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1. STATEMENT OF THE PROBLEM

For the nonlinear equation

Lu := utt − uxx + a(x, t)eu = f(x, t) (1.1)

in the half-plane Ω := {(x, t) : x ∈ R, t > 0}, we consider the Cauchy problem with the initial
conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ R := (−∞,+∞), (1.2)

where a, f , ϕ, and ψ are given real functions and u is the unknown real function.
Note that if a = const �= 0 and f = 0, then Eq. (1.1) is the classical Liouville equation, for which

the Cauchy problem has been completely studied (e.g., see [1, 2]). At the same time, methods
suggested in these papers for the analysis of the Cauchy problem cannot be used for a broad class
of functions a and f .

Let P0 := P0(x0, t0) be an arbitrary point of the domain Ω, and let DP0 := {(x, t) : t+x0− t0 <
x < −t + x0 + t0, t > 0} be the triangular domain bounded by the characteristic segments γ1,P0 :
x = t + x0 − t0 and γ2,P0 : x = −t + x0 + t0, 0 ≤ t ≤ t0, of Eq. (1.1) and by the segment γP0 : t = 0,
x0 − t0 ≤ x ≤ x0 + t0.

First, the Cauchy problem for Eq. (1.1) is posed in the finite domain DP0 : find a solution
u = u(x, t), (x, t) ∈ DP0 , of Eq. (1.1) satisfying the initial conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ γP0 , (1.3)

where ϕ and ψ are given real functions on γP0 .

Definition 1.1. Let a, f ∈ C(DP0), ϕ ∈ C1(γP0), and ψ ∈ C(γP0). A function u is called
a generalized solution of problem (1.1), (1.3) in the class C in the domain DP0 if u ∈ C(DP0)
and there exists a sequence of functions un ∈ C2(DP0) such that un → u and Lun → f in the
space C(DP0) and un(·, 0) → ϕ and unt(·, 0) → ψ in the spaces C1(γP0) and C(γP0), respectively,
as n → ∞.

Remark 1.1. Obviously, a classical solution of problem (1.1), (1.3) in the class C2(DP0) is
a strong generalized solution of this problem in the class C in the domain DP0 . In turn, if a strong
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generalized solution of problem (1.1), (1.3) in the class C in the domain DP0 belongs to the space
C2(DP0), then it is also a classical solution of that problem.

Definition 1.2. Now let a, f ∈ C(Ω), ϕ ∈ C1(R), and ψ ∈ C(R). We say that problem (1.1),
(1.3) is globally solvable in the class C if, for any point P0 ∈ Ω, this problem has a strong generalized
solution in the class C in the domain DP0 .

Definition 1.3. Let a, f ∈ C(Ω), ϕ ∈ C1(R), and ψ ∈ C(R). A function u ∈ C(Ω) is called
a global strong generalized solution of problem (1.1), (1.2) in the class C if, for any point P0 ∈ Ω,
it is a strong generalized solution of problem (1.1), (1.3) in the class C in the domain DP0 in the
sense of Definition 1.1.

Remark 1.2. Note that in the case where the existence and uniqueness theorem holds for
a strong generalized solution of problem (1.1), (1.3) in the class C in the domain DP0 for any
P0 ∈ Ω, we obtain the existence of a unique global strong generalized solution of problem (1.1),
(1.2) in the class C in the sense of Definition 1.3.

The present paper is organized as follows. In Section 2, under some constraints for the coefficient
a of Eq. (1.1), we derive an a priori estimate for a strong generalized solution of problem (1.1),
(1.3) in the class C in the domain DP0 in the sense of Definition 1.1. In Section 3, we prove
the existence of that solution. In Section 4, we perform an equivalent reduction of the posed
problem to a nonlinear integral equation of Volterra type in the class of continuous functions.
In Section 5, we prove the existence of a strong generalized solution of this problem in the sense
of Definition 1.1, and in Section 6 we provide a proof of the existence of a unique global classical
solution of problem (1.1), (1.2). In Section 7, we consider the problem on the local solvability of
problem (1.1), (1.3) and (1.1), (1.2) with no constraint imposed on the continuous function a, and
in Section 8, we analyze the absence of a strong generalized solution of problem (1.1), (1.3) in the
class C in the domain DP0 in the sense of Definition 1.1.

