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ON SOME THREE-DIMENSIONAL VARIANTS

OF GOURSAT AND DARBOUX PROBLEMS

FOR HIGHER-ORDER HYPERBOLIC EQUATIONS
WITH DOMINATING PRINCIPAL PARTS

S. S. Kharibegashvili and B. G. Midodashvili UDC 517.956.3

ABSTRACT. Some three-dimensional variants of Goursat and Darboux problems for higher-order hyper-
bolic equations with dominating principal part are set and investigated. Conditions to the problems’
data which in some cases ensure the well-posedness of the problem in question and in other cases,
despite the solvability of the problem, imply the presence of an infinite set of linearly independent so-
lutions of corresponding homogeneous problem, are found. We consider both generalized and classical

solutions.
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1. Formulation of the Problem

In the Euclidean space R? of independent variables z;, 2, and 3, let us consider a higher-order
hyperbolic equation with dominating principal part of the form (see [6, pp. 103, 183])

m |l
D D L (L)

mi mo aq a2 a3
O0x "' 0z ? Oy ol 07" 0x5” 0y
;<m;
i=1,2,3
3 3
where m >3, 1 <m; <m-—1,m= > m; a=(a1,az,a3), o] = >y, a; >0, my,; € Z, F is
i=1 i=1

given, and u is an unknown function. Equations of the form (1.1) are encountered during the study
of mathematical models for some natural and physical processes (see [1, 3, 4, 13, 15-18]).

Let us note that in the domain D := {(xl,azg,xg) eER}:0<a; <1, i= 1,2,3} the three-
dimensional variant of the Goursat problem for Eq. (1.1) with boundary conditions
o'u . .
5 =fiu, =123, i=0,...,m;—1, (1.2)
J ;=0

was considered by many authors (see [5, 7, 10, 18]).

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applica-
tions), Vol. 51, Differential Equations and Their Applications, 2008.
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For Eq. (1.1), a characteristic problem in the domain D with general boundary conditions was
considered and studied in [8, 11].

When m = 4, my = 2, and me = m3 = 1, for Eq. (1.1) with multiple characteristics, the well-
posedness of Darboux-type spatial problems in the domain D with the conditions

i
2; fuis i=0,1,
1lg=0
and also
Uty = J20 Ulpgmpyey = f3, 0<ki <1, i=12,
or

u’z?’:kle = fo, u‘x1=/€2$2 =fs, 0<k <l i1=1,2,

was established in [12].
In the present paper, for Eq. (1.1), when m = 3, i.e., for the equation

olely
Ao — = F 1.
81’183:28963 Z|<:2 0z{' 0x5?0xs? (1.3)
aigl

in the domain D := {(xl, ro,23) ER3:0< 2y <1, i=1,2, 3}, let us consider the three-dimensional
variant of the Darboux problem with the following conditions:

Zzz-a—uﬂgu =f, i=1,23, (1.4)
Tj

S
where S : x1 = A\ (29, 23), S2 : 2 = Ao (x1,23), S3 : 3 = A3 (x1,x2) are given smooth surfaces,
located in D, ie., N\, e CL,0< \; <1,i=1,2,3, lij, I}, and f; are given continuous functions on S;,
and w is an unknown real function in the domain D. Assume that the corresponding compatibility
conditions for the data of problem (1.3), (1.4) are satisfied.

The fact that one must use caution from the point of view of the well-posedness during the setting
of problem (1.3), (1.4) is clearly shown for the following special case of the problem:

3
0w _ g
695183:283;3

u‘51:x1=0 - fl’ l : vu‘SQ:mQZkaS = 07 U”Sg,:xg:(] = f3’ (16)

where

o 9 9 ° u
l—(ll,lz,lg)?ﬁo, v_<8_x1’8—;p2’8_m>’ ZVU—;lZa—xz, 0< k<1

Let us consider the case where the vector [ is parallel to the plane Sy : o = kxg3, i.e., where the
operator [ -V is an internal differential operator in Ss. It is easy to verify that in appropriate classes
of smoothness, problem (1.5), (1.6) is well posed only in the case where the condition [y (kly +13) > 0
holds, which is equivalent to the condition l;l3 > 0, since Iy = ki3 (I and Sy are parallel).

2. Reduction of Problem (1.3), (1.4) to a System of Functional Equations
in Some Special Case

We consider the reduction of problem (1.3), (1.4) to a system of functional equations in the case
where Eq. (1.3) does not have low-order terms and conditions (1.4) do not have principal terms.
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In the case where Eq. (1.3) does not have low-order terms in Eq. (1.3) and conditions (1.4) do not
have principal terms, under the natural assumption that I} =1, i = 1,2, 3, problem (1.3), (1.4) takes
the form

ou
a$18$28x3 - F7 (2'1)
ulg = fi, i=1,2,3. (2.2)
We consider problem (2.1), (2.2) in the functional space
ctL (D) = {uec(ﬁ) : LeC(E) a;=0,1, i=1,2 3}
0z 0xg?0xs® P T R

requiring that F' € C (E) and f; € OV (S;),i=1,2,3. Here

CH(S1) :=={feC(S1): fls,=Ff(Ni(z1,22),21,22) € CV ()},
where Q:0< z; < 1,7=1,2, and

_ _ || _
chl(Q) = {gEC(Q): %GC(Q), a; =0,1, i:1,2}.

Similarly, we define the spaces C1! (S3) and C1! (S3). -
As is known, the solution u of Eq. (2.1) in the space 1 (D) is given by the formula (see [5])

w(x1,29,3) = po + p12 (T1, 2) + @13 (21, 3) + P23 (22, 23) — P12 (0, 22)
T T T3
11 (@1,0) = g Oz + [ [ [ Figon.c)dgands, (2.3)

000
Here
o =u(0,0,0), 12 (71,22) = u(z1,22,0), 13 (21,73) = u (21,0, 3),
w23 (22, 23) = w (0,22, 23), @ij € cht (ﬁ) , 1<i,5 <3, i<j. (2.4)
In this case, obviously, the following natural compatibility conditions must hold:
¢12 (21,0) = 13 (21,0), @12 (0, 22) = 23 (22,0), (25)
13 (0,23) = 23 (0,23) . '

Substituting expression (2.3) for the solution v € C*!! (D) of Eq. (2.1) in conditions (2.2), we
obtain

w12 (x1,22) + @13 (21, A3 (1, 22)) + @23 (22, A3 (T1,22)) + o — 12 (0, 22)
z1 z2 A3(z1,22)
—en(@0) —enOMa) + [ [ [ Flendsandi = penm), (20
00 0
w13 (21, 23) + @12 (z1, A2 (z1,23)) + @23 (A2 (x1,23) , 23) + w0 — @12 (0, A2 (21, 23))
1 A2(x1,23) a3
—13(21,0) — 23 (0, 23) +/ / /F (§,m,5) dédnds = f2 (21, 73), (2.7)
o 0 0
w23 (w2, 23) + @12 (M1 (22, 23) , x2) + @13 (M1 (22, 23) ,23) + po — w12 (0, 22)
A (z2,23) 2o 23
—13 (A1 (22,23),0) — 23 (0, 23) + / //F(fﬂ%C) dédnds = f1 (v2,23) . (2.8)
0 00
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For simplicity, we will seek the solution u of problem (2.1), (2.2) in the space

GM (D) = {u € €M (D) ulyyyg = Uloymgo = Uiy =0} (29)
In this case, relative to functions f; in (2.2), one should require that
f; € ot @), i=1,2,3, (2.10)
where
O (@) = {9 € C™ (@) : gl.yg = glpmo = 0} (211)
Ifue 60’1*1’1 (D), then from (2.9) and (2.3)—(2.5) we obtain

©12 (0, 22) = 13 (21,0) = @23 (0, 23) = 0,
12 (21,0) = ¢13 (0, 22) = a3 (x2,0) = 0.

