= 0 and in the case α > 1 addition-
ally require that λ < 0. Then for any F ∈ L2 (DT ) problem (2.2), (1.2), (1.3)

has at least one weak generalized solution u ∈ ◦
W 1

2,�(DT ).

3. the Uniqueness of a Solution of Problem (1.1), (1.2), (1.3) in
the Case of a Nonlinearity of the Form f(u) = |u|α sgn u

Let F ∈ L2 (DT ), and u1, u2 be two weak generalized solutions of problem

(2.2), (1.2), (1.3) in the space
◦

W 1
2,�(DT ), i.e., according to (2.3) the following

equalities
∫

DT

¤ui¤φ dx dt = λ

∫

DT

φ|ui|α sgn ui dx dt +

∫

DT

Fφdx dt ∀φ ∈ ◦
W

1
2,�(DT ) (3.1)

are fulfilled and |ui|α ∈ L2 (DT ), i = 1, 2.
For the difference v = u2 − u1, from (3.1) it follows that

∫

DT

¤v¤φ dx dt

= λ

∫

DT

φ (|u2|α sgn u2 − |u1|α sgn u1) dx dt ∀φ ∈ ◦
W

1
2,�(DT ). (3.2)



550 S. KHARIBEGASHVILI AND B. MIDODASHVILI

Assuming φ = v ∈ ◦
W 1

2,�(DT ) in equality (3.2), we obtain
∫

DT

(¤v)2 dx dt = λ

∫

DT

(|u2|α sgn u2 − |u1|α sgn u1) (u2 − u1) dx dt. (3.3)

Note that for the finite values of u1 and u2 with α > 0 the inequality

(|u2|α sgn u2 − |u1|α sgn u1) (u2 − u1) ≥ 0 (3.4)

holds.
From (3.3) and inequality (3.4), which is true for almost all points (x, t) ∈ DT

with ui ∈
◦

W 1
2,�(DT ), i = 1, 2, when α > 0 and λ < 0, it follows that

∫

DT

(¤v)2 dx dt ≤ 0,

whence, due to (2.4), we obtain v = 0, i.e. u1 = u2.
Thus the following statement is valid.

Theorem 2. Let α > 0, α 6= 1 and λ < 0. Then for any F ∈ L2 (DT ),
problem (2.2), (1.2), (1.3) cannot have more than one generalized solution in

the space
◦

W 1
2,�(DT ).

In turn, Theorems 1 and 2 give rise to

Theorem 3. Let 0 < α < n+1
n−1

, α 6= 1 and λ < 0. Then for any F ∈
L2 (DT ), problem (2.2), (1.2), (1.3) has a unique weak generalized solution u ∈
◦

W 1
2,�(DT ).

4. The Absence of a Solution of Problem (1.1), (1.2), (1.3) in the
Case of a Nonlinearity of the Form f(u) = |u|α

Assume now in equation (1.1) and therefore in the integral equality (1.3) that
f(u) = |u|α, α > 1.

Theorem 4. Let F 0 ∈ L2 (DT ) , ‖F 0‖L2(DT ) 6= 0, F 0 ≥ 0, and F = µF 0, µ =
const > 0. Then in the case f(u) = |u|α, α > 1, with λ > 0 there exists a
number µ0 = µ0 (F 0, λ, α) > 0 such that for µ > µ0 problem (1.1), (1.2), (1.3)

cannot have a weak generalized solution in the space
◦

W 1
2,�(DT ).

Proof. Let us assume that when the conditions of the theorem are satisfied the

solution u ∈ ◦
W 1

2,�(DT ) of problem (1.1), (1.2), (1.3) exists for any fixed µ > 0.
Then equality (1.6) takes the form

∫

DT

¤u¤φ dx dt = λ

∫

DT

|u|αφ dx dt + µ

∫

DT

F 0φ dx dt ∀φ ∈ ◦
W

1
2,�(DT ). (4.1)
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It is easy to verify that
∫

DT

¤u¤φ dx dt =

∫

DT

u¤2φ dx dt ∀φ ∈ ◦
C

4(DT , ∂DT , S0
T ), (4.2)

where
◦
C 4(DT , ∂DT , S0

T )=
{

u ∈ C4
(
DT

)
: u|∂DT

=0, ∂u
∂t

∣∣
S0

T
= 0

}
⊂ ◦

W 1
2,�(DT ).