2. A PRIORI ESTIMATE FOR A STRONG GENERALIZED SOLUTION
OF PROBLEM (1.1), (1.3) IN THE CLASS C IN THE DOMAIN DP0

Consider the conditions

a, at ∈ C(Ω); a ≥ 0, at ≤ 0 everywhere in Ω (2.1)

and
ϕ ∈ C1(R), ψ ∈ C(R). (2.2)

Lemma 2.1. Let conditions (2.1) and (2.2) be satisfied , and let P0 be an arbitrary point of
the domain Ω. If u is a strong generalized solution of problem (1.1), (1.3) in the class C in the
domain DP0 , then one has the a priori estimate

‖u‖C(DP0 ) ≤ c1(‖f‖C(DP0) + ‖ϕ‖C1(γP0 ) + ‖a(·, 0)eϕ‖1/2

C(γP0 ) + ‖ψ‖C(γP0 )) (2.3)

with a positive constant c1 = c1(t0) independent of u, a, f, ϕ, and ψ.

Proof. Let u be a strong generalized solution of problem (1.1), (1.3) in the class C in the
domain DP0 , and let P0 ∈ Ω. Then, by virtue of Definition 1.1, there exists a sequence of functions
un ∈ C2(DP0) such that

lim
n→∞

‖un − u‖C(DP0 ) = 0, lim
n→∞

‖Lun − f‖C(DP0 ) = 0,

lim
n→∞

‖un(·, 0) − ϕ‖C1(γP0 ) = 0, lim
n→∞

‖unt(·, 0) − ψ‖C(γP0 ) = 0,
(2.4)

and consequently, by virtue of the continuity of the function a,

lim
n→∞

‖a(eun − eu)‖C(DP0 ) = 0. (2.5)
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Consider the function un ∈ C2(DP0) as a solution of the Cauchy problem

Lun = fn, (2.6)
un(x, 0) = ϕn(x), unt(x, 0) = ψn(x), x ∈ γP0 . (2.7)

Here
fn := Lun, ϕn := un(·, 0), ψn := unt(·, 0). (2.8)

Let P ′
0 := P ′

0(x
′
0, t

′
0) ∈ DP0 . Then, obviously, DP ′

0
⊂ DP0 and γP ′

0
⊂ γP0 . By multiplying both

sides of relation (2.6) by unt and by integrating the resulting relation over the domain

DP ′
0,τ := {(x, t) ∈ DP ′

0
: 0 < t < τ}, 0 < τ < t′0,

we obtain ∫

DP ′
0,τ

(u2
nt)t dx dt − 2

∫

DP ′
0,τ

(unxunt)x dx dt +
∫

DP ′
0,τ

(u2
nx)t dx dt

+ 2
∫

DP ′
0,τ

(aeun)t dx dt − 2
∫

DP ′
0 ,τ

ate
un dx dt = 2

∫

DP ′
0,τ

fnunt dx dt.

Set ΩP ′
0,τ := DP ′

0
∩ {t = τ}, 0 < τ < t′0. Then, by taking into account (2.7) and by integrating

the left-hand side in the last relation by parts, we reduce it to the form

2
∫

DP ′
0 ,τ

fnunt dx dt + 2
∫

DP ′
0 ,τ

ate
un dx dt

=
2∑

i=1

∫

γi,P ′
0,τ

ν−1
t [(νtunx − νxunt)2 + u2

nt(ν
2
t − ν2

x) + 2aeunν2
t ] ds

−
x′
0+t′0∫

x′
0−t′0

[ϕ′2
n (x) + ψ2

n(x) + 2a(x, 0)eϕn ] dx +
∫

ΩP ′
0,τ

[u2
nx + u2

nt + 2a(x, τ)eun ] dx, (2.9)

where ν := (νx, νt) is the unit outward normal on ∂DP ′
0,τ and γi,P ′

0,τ := γi,P ′
0
∩ {t ≤ τ}, i = 1, 2.