Therefore, using the notation

(2.12)

Y1(21,22) = p12 (21, 22) s Ya(z1,22) = i3 (21, 22),  ¥s(21, 22) = a3 (21, 22) (2.13)
we can rewrite the system of functional equations (2.6)—(2.8) relative to the unknown functions v; €

0 _
cHt (Q), 1 =1,2,3, in the following form:

V1 (21, 22) + P2 (21, A3 (21, 22)) + 3 (22, A3 (21, 22)) = g1 (21, 22) (2.14)
P (21, 22) + P1 (21, A2 (21, 22)) + ¥3 (M2 (21, 22) , 22) = g2 (21, 22) , (2.15)
V3 (21, 22) + ¥1 (M1 (21, 22) 5 21) + P2 (A1 (21, 22) , 22) = g3 (21, 22), (2.16)

2= (21,22) € Q.

Here
21 29 A3(z1,22)

g1 (21,22) = f3 (21, 22) — F (&,n,¢)d¢dnds,
[l

z1 A2 (21,2’2) z9

m%&ﬁZEMﬂﬁ—/ / /F@mQ%M% (2.17)
0 0

A1 (21,22) zo z3
93 (21,22) =  (21,22) — / //Fsm )dednds.
Since F € C (D) and according to (2.10), (2.11), and (2.17), it is easy to see that

el (Q), i=1,2,3. (2.18)
Remark 1. It follows from the reasoning given above that problem (2.1), (2.2) with F € C (D),
fi € 8’ 1,1 (ﬁ), i =1,2,3, in the space 8’ 11,1 (5) is equivalent to the system of functional equations
(2.14), (2.15), (2.16) in the space 8*111 (Q).

0 _
Before investigating problem (2.1), (2.2) in the space C' ! (Q), we introduce the concept of a strong
0,
generalized solution of Eq. (2.1) of class C (D), where

0 —
C (D) = {’U, € C (D) : u‘:m:xQ:O - u’am:a:g:(] = u’xg:xg:() = 0} : (219)
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Definition 1. Let F € C' (D). A function u is called a strong generalized solution of Eq. (2.1) of
0 0 0 _
class C (D) ifueC (D) and there exists a sequence of functions u,, € ¢ b1 (D) such that

Puy,

lim ||u, — U”c(ﬁ) =0, lim ’

0 —
It is easy to see that the solution of Eq. (2.1) in the space ¢ 111 (D) is also a strong generalized

0 0,
solution of this equation of class C (D) Similarly to C (D), we introduce the space

C(Q) ={9€C@) gl,cg=9l.,00 =0} (2.21)

The following assertion holds.

_ 0

Lemma 1. Let F € C (D) A function u is a strong generalized solution of Eq. (2.1) of class C' (D)
0,

if and only if u € C (D) and the following representation holds:

1 T2 X3
u (21,72, 73) = P12 (T1,T2) + @13 (T1,73) + V23 (72, 3) +///F(§,77,€) dédnds, (2.22)
00 0

where
p12 (x1,72) = u(r1,22,0), @13 (21, 23) = u (21,0, 73),
0 _ (2.23)
©23 (l‘Q,l’g) IU(O,QS‘Q,I‘g), Pij EC(Q), 1<9,7<3, ©1<7.

_ 0
Proof. Indeed, let F € C (D) and u be a strong generalized solution of Eq. (2.1) of class C (D),

0 _
i.e., there exists a sequence of functions u, € ¢ b!! (D) such that conditions (2.20) hold. According

0 — 03
to Eq. (2.3), for the function u, € ¢ (D), by (2.12) with F = F, = tn

n = ———, the followi
021022015 e following

representation holds:

T1 To X3
n (21, 2, 73) = Ty (21, 02) + Ty (21, 3) + ol (w2, 73) + / / / F, (6.m,¢) dednds,  (2.24)
0 0 O

where
90?2 (Ila 1:2) = Un (371,5627 0) ) @?3 (1131,333) = Un (xla 05 1"3) ;
0, (2.25)
s (12, 23) = un (0,22,33), @l €C(Q), 1<ij<3, i<j
According to (2.20), passing in equalities (2.24) and (2.25) to the limit as n — oo, we obtain (2.22)
and (2.23).

0,
Conversely, let u € C (D) and representation (2.22) and equalities (2.23) hold. Let us denote by
he (x) an arbitrary function continuous in the interval 0 < z < +oo which satisfies the following
conditions:

1 for x> 2e,

(2.26)
0 for 0<x<e¢g,

0 < he(x) <1, he(x) = {

0<e<l.

It is clear that this function exists and it is easy to construct it. Let us introduce the function

05 (21, 22) = he(21)he(22)pi(21, 22), 1 <i,5 <3, i<y (2.27)

123



Since the functions ¢;; satisfy conditions (2.12), then by (2.26) and (2.27), it is easy to verify that
lim {|f; — goijﬂc@ =0, 1<i,j<3, i<j (2.28)
Let us denote by ws(21, 22) = §—2w° (%1, %2), § > 0, an averaging function, where v € C§° (Rz),
/w0d21d22 =1, W0 >0,

suppw’ = {(21,22) € R? : 2# + 22 < 1} (see [6, p. 9]). According to (2.26)—(2.28), taking into account

the property of the convolution operation (see [6, pp. 9, 23]), we easily find that gpf]’.é = @5 *Ws €
.0
C>®(Q)NC(Q),6<e, and
. £,0 o .. . .
%l_r%’(pij — ¥ C(ﬁ)_o, 1<i,j7<3, i<j. (2.29)

Now, assuming that ¢ = 1/n and 6 = 2/n, by (2.26)—(2.29) we obtain that the sequence of functions

1 T2 T3

1 11 11
un (€1, 02, 23) = @1y *" (21, 2) + i3 ™ (1, 23) + 33" (22, 73) +///F(€,777€) dgdnds,
000
0 —
n = 1,2,..., belongs to the space C' ! (D) and satisfies conditions (2.20) in view of (2.22) and
equalities (2.23). Lemma 1 is proved. O
Let us introduce the weight-function space
0 0 0 & —a,,—«
Ca(Q)=3geC(Q): llgllo ,..= sup |21%5%(21,22)| <400 p, = const> 0.
CQ(Q) (21,22)EQ
0o - 0 - 0 0,
It is clear that Oy (Q) cC (Q) and O (Q) =C (Q)
Lemma 2. Assume that for z = (21, 22) € €,
0 S )\i (21, 22) S Mi Zfilzgm, (2.30)