Indeed, since u ∈ ◦
W 1

2,�(DT ) and the space
◦
C 2(DT , ∂DT , S0

T ) is dense in
◦

W 1
2,�(DT ), there exists a sequence uk ∈

◦
C 2(DT , ∂DT , S0

T ) such that

lim
k→∞

‖uk − u‖ ◦
W 1

2,�(DT )
= 0. (4.3)

Taking into account that
∫

DT

¤uk¤φ dx dt =

∫

∂DT

∂uk

∂N
¤φds−

∫

∂DT

uk
∂

∂N
¤φds +

∫

DT

uk¤2φ dx dt, (4.4)

where the derivative on the conormal ∂
∂N

= γn+1
∂
∂t
−

n∑
i=1

γi
∂

∂xi
is an inner dif-

ferential operator on the characteristic manifold ST and therefore ∂uk

∂N

∣∣
ST

= 0

since uk|ST
= 0, from (4.4), due to the fact that uk|S0

T
= ∂uk

∂t

∣∣
S0

T
= 0, and

∂DT = ST ∪ S0
T , we obtain

∫

DT

¤uk¤φ dx dt =

∫

DT

uk¤2φ dx dt. (4.5)

Passing in (4.5) to the limit as k →∞, in view of (1.5) and (4.3) we obtain (4.2).
Taking into account (4.2), we rewrite equality (4.1) as

λ

∫

DT

|u|αφ dx dt =

∫

DT

u¤2φ dx dt

− µ

∫

DT

F 0φ dx dt ∀φ ∈ ◦
C

4(DT , ∂DT , S0
T ). (4.6)

Below we use the method of test functions [12, p. 10–12]. Let us select a test

function φ ∈ ◦
C 4(DT , ∂DT , S0

T ) such that φ|DT
> 0. If in Young’s inequality

with a parameter ε > 0

ab ≤ ε

α
aα +

1

α′εα′−1
bα′ ; a, b ≥ 0, α′ =

α

α− 1

we take a = |u|φ 1
α , b = |�2φ|

φ
1
α

, then due to the fact that α′
α

= α′ − 1 we have

|u¤2φ| = |u|φ 1
α
|¤2φ|
φ

1
α

≤ ε

α
|u|αφ +

1

α′εα′−1

|¤2φ|α′
φα′−1

. (4.7)
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By virtue of (4.7) and (4.6) we obtain the inequality

(
λ− ε

α

) ∫

DT

|u|αφ dx dt ≤ 1

α′εα′−1

∫

DT

|¤2φ|α′
φα′−1

dx dt− µ

∫

DT

F 0φ dx dt,

which, for ε < λα, implies
∫

DT

|u|αφ dx dt ≤ α

(λα− ε) α′εα′−1

∫

DT

|¤2φ|α′
φα′−1

dx dt− αµ

λα− ε

∫

DT

F 0φ dx dt. (4.8)

Taking into account the equalities α′ = α
α−1

, α = α′
α′−1

and min
0<ε<λα

α
(λα−ε)α′εα′−1 =

1
λα′ which is obtained at ε = λ, it follows from (4.8) that

∫

DT

|u|αφ dx dt ≤ 1

λα′

∫

DT

|¤2φ|α′
φα′−1

dx dt− α′µ
λ

∫

DT

F 0φ dx dt. (4.9)

Note that the existence of a test function φ such that

φ ∈ ◦
C

4(DT , ∂DT , S0
T ), φ|DT

> 0, κ =

∫

DT

|¤2φ|α′
φα′−1

dx dt < +∞ (4.10)

is not difficult to show. Indeed, it is easy to verify that the function

φ(x, t) =
[(

t2 − |x|2) (
(T − t)2 − |x|2)]m

satisfies conditions (4.10) for a sufficiently large positive m.
Since, by assumption, F 0 ∈ L2 (DT ), ‖F 0‖L2(DT ) 6= 0, F 0 ≥ 0, and mes DT <

+∞, due to the fact that φ|DT
> 0 we have

0 < κ1 =

∫

DT

F 0φ dx dt < +∞. (4.11)

Let us denote by g (µ) the right side of inequality (4.9) which is a linear
function with respect to µ, then in view of (4.10) and (4.11)

g(µ) < 0 for µ > µ0 and g(µ) > 0 for µ < µ0, (4.12)

where

g(µ) =
κ0

λα′ −
α′µ
λ

κ1, µ0 =
λ

α′λα′
κ0

κ1

> 0.

According to (4.12) with µ > µ0, the right side of inequality (4.9) is negative,
while the left side of this inequality is non-negative. The obtained contradiction
proves Theorem 4. ¤
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