Since the relations

νt|γi,P ′
0

> 0, (ν2
t − ν2

x)|γi,P ′
0

= 0, i = 1, 2,

are satisfied everywhere on γi,P ′
0
, i = 1, 2, it follows from (2.1) and (2.9) that

wn(τ) ≤ 2
∫

DP ′
0 ,τ

fnunt dx dt + αn. (2.10)

Here

wn(τ) :=
∫

ΩP ′
0,τ

(u2
nx + u2

nt) dx +
2∑

i=1

∫

γi,P ′
0,τ

ν−1
t (νtunx − νxunt)2 ds, (2.11)

α :=

x′
0+t′0∫

x′
0−t′0

[ϕ′2
n (x) + ψ2

n(x) + 2a(x, 0)eϕn ] dx. (2.12)
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By using the relation

2
∫

DP ′
0,τ

fnunt dx dt ≤
∫

DP ′
0,τ

u2
nt dx dt + ‖fn‖2

L2(DP0,τ ),

we rewrite inequality (2.10) in the form

wn(τ) ≤
∫

DP ′
0,τ

u2
nt dx dt + ‖fn‖2

L2(DP0,τ ) + αn.

This, together with (2.11), implies that

wn(τ) ≤
τ∫

0

wn(σ) dσ + ‖fn‖2
L2(DP0,τ ) + αn, 0 < τ < t′0.

Since the quantity ‖fn‖2
L2(DP0,τ ) is a nondecreasing function of τ , it follows from the last inequality

and the Gronwall lemma (e.g., see [3, p. 13]) that

wn(τ) ≤ eτ (‖fn‖2
L2(DP0,τ ) + αn). (2.13)

One can readily see that νt

∂

∂x
− νx

∂

∂t
is an operator of interior differentiation along the unit

tangent of γ1,P ′
0
. Therefore, the integration along the segment γ1,P ′

0
leads to the relation

un(x′
0, t

′
0) = ϕn(x′

0 − t′0) +
∫

γ1,P ′
0

(νtunx − νxunt) ds.

Then, by squaring both sides of this relation and by using the Cauchy and Schwarz inequalities,
we obtain

|un(x′
0, t

′
0)|2 ≤ 2ϕ2

n(x′
0 − t′0) + 2

∫

γ1,P ′
0

ds

∫

γ1,P ′
0

(νtunx − νxunt)2 ds

≤ 2ϕ2
n(x′

0 − t′0) + 2
√

2 t0

∫

γ1,P ′
0

(νtunx − νxunt)2 ds.

This, together with (2.11)–(2.13), implies that

|un(x′
0, t

′
0)|2 ≤ 2ϕ2

n(x′
0 − t′0) + 4t0et0(‖fn‖2

L2(DP0 ) + αn) ≤ 2ϕ2
n(x′

0 − t′0)

+ 4t0et0(‖fn‖2
C(DP0 )

mes DP0 + 2t0‖ϕ′
n‖2

C(γP0 ) + 2t0‖ψn‖2
C(γP0) + 4t0‖a(·, 0)eϕn‖C(γP0 ))

= 2ϕ2
n(x′

0 − t′0) + 4t20e
t0(t0‖fn‖2

C(DP0)
+ 2‖ϕ′

n‖2
C(γP0 ) + 2‖ψn‖2

C(γP0) + 4‖a(·, 0)eϕn‖C(γP0 )).

Here we have used the obvious inequalities

‖ · ‖2
L2(DP0 ) ≤ ‖ · ‖2

C(DP0 )
mes DP0 = t20‖ · ‖2

C(DP0)
; ‖ · ‖2

L2(γP0 ) ≤ 2t0‖ · ‖2
C(γP0 ).