M; = const > 0, B;; =const > 1, ,57=1,2.
_ 0o _
Then for any F € C (D) and f; € Cy (Q), 1=1,2,3, if the condition
1
M < 2
holds with oy = min (o, Bo + 1), Bo = min fB; j, the system of functional equations (2.14)~(2.16) has
27‘7

i=1,2,3, (2.31)

at least one solution 1 = (1,19,13) in the space 8’ (Q) If, in addition, A\ (z1,22) = 0, then the
solution is unique in 8’ (Q)
Proof. Let us rewrite system (2.14)—(2.16) in the form of one vector functional equation

Y (21, 20) + (T) (21, 22) = g (21, 22), 2z = (21,22) € Q, (2.32)

where ¢ = (¢1,%2,v3), g = (91, 92, 93), and the operator T : (O}' (Q) — 8’ (Q) acts by formula
(T) (21, 22) = (Y221, A3(21, 22)) + Y3(22, A3(21, 22)),
P1(z1, Aa(21, 22)) + PY3(Aa(21, 22), 22), (2.33)
P1(A1(z1, 22), 21) + P2(A (21, 22), 22)).
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_ 0o _
Since F € C (D) and f; € Cy, (Q), i =1,2,3, and due to (2.17) and (2.30), it is easy to see that

(@)
1 1
+ M321+ﬁ31 22+532 ”FHC(D)

lg1 (21, 22)| < 2725 ||f3|!8 + 21223 (21, 22) HFHC(D)

<555 |l

«(Q)

<A 0T fallg o+ Msn TR P g )

«(2)

0 _
whence by the fact that cg = min (v, 8y + 1), we have g1 € C o, (Q2). Similarly, we obtain that

0 _
G €Ca (), 1<i<3. (2.34)

According to (2.31), there exists a positive number ¢ such that
max 2M° < ¢, 0 < q=const < 1. (2.35)

1<i<3
It is easy to see that the operator 7' in (2.33) is a linear continuous operator acting in the space
0 _ 0 _ 0 _
C ap (Q) Now let us consider the norm of the operator 1" : C 4, (Q) — Cay (Q) In view of (2.30)
and (2.31), with z = (z1,22) € Q, i.e., when 0 < z; < 1, i = 1,2, we have
[(T); (21, 22)| = [h2 (21, A3 (21, 22)) + ¥3 (22, A3 (21, 22))]

< Z?O)\g‘o (Zl, 22) ||1l}2||8 (Q) -+ zgo)\go (2;1, Z2) ||1/J3||8 (Q)
ag @0

< 2?0M§02?0ﬁ31z§0632 Hw2H8 (Q) + z;loM;oZ?Oﬁm Z§0532 H¢3H8 (Q)
ag ag

(Br-1 Pa1=1) aof
< 20250 (mac M) [0 250 ol o] (fél?é”wi”éaom))

g 00 . — «@Q X0
< 4z 29 II;I?SX?) leug’ao(ﬁ) 4z 29 kugao(ﬁ) . (236)
Similarly, we obtain
[(TY); (21, 22) < @21°2° [[¥llo 0o (21,22) €0, i =2,3. (2.37)
Cag(9)
It follows from (2.36) and (2.37) that
ITNo . o , <g<Ll. (2.38)
Cag(9)=Cag(?)

0 _
Due to (2.38), the operator (I +T) is invertible in the space C o, (Q2) and the inverse operator

0
(I + T)f1 is represented in the form of the operator series converging in (' q, (Q)

oo

(I+T) =) (1),

n=0

0 _
and in view of (2.34), in the space C 4, (Q), there exists a unique solution of Eq. (2.32) representable
in the form

p=> (-T)"g. (239)
n=0

0 _ 0,
Since Ca, (2) C C(Q), the function + in (2.39) is also a solution of the system of functional
0,
equations (2.14)—(2.16) in the space C' ().
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Now let us show that if the additional requirement A (21, z2) = 0 holds, then the system of functional

equations (2.14)—(2.16) cannot have more than one solution in the space 8’ (Q). Actually, in this case,
with g; = 0, ¢ = 1,2,3, in view of (2.12) and (2.13), from (2.16) it follows that 3 = 0, and from
(2.14) and (2.15) we obtain the following system of homogeneous equations with respect to unknown
functions 1 and 9:

7,[)1 (251, 22) + @ZJ2 (Zla )‘3 (Zla ZQ)) = 07 S ﬁa
Y2 (21, 22) + 91 (21, A2 (21, 22)) = 0, z € QL.
Eliminating function 1y from system (2.40), we obtain the following functional equation with respect

0,
to 71 in the space C (Q)

(2.40)

1 (21, 22) — Y1 (21, M2 (21, A3 (21, 22))) =0, =z € Q. (2.41)
Let us consider the mapping J : Q — Q acting by the formula
J(21,22) = (21, A2 (21, A3 (21, 22))), 2z € L. (2.42)
It follows from (2.41) and (2.42) that
U1 (2) = (J"(2), z2=(21,22) €Q, n=12,.... (2.43)
Since 0 < z; < 1,4 = 1,2, for 2 = (21, 22) € Q, we obtain from (2.30)
0 <\ (21,22) < Mizo, (21,20) €Q, i=2,3, (2.44)
where, according to (2.31),
0 < max (M2, M3) =k < 1. (2.45)
From (2.42), (2.44), and (2.45) we have
J(2) = (21,0 (2)), 0< Ju(2) <Kz, 2€Q, n=12,.... (2.46)
In turn, from (2.46) it follows that
nli_)r{)lan(z):(), 2€Q, n=12,.... (2.47)

Since by (2.12) and (2.13) we have v (21,0) = @12 (21,0) = 0, taking into account the continuity of
the function 1 (21, 22), from (2.43), (2.46), and (2.47) we have

U1 (2) = lim ¢ (2) = lim ¢y (J"(2)) = lim ¢n (21, /0 (2))

— <z1, lim J, (z)) =ty (21,0) =0, ze€ (2.48)
The second equation of system (2.40) and Eq. (2.48) imply that v (z) = 0, z € Q. Thus, if g; = 0,

0, _
i =1,2,3, then system (2.14)—(2.16) can have only a trivial solution in the space C' (€2). The second
part of Lemma 2 is proved. O

Remark 2. Similarly to Remark 1, by Lemma 1 and the reasoning above, we see that for F' € C' (D)
0 _ 0,
and f; € C (Q), i =1,2,3, problem (2.1), (2.2) has a strong generalized solution in the class C (D) if
0,
and only if the system of functional equations (2.14)—(2.16) has a solution in the space C (£2).

Lemma 2 and Remark 2 imply the following assertion.

_ 0o,
Theorem 1. Let conditions (2.30) and (2.31) be satisfied. Then for any F € C (D) and f; € C o (),

0,
a = const > 0, i = 1,2,3, problem (2.1), (2.2) has a strong generalized solution in C (D), which is
unique in this class if the additional condition A1 = 0 holds.
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Below we consider the question on the classical solvability of problem (2.1), (2.3) in the space

C’1 L1(D) for the case where for any z = (21, 22) € €,
A1 (21, 22) = 0, )\i (2’1, 2’2) = )‘i (2’2) S Cl ([0, 1]) s (2.49)
i=2,3 N(0)=0, i=2,3,
where, as for the setting of problem (1.3), (1.4), we assume that 0 < \; < 1,7 =2,3.
Under the conditions of (2.49) and due to (2.12) and (2.13), the function 3 in (2.16) is defined
uniquely:
V3 (21,22) = g3 (21,22), 2= (21,22) €LY, (2.50)
and with respect to the unknown functions ¢ and 1, system (2.14), (2.15) has the form

V1 (21, 22) + Vo (21, A3 (22)) = §1 (21, 22), 2= (21,2) € Q, (2.51)
o (21, 22) + 1 (21, M2 (22)) = G2 (21, 22) s 2= (21,22) €9 (2.52)

Here
91 (21, 22) = g1 (21, 22) — g3 (22, A3 (22)) » (2.53)

92 (21, 22) = g2 (21, 22) — g3 (A2 (22) , 22) -
0 _
Below, we assume that §; € ' 1! (Q), 1=1,2.

0 _
Remark 3. It is easy to verify that the function g from the space ' 111 (Q) is uniquely defined by
2
eC (Q) as follows:

the mixed derivative
21029

0 ) -
2’1,2’2 // 32531262 dfldfg, z € (2’1,2’2) e Q. (2.54)

Remark 4. Taking into account Remark 3 and Eq. (2.54) and introducing the notation
9% 0%y

= = 2.55
w 82182’27 w1 82182’27 ( )
0 _
we see that system (2.51), (2.52) in the space C' ™! (Q) is equivalent to the following system:
2~
w (21, 22) + A3 (22) wi (21, A3 (22)) = % (2.56)
0%Go (21,
wr (21, 29) + Ny () w (21, Mo (z9)) = 292 (F1:22) (2.57)

82182’2
for the unknown functions w and w; in the space C (Q)

Excluding the function wy, from system (2.56), (2.57), relative to the unknown function w € C (),
we obtain the functional equation

w(z1,22) —a(z2)w(z1,A(22)) = g(21,22), 2= (21,22) € Q, (2.58)
where
251 (z1, 2 259 (2 z
0(e2) = X ()Xo O () g (an,z0) = TCLE) -y (o) T LML)
and
)\ (22) = )\2 ()\3 (ZQ)) . (2.60)
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Remark 5. If conditions (2.49) hold, taking into account Remarks 3 and 4, we easily see that problem

0 _ _ 0
(2.1), (2.2) in the space ¢ 1M (D) for F € C(D) and f; €C (), i = 1,2,3, is equivalent to the

functional equation (2.58) in the space C(2), where a, g, and A are given by Eqgs. (2.59) and (2.60).
On the other hand, considering the variable z; as a parameter, for fixed z; € [0, 1], the functional
equation (2.58) relative to the variable z2 in the space of continuous functions is investigated in [2].

The results of [2], as is obvious from the proofs, are valid also for Eq. (2.58). Therefore, below we
will formulate these results without proof, assuming that a and A are arbitrary functions of the class
C (]0,1]), having no relation to Egs. (2.59) and (2.60).

Lemma 3. If the condition
la(z2)] <1, 0<2z<1

holds, then Eq. (2.58) is uniquely solvable in the space C (Q), i.e., for any function g € C (Q),

Eq. (2.58) has a unique solution w € C (Q). In this case, the estimate

l@llo) < T lollogo

“lo(@) = 174 Wle(e)
holds, where ¢ = max |a(z2)| < 1.

0<z<1
Lemma 4. Let a continuous mapping A : [0,1] — [0,1] in (2.60) strictly monotonically increase.
Denote by I := {z2 € [0,1] : A(22) = 22} the set of fized points of the mapping. If the condition
la (z2)] <1, =29 €1,

holds, then for any function g € C (Q), Eq. (2.58) has a unique solution w € C (Q), for which the
following estimate holds:

ooy < <lollogay (261)

where ¢ is a positive constant independent of g.

Lemma 5. Let a continuous mapping X : [0,1] — [0, 1] in (2.60) strictly monotonically increase and
A(0)=0, A(z2) <=z

for 0 < 2 < 1. If |a(0)] < 1, then for any function g € C (), Eq. (2.58) has a unique solution
w € C(Q), for which estimate (2.61) holds. But, if |a(0)] > 1, then Eq. (2.58) for any function
geC (Q) has a solution w € C (Q), although the homogeneous equation corresponding to (2.58) has
an infinite set of linearly independent solutions in the class of continuous functions C (Q)

Lemma 6. If A :[0,1] — [0,1] is a continuous homeomorphism and the condition
|a(22)|#17 OSZZSL
holds, then Eq. (2.58) is uniquely solvable in the class C (Q) .

Lemma 7. Let A : [0,1] — [0,1] be a continuous homeomorphism that leaves the endpoints of the
segment fized. If the condition

la(22)] >1 Vze € I:={20€0,1]: A(22) = 22}

holds, then for any function g € C(Q), Eq. (2.58) has a unique solution w € C’(Q) with esti-
mate (2.61).
Lemma 8. Let a continuous mapping X : [0,1] — [0,1] strictly monotonically increase, (zg) = 29

for a certain number 2§ € (0,1), and A (22) < 22 with 28 < z9 < 1. Let the condition

ja(z2)| #1, 0< 2 <25,
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hold. If

‘a (zg)‘ <1
for any function g € C (Q), then Eq. (2.58) has a unique solution w € C (Q) with estimate (2.61).
But if

|a (zg)’ > 1,

then for any function g € C (Q), Eq. (2.58) has a solution w € C (Q), although the homogeneous
equation corresponding to (2.58) has an infinite set of linearly independent solutions in the class of
continuous functions C (Q)

Remark 6. If A\ (z2) < z for all z9 € [0, 1], then under the conditions of Lemmas 3 and 4, and also
Lemma 5 with |a (0)| < 1, the unique solution w of Eq. (2.58), together with estimate (2.61), also
satisfies an estimate of the form

lw (21, 22)] < ¢ max |g(21,€)] Vz € (21,22) € (2.62)
0<E<z2

with a positive constant ¢ independent of g and z = (21, 20) € Q.

Remarks 5 and 6 and Lemmas 3-8, where a (22) = A5 (22) A5 (A3 (22)) = [A2 (A3 (22))]’, imply the
following theorems.

Theorem 2. Let conditions (2.49) and [N (z2)] < 1, 0 < z9 < 1, hold, where X (z2) = A2 (A3 (22)).
Then for any F € C (D) and f; € 60‘1’1 (Q), i = 1,2,3, problem (2.1), (2.2) has a unique solution
u in the space 60‘1’1’1 (D) If, in addition, \;(z2) < z2, 22 € [0,1], i = 2,3, then for a solution
u € 60‘1’1’1 (D) of problem (2.1), (2.2) we have the estimate

3
118 1005, < ¢ [WPleton) + Ml g,y | VP ED (2.63)
1=

with a positive constant ¢ independent of F', f;, i = 1,2,3, and the point P = P (x(f,xg,:):g) e D,
where

Dp = {(ml,xg,xg) €D :x;<a?, i:1,2,3}, Qp, = {(22,23) €Nz <a?, i:2,3},
Qp, == {(21,23)€Q:zi<x?, i:1,3}, Qp, = {(21,22)€Q:zi<3:9, i:1,2}.

Theorem 3. Let conditions (2.49) hold and let a continuous mapping X : [0,] — [0,1] strictly mono-
tonically increase with \(z2) < zg for 0 < zo < 1. If [N(0)| < 1, then for any F € C (D) and

fie 8’1’1 (Q), i=1,2,3, problem (2.1), (2.2) has a unique solution u in the space 8’1’1’1 (D) Under
the additional conditions \; (z2) < z2, z2 € [0,1], i = 2,3, the solution u € CO* LLL(D) of problem (2.1),
(2.2) satisfies estimate (2.63). If [N'(0)| > 1, then for any F € C (D) and f; € Co*l’l (Q),i=1,2,3,
problem (2.1), (2.2) has a solution u € 8’1’1’1 (D), although the homogeneous problem corresponding
to (2.1), (2.2) has an infinite set of linearly independent solutions in the space 8’1’1’1 (D)

Remark 7. Note that if conditions (2.49) hold, then an analog of Theorem 1 is also valid. If the
conditions \; (0) = 0, i = 1,2; A(22) = A2(A3(22)) < Mzg, 0 <2<1;,0< M = const < 1,

_ 0o
(B = const > 1, hold together with (2.49), then for any F' € C (D) and f; € C o (Q), « = const > 0,
0, _
i =1,2,3, problem (2.1), (2.2) has a unique strong generalized solution in the class C' (D)
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3. Investigation of Problem (1.3), (1.4) in the Case Where Equation (1.3)
and Boundary Conditions (1.4) Do Not Have Low-Order Terms

In the domain D := {(xl, ro,w3) ER3:0<2; <1, i=1,2, 3}, let us consider the following version
of problem (1.3), (1.4):
9u

8x18x28x3 - F’ (31)
3
- 8.’E]’
Jj=1 S;

3
where ) |l;;| # 0,4 =1,2,3, with the assumption l;; = const, 1 <1i,j < 3.
j=1

0 _
Considering problem (3.1), (3.2) in the class ' ! (D), substituting representation (2.3) of a solu-
tion of Eq. (3.1) in conditions (3.2), and taking into account Egs. (2.12), with respect to the unknown

0 _
functions ¢;; € C 1,1 (Q), 1<14,5 <3, < j, we obtain the following system of functional-differential
equations:

‘n 8;;? (A1 (2, 23) , w2) + 12 88(2122 (A1 (w2, 3) , 22) + 11188‘2113 (A1 (22, 23) , 3)
+l13 8%013 ()\1 (1_2 I’3) 1_3) + 112 88023 (1-2 x3) —+ 113% (.%'2 .%'3) - ,]2:1 (xQ x3) (33)
Oxs e dxg ~ 7 Oxg =~ T
l21 gt (z1, A2 (21, 23)) + 22 gt (z1, A2 (1, 23)) + l21 2t (z1,23) + las O¢rs (1, 23)
0x1 ’ ’ O ’ ’ dzy 7 d3 ,
0 0 ;
Hloo 2 (N (1, w3) , w3) + lag 22 (Ao (w1, 33) , w3) = fo (w1, 73), (34)
Oxo O0x3
dp12 o1z Ip13 913
[, P12 [, ZP12 Loy 283 (20 A l A
o0, (z1,22) + I32 97 (z1,72) + l31 021 (21, A3 (21, 22)) + I33 D3 (1, A3 (21, 22))
) 0 ;
+l32 o2 (72, A3 (z1,72)) + 33 28 (2, A3 (22, 23)) = f3 (w1, 22), (3.5)

where fi, 1 =1,2,3, are certain functions expressed as functions of F and f;, 1 = 1,2, 3.
Using notation (2.13), let us rewrite system (3.3)—(3.5) in the form

oY1 i) g Oy

l31a—z1 (21, 22) + l328—22 (21, 22) + 131(,9—21 (21, A3 (21, 22)) + l:a:aa—z2 (21, A3 (21, 22))
0 0 ~
+l328—w3 (22, A3 (21, 22)) + l33ﬂ (22, A3 (21, 22)) = f3 (21, 22) (3.6)
Z1 aZQ
0 0 5] 0
lgla—fll (21, A2 (21, 22)) + 1228—1521 (21, A2 (21, 22)) + l218—1§12 (21, 22) + 5238—22 (21,22)
0 0 ~
+l228_¢3 (A2 (21,22),22) + 12?,& (A2 (21, 22) , 22) = fa(21,22), (3.7)
Z1 82’2
lng—fll (A1 (21,22),21) + 1122—12 (M1 (21,22),21) + 1112—1512 (A1 (21, 22) ,22)
0 0 0 -
+l138—1§22 (A1 (21, 22) ,22) + 1128—12 (21, 22) + l138—fj (21,22) = f1 (21, 22), (3.8)
where z = (21, 22) € Q.
Below we assume that conditions (2.49) hold and
i =0, i=1,23 (3.9)
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- OF OF _
heC(Q); fi 5™ Sy’ s €C (D) (3.10)

If conditions (2.49) and (3.9) hold, taklng into account (2.12) and (2.13), we see that Eq. (3.8) takes
the form

f eC(Q), i=2,3; F,

0 0 - _
2% () 11528 () = i (), 2= (21,2) €0, (3.11)
821 6 Z9
where, as is easy to verify,
z21 29
fi(z1,22) = fi(z1, 22) — lll//F(O»%@)dUd@ (3.12)
00

As is known (see [14, p. 255]), for the well-posedness of the Cauchy problem for Eq. (3.11) with
zero initial conditions, for z; = 0 and zo = 0, it is necessary to require that

l1o - l13 > 0. (3.13)
It is easy to verify that if conditions (3.10) hold, the function f in (3.12) belongs to class C? (Q),

0 _
and then in the case of (3.13), Eq. (3.11) has a unique solution 3 in the space C' ! (Q), where one
must take into account the zero Cauchy initial conditions with z; = 0, z2 = 0, and, of course, if
necessary, compatibility conditions hold at the point (0,0) € Q:

on on
0,0
fl( ) ) a a
This solution can easily be constructed in quadratures. After the unknown function 3 is found,

system (3.6), (3.7), under conditions (2.49) and (3.9), relative to the unknown functions ; and 1o,
can be rewritten as follows:

(0,0) = =2 (0,0) = 0. (3.14)

o 0
lggaifl (Zl, 2’2) + lggafj (217 A3 (22)) = /1 (Zl’ 22) )

(3.15)
52 (21,2) + a5t (21, (22)) = fo (a1,2).

where fy, f5 € C* (Q) are expressed in a certain form by the known functions F' and f;, i =1,2,3. In
this case, we assume that f4(0,22) = f5(0,22) =0, 0 < 29 < 1.
Below we assume that

l3o #0, log #0. (3.16)
Differentiating the equations of system (3.15) with respect to zj, in notation (2.55), we obtain
Ofs(z1,2
low (21, 22) + l33wi (21, A3 (22)) = %7
21
(3.17)
Afs (21, 22)
lpswi (21, 22) + loaw (21, A2 (22)) = B

Under assumption (3.16), excluding the unknown function w; from system (3.17), relative to the
unknown function w we obtain the equation

33l
w(z1,22) — lizlzzw (z21,A(22)) = f(21,22), 2= 1(z1,22) € Q, (3.18)

where A (z2) = A2 (A3 (22)) and f € C (Q) are expressed by known functions F and f;, i = 1,2, 3.

Remark 8. Taking into account Remark 4 and the assumptions made above, we see that problem

0 _ _
(3.1), (3.2) in the class C' V"' (D) is equivalent to Eq. (3.18) in the class C (©2). Equation (3.18)

is a special case of Eq. (2.58) with a (22) = gggg; = const for which Lemmas 3-8 were formulated.

Therefore, for problem (3.1), (3.2) the following theorems hold.
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Theorem 4. Let conditions (2.49), (3.9), (3.13), and (3.16) hold. If |ls3le2| < |l3alag|, then for any F
and fz, i = 1,2,3, which satisfy conditions (3.10), problem (3.1), (3.2) has a unique solution w in the

space C’l’l’1 (D). If, in addition, X; (z2) < 22, 22 € [0,1], i = 2,3, then for the solution u € 01’1’1 (D)
of problem (3.1), (3.2), we have the estimate

3
el i,y <€ 1P (o) Z; 2 oo
2 8f
+Hlfillez(ap +Z I fillo(an,) '6361 . VP eD (3.19)

with a positive constant c independent of F, fi,i=1,2,3, and the point P(x‘f,xg,:cg) € D, where
D, = {(xl,xg,:cg) eD:x < :L‘?, 7= 1,2,3}7 Q) ={(22,23) €Q: 2 < x?, i=2,3},
Qp, = {(21,23) €Q:z <2y, ,i=1,3}, Qp={(21,22) €Q: 2 <al, i=12}

If |lsslaa| > |l32l2s|, the continuous mapping X : [0,1] — [0, 1] in (3.18) strictly monotonically increases,
and A (z2) < z2, 0 < z9 < 1, then problem (3.1), (3.2) for any F and f;, i = 1,2,3, which satisfy

0 _
conditions (3.10), has a solution u € C' H11 (D), although the homogeneous problem corresponding to
0 _
(3.1), (3.2), has an infinite set of linearly independent solutions in the space C' 1'% (D).

Theorem 5. Let conditions (2.49), (3.9), (3.13), and (3.16) hold, a continuous mapping X : [0,1] —
[0, 1] be a homeomorphism, and the condition |l33laa| # |ls2las| hold. Then problem (3.1), (3.2) with any

0 _
F and f;, i = 1,2,3, which satisfy conditions (3.10), has a unique solution u in the space C' %! (D)

Finally, for Eq. (3.1) in the domain D : 0 < x; < 1, ¢ = 1,2,3, consider the problem in which,
instead of boundary conditions (3.2), the following conditions are posed:

3
. ou
ulg, = fi, i=1,3 Zzgj—&l:. = fo. (3.20)
j=1 ') s,
0 _
In this case, in notation (2.13), problem (3.1), (3.20) in the class C' '! (D) is reduced to the system

0 _
of Egs. (2.14), (2.16), and (3.7) for the unknown functions ¢; € C'1'! (Q), i =1,2,3. Due to (2.49),
this system, in view of (2.12) and (2.13), takes the form

V1 (21, 22) + Y2 (21, A3 (22)) = g4 (21, 22) (3:21)
121(3—@/:11 (21, A2 (22)) + lzzg—fg (21, A2 (22)) + 521?)—1’512 (21,22) + 123% (21,22) = g5 (21,22) . (3.22)

where z = (21, 22) € Q. According to (2.17) and (3.7)
V3 (21, 22) = g3 (21, 22) = f1 (21, 22),

Z1 22 /\5 22

94 (21, 22) = g1 (21, 22) — Y3 (22, A3 (22)) = f3 (21, 22) — f1 (22, A3 (22)) // / F(&§,m,¢)dédnds,

95 (21, 22) = fo (21,22) — lzz?;ﬁl (A2 (22),22) — lgg?;i (N2 (22),22) . (3.23)

0 _
We assume that g4 € C L1 (Q)
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Excluding the function 1; from system (3.21), (3.22), for the unknown function 13 we obtain the
following functional-differential equation:

Oty Oy Oy
lo1 9n (21, 22) + l23 25 (21, 22) — 21 o (21, A3 (A2 (22)))
/ Oy - = )
—la2 A3 (A2 (22)) XS (21, A3 (A2 (22))) = g6 (21, 22), 2 = (21,22) € , (3.24)
where 5 5
g6 (21,22) = g5 (21, 22) = In 5 (21, da (22)) — Lo’ * (21, R (22) . (3.25)
1 0z9
Consider separately the following cases:
(i) )\3 (0) = 0, Ao (22) = kZQ, 0 < k = const < 1, log = klgg; (3.26)
(i) X (0)=0, i=2,3; lo =0. (3.27)

In the case (3.26), relative to the new unknown function wy (21, 22) = ¥1 (21, kz2) + V2 (21, 22),
Eq. (3.22) can be written in the form

l21% (21, 22) + lzs% (21,22) = g5 (21, 22) , 2 = (21,22) € Q. (3.28)
Z1 322
Due to (2.22), (3.20), and (3.23), it is easy to verify that for Ao (22) = k29,
Aa(22) 2 P
g5 (21, 22) = f2(21,22) — I / /F(Z1,n,§)d7]d§—l22//F(§,>\2 (22) ,5)d&ds
0 0 0 0
21 A2(22)
—l23/ / F(§,m, 22)d&dn — 5222—2 (A2 (22),22) — 1232—2 (M2 (22),22), z=(21,22) € Q. (3.29)
0 0

It is clear from formula (3.29) that the condition g5 € C? (Q) holds if
0 _ _ _ _
fseCc™ (), AeC(Q), f€C*(Q), FeC?(D). (3.30)
By analogy to Eq. (3.11) and conditions (3.13) and (3.14), in order to ensure the unique solvability

0 _
of Eq. (3.28) in the space C' ™! (Q), it suffices to require the smoothness conditions (3.30) and the
conditions

COF|  Of, . OH PO
Floco= 5, e 0, 5, (0.,0)= S, 0,0)=0, i,j=1,2,
0 0
f2(0,0) = 8—2 (0,0) = 6—2 (0,0) =0, (3.31)
lo1 - l23 > 0. (3.32)

Therefore, if when conditions (3.30)-(3.32) hold, the function w; is a unique solution of Eq. (3.28) in
0 _
the space ¢' bt (Q), then since wy (21, 22) = ¥1 (21, k 22) + 12 (21, 22), due to (3.21) with respect to 11
0 _
and 15 in the space C' 1! (Q), we obtain the following system:

U1 (21, 22) + 2 (21, A3 (22)) = g4 (21, 22), 2= (21,22) € Q, (3.33)
o (21, 22) + U1 (21, k 22) = wy (21,22), 2= (21,22) € Q. (3.34)

Excluding the function 1, from system (3.33), (3.34), with respect to ¥; we obtain the equation
1/)1 (Zl, ZQ) — 1/11 (2’1, k )\3 (Zg)) = w2 (Zl, ZQ) , 2= (Zl, 22) € Q, (335)

where wo (21, 22) = g4 (21, 22) — w1 (21, A3 (22)).
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0 _
Taking into account Remark 3, we see that in the class C' ! (Q), Eq. (3.35) is equivalent to the
equation

p(z1,22) — ks (22) p (21, kA3 (22)) = w3 (21, 22), 2= (21,22) € Q, (3.36)
0? _
relative to the new unknown function p (21, 22) = 5 gé (21, 22) in the class C (Q). Therefore, taking
1022

into account Lemmas 3-8 formulated above for functional equations of the form (3.36), we obtain the
following theorems.

Theorem 6. Let conditions (2.49), (3.26), and (3.32) hold and A3 € C?([0,1]). Let at least one of
the following conditions hold:

(1) ‘)\g (22)’ < 1/k, 0< 2 < 1;

(2) the mapping A3 : [0,1] — [0,1] strictly monotonically increases and |5 (0)] < 1/k, X3 (z2) < %

for 0 <z <1.

Then for any F and f;, i = 1,2,3, satisfying conditions (3.30) and (3.31), problem (3.1), (3.20) has
a unique solution in the space 8’1’171 (D) In the case where the mapping A3 : [0,1] — [0, 1] strictly
monotonically increases, A3 (z2) < z2/k with 0 < z2 < 1, but in contrast to condition (2), the inequality
|A5 (0)| > 1/k holds, problem (3.1), (3.20) for any F and f;, i = 1,2,3, satisfying conditions (3.30)
and (3.31), is solvable in the space 8’1’1’1 (D), although the homogeneous problem corresponding to

0 _
(3.1), (3.20), has an infinite set of linearly independent solutions in the space C' ' (D).

0 _
Remark 9. Note that if the condition (2) of Theorem 6 holds, for the solution u € ¢ bt (D) of
problem (3.1), (3.20), the following estimate holds:

HuuglJJ(DP)f;c[ufwhﬂ(Dp)+—rfnuﬁ(QpJ

1 f2lleaan,) + 1l (3.37)

CI’I(QPB,) ’
where c is a positive constant independent of F', f;, ¢ = 1,2, 3, and the point P = P (m(l), ), :cg) eD,
and the domains Dp and Qp,, ¢ = 1,2, 3, are given in Theorem 2.
Now let us consider case (3.27). In this case, Eq. (3.24) takes the form
0 0
1322 (21, 2) — 1aNy (e (22)) 222 (21, s (M (22)) = g6 (21, 22). (3.38)
0z9 0z

Differentiating Eq. (3.38) with respect to z1, relative to the new unknown function wy (z1,22) =
0o
0z1822

(21, z2) we obtain the equation
0
lzgwo (Zl, ZQ) - lgg)\é ()\2 (ZQ)) wo (2’1, )\3 ()\2 (ZQ))) = a—if (Zl, ZQ) . (3.39)
Remark 10. According to Remark 3 and the assumption gg (0,22) = 0, 0 < 29 < 1, we see that

0 _ _
Eq. (3.38) in the space C'1? (Q) is equivalent to Eq. (3.39) in the space C (Q) Therefore, assuming
that

log # 0, (3.40)
Eq. (3.39) can be written in the form
wo (21, 22) — ag (22) wo (21, Ao (22)) = g7 (21, 22) , (3.41)
where
a0 (22) = 20 (0 (22)), Do (22) = X3 (ha (22)), g7 = 7 o0 (3.42)
23 23 021
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Now using Lemmas 3-8 for Eq. (3.41), on the solvability of problem (3.1), (3.20) in the space

0 _
oLt (D), we have the following theorem.

Theorem 7. Let conditions (2.49), (3.27), and (3.40) hold and

_ 0 _ 0 _ _
Fec(D), fiec™(Q), i=123, geC™(Q), gl,0=0 geC(Q),
where g4, gs, and g7 are expressed by the given functions F, f1, fa, fs by formulas (3.23), (3.25), and
(3.42). Assume that at least one of the following conditions hold:
l
(1) |22 (Ao (22))
l23

(2) the continuous mapping o : [0,1] — [0,1], where, according to (3.42), Ao (z2) = A3 (A2 (22)),
strictly monotonically increases and

<1,0< 2 <1,

l
%)\g ()\2 (22))‘ <1 Vzy: /\0 (ZQ) = Z29;

(3) the continuous mapping Ao : [0,1] — [0, 1] strictly monotonically increases and

l
l2—2)\:/3 (0)‘ < 1, )\0 (22) < z9, 0< 29 < 1; (343)
23

(4) the continuous mapping A : [0,1] — [0,1] is a homeomorphism and

l
iAg (A2 (zz))’ £1, 0< 29 <1;

(5) the continuous mapping Ao : [0,1] — [0, 1] is a homeomorphism and

l
ﬁ/\é (A2 (22))‘ >1 Vazp: A (22) = 295

(6) the continuous mapping Ao : [0, 1] — [0, 1] strictly monotonically increases, for a certain number
28 € (0,1), with X (22) < 22 for all z, € (23,1], and

B2 31 (o (22))

s #1 Vz € [O, Zg] ,

2250 (zg))‘ <1
23

0 _
Then problem (3.1), (3.20) has a unique solution in the space C' "1 (D). In the case where in condition

l l
(3.43) instead of the inequality l2—2x\g (0)| < 1, the opposite inequality holds, lz—z)\g (0)| > 1, problem
23 23

0 _
(3.1), (3.20) is solvable in the space ' (D), although the homogeneous problem corresponding to
0 _
(3.1), (3.20), has an infinite set of linearly independent solutions in the space C' 15! (D)

4. Problem (1.3), (2.2) in the Presence of Low-Order Terms in Equation (1.3)
Below we present a brief scheme of the study of problem (1.3), (2.2) in the presence of low-order

0 _
terms in Eq. (1.3). Considering problem (1.3), (2.2) in the class C' 15! (D) relative to coefficients A
of low-order derivatives, we require that

_ [E] _
AY € 010293 = {A €eC(D): % €eC(D), fi<ay, i= 1,2,3}.
0x| ' Oxy° Oxly
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In this case, as is known, there exists the Riemann function v (y1, y2, y3; x1, 2, r3) of Eq. (1.3) and for

0 _
a solution w € C' V1! (D) of this equation, due to (2.12), instead of representation (2.3), the following
formula holds (see [5]):

T T2 82

31’1 8%2

0
u(x1,x2,x3) = v (y1,y2,0; 21, T2, x3) [ w12 (Y1, y2) + A3 (y17y2,0)a—xltp12 (y1,92)

00
0
+A23 (y1,Y2,0) Dy P12 (y1,y2) + Az (Y1, 92, 0) w12 (Y1, y2) | dy1dy2
X1 I3 82 8
/V(y1,0,y3;961,962,563) [8x18x3¢13 (y1,y3) + A12 (y1,0,3) 8—9519013 (y1,93)
0

+

S

0
+A23 (1,0, y3) 8—3639013 (y1,93) +A2 (y1,0,y3) v13 (y1,93)] dy1dys
To T3

92 0
+//V(07y2,y3;961,962,$3) [ 023 (Y2, y3) + A12 (0,92,93) 8—3629023 (y2,y3)
00

83328.1?3

0
+A13 (0,92, y3) 9, ¥ (Y2, y3) +A1 (0,2, y3) P23 (Y2, y3)] dyadys
T1 To T3
+///V(y17y27y3;5617i1327333)F(yhyz,y:’,)dyldyzdy& (4.1)
000
where A12 — A1,1,0, A13 — A1,0,17 Agg — A(],l,l7 Al — AI,O,O7 A2 — AO’I’O, A3 — AO’O’I, A = AO’O’O,
0 ~ . . . .
P12 = u‘;pg:(]v $13 = u’12:07 $23 = u|x1:07 Wwij € CLI (Q)7 1<4,7<3,1<7.
0 _
Substituting the expression for u € ¢! (D) in (4.1) and in conditions (2.2), we obtain the system

of equations relative to the unknown functions ¢;; € 8’ L1 (Q), 1<14,7 <3,i < j, which can be studied
on the basis of known properties of the Riemann function of Eq. (1.3) (see [9]). Below, we consider
another way to construct solutions of problem (1.3), (2.2).

We solve problem (1.3), (2.2) by the method of sequential approximations, assuming

uo =0, (4.2)
33un a\alunil
—:F— Aa—, = i ':]_72,37 :1’2’_‘.' 43
011072013 IaZ:SZ 9z 9?9y’ Unlg, = fi, 1 n (4.3)
OAiSI

We solve problem (4.3) with n = 1,2,... under the conditions of Theorem 2 or Theorem 3 in the

0 _
case where |\ (0)| < 1. In these cases, for the solution v € C'''! (D) of problem (2.1), (2.2) together
with estimate (2.63) with f; =0,7=1,2,3, and F € C (D) such that

|F (21,9, 23)| < M (21 4+ 2+ 23)F, M,k = const > 0, (4.4)

the following estimate holds:

(1‘1 + x2 + xg)k+1

E+1 ’

<MK

|3|O‘u(x1,x2,x3) (4 5)

o1 %) as
O0x{" 0x50xy

K =const >0, |af<2, o <1
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From (4.2), (4.3) and estimate (2.63) we have

olody,

olol (uy — up)
0z 052 0xs?

0z 0x52 0x5? (w1, 22,03)) = (z1, 29, 3)

<c

IFlo(n +Z||fz||o ],lalsz a; <1, i=1,2,3.

Due to (4.3), the function (ug —uy) € C LLL(D) satisfies the following problem:

83 ('LL2 — U1) _ Z e 8‘04 (ul — 'LL())
011012023 =2 01 0xy? 025>’
aigl

For the right-hand side of Eq. (4.7), according to (4.6) we have the estimate

glel —
-y o 9 (1 — uo) (x1, T2, 3)

0z 02520253
ajze 071 0T2 0%

a; <1

> 1A%l (py

o] <2
a; <1

Due to (4.8), for the right-hand side of Eq. (4.7), estimate (4.4) holds with k£ = 0 and

¥ len +ZHszo ] (x1,22,23) € D.

> 4% o)

lo <2
a; <1

1¥lle(p +ZHszo ]

But in this case, by (4.5) for the solution (ug — u1) of problem (4.7), the estimate

ol (ug — uy) (x1 + x2 + x3)

S S A <MK <2 ; < 1.
8%?18x328x§‘3 (xlu xo, $3) ~ 1' ) |C¥’ = 4 (7S
holds. o
Since by (4.2) the function (u,11 — u,) € C 1! is a solution of the problem
33 (un+1 - Un . Z e 8' | un — Up— 1)
021022013 = o1 0x5? 02>’
aigl

(Un—l-l - u”)’SZ =0, =123,
using the same reasoning as for estimate (4.10), by induction we obtain

(1‘1 + 20 + xg)n
n!

1 (upy1 — up)
aq oo a3
0x{" 0x5° 0

(331,332,%3) S MKn

)

la] <2,0, <1, n=12,...,
where M is given by formula (4.9).

(UQ—U1)|SZ_:0, i:1,2,3.

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)
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It follows from (4.11) that the series

w=> (tn —un_1) (4.12)
n=1

converges in the space

& (D) Sy — M o(BY, pizan i—1,23
=K UE 7= € y Pi S gy, 1= 1,4,
8m§318$§28$33 e
for |a| < 2, a; < 1, i = 1,2,3, and, therefore, the sum w of series (4.12) belongs to the space

0 _
c (D) with |a| < 2, a; < 1,4 = 1,2,3. Thus, using (4.2) and taking into account the fact that
n
Up = Y (ug — uk—1), we have
k=1

lim [up —ullo =0, |a|<2, o<1, i=1,23 (4.13)
e &=(p)
0 _
Since u, € C' ! (D), due to (4.13), passing in Eq. (4.3) to the limit as n — oo, we obtain that
0 _
the function u from (4.11) belongs to the space C'"""! (D) and is a solution of problem (1.3), (2.2).

0 _
For the proof of the uniqueness of a solution of problem (1.3), (2.2) in the space C' ! (D), it suffices
to show that the homogeneous problem corresponding to (1.3), (2.2) has only the zero solution in

0 _
this space. Indeed, let @ € ¢ 1! (D) be a solution of the homogeneous problem. Since the functions
un, = U, n = 1,2,..., satisfy recursion relations (4.3) with F' =0 and f; = 0, i = 1,2, 3, by analogy
with how estimate (4.10) was obtained, we have

A n (@1 4+ 22+ 23)"
By (70| < MEM T

‘CK‘ S 27 (7] S 17

whence for a = 0, passing to the limit as n — oo, we obtain @ = 0. Thus, under the conditions of

Theorem 2 or Theorem 3, i.e., when F' € C (D), fi € 8’1’1 (Q), i =1,2,3, conditions from (2.49) hold
and either |\ (z2)] < 1, 0 < 29 < 1, A(22) = A2 (A3 (22)), i (22) < 29, 22 € [0,1], i = 2,3, or the
continuous mapping A : [0, 1] — [0, 1] strictly monotonically increases, for A (z3) < 2o for 0 < 29 < 1,
Ai(22) < z9, 29 € [0,1] and [N (0)] < 1, problem (1.3), (2.2) has a unique solution in the space
81,1,1 (D).

Problems (1.3), (3.2) and (1.3), (3.20) can be studied similarly.
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