Consequently,

|un(x′
0, t

′
0)| ≤ c1(‖fn‖C(DP0 ) + ‖ϕn‖C1(γP0) + ‖a(·, 0)eϕn‖1/2

C(γP0 ) + ‖ψn‖C(γP0 )),
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where
c2
1 := max{4t30et0 , 2 + 8t20e

t0 , 16t20e
t0}. (2.14)

By passing in this inequality to the limit as n → ∞ and by taking into account (2.4) and (2.8),
we obtain the estimate

|u(x′
0, t

′
0)| ≤ c1(‖f‖C(DP0) + ‖ϕ‖C1(γP0 ) + ‖a(·, 0)eϕ‖1/2

C(γP0) + ‖ψ‖C(γP0 )). (2.15)

Since P ′
0 := P ′

0(x
′
0, t

′
0) ∈ DP0 is an arbitrary point of the domain DP0 , we have the estimate (2.3).

3. UNIQUENESS OF A STRONG GENERALIZED SOLUTION OF PROBLEM (1.1), (1.3)
IN THE CLASS C IN THE DOMAIN DP0

Theorem 3.1. Let a, f ∈ C(Ω), and let condition (2.2) be satisfied. Then, for any given point
P0 ∈ Ω, problem (1.1), (1.3) has at most one strong generalized solution of the class C in the
domain DP0 .

Proof. Indeed, suppose that problem (1.1), (1.3) has two distinct strong generalized solutions
u1 and u2 of the class C in the domain DP0 . Then, by Definition 1.1, there exists a sequence of
functions ui

n ∈ C2(DP0) such that

lim
n→∞

‖ui
n − ui‖C(DP0 ) = 0, lim

n→∞
‖Lui

n − f‖C(DP0 ) = 0,

lim
n→∞

‖ui
n(·, 0) − ϕ‖C1(γP0 ) = 0, lim

n→∞
‖ui

nt(·, 0) − ψ‖C(γP0 ) = 0
(3.1)

and
lim

n→∞
‖a(eui

n − eui

)‖C(DP0) = 0, i = 1, 2. (3.2)

Set ωn := u2
n−u1

n and � := ∂2/∂t2−∂2/∂x2. One can readily see that the function ωn ∈ C2(DP0)
satisfies the relations

�ωn + gn = fn, (3.3)
ωn|γP0

= τn, ωnt|γP0
= νn, (3.4)

where

gn := a(eu2
n − eu1

n), fn := Lu2
n − Lu1

n, τn := (u2
n − u1

n)|γP0
, νn := (u2

n − u1
n)t|γP0

. (3.5)

By virtue of the first relation in (3.1), there exists a number K := const > 0 independent of the
indices i and n and such that

‖ui
n‖C(DP0 ) ≤ K. (3.6)

By virtue of relations (3.1) and (3.5), we have

lim
n→∞

‖τn‖C1(γP0 ) = 0, lim
n→∞

‖νn‖C(γP0 ) = 0, lim
n→∞

‖fn‖C(DP0 ) = 0. (3.7)

By virtue of the estimate (3.6) and the first relation in (3.5), one can readily see that

|gn| ≤ a0e
K |ωn|, (3.8)

where a0 := ‖a‖C(DP0 ).
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By multiplying both sides of relation (3.3) by ωnt and by integrating the resulting relation over
the domain DP ′

0,τ , where P ′
0 := P ′

0(x′
0, t

′
0) ∈ DP0 , by using (3.4), and by following the lines of the

derivation of relation (2.9) from (2.6) and (2.7), we obtain

vn(τ) :=
∫

ΩP ′
0,τ

(ω2
nx + ω2

nt) dx +
2∑

i=1

∫

γi,P ′
0,τ

ν−1
t (νtωnx − νxωnt)2 ds

= 2
∫

DP ′
0,τ

(fn − gn)ωnt dx dt + ‖τ ′
n‖2

L2(γP ′
0
) + ‖νn‖2

L2(γP ′
0
). (3.9)

By virtue of the estimate (3.8) and the Cauchy inequality, we obtain the relation

2
∫

DP ′
0,τ

(fn − gn)ωnt dx dt ≤ 2
∫

DP ′
0,τ

ω2
nt dx dt +

∫

DP0,τ

f 2
n dx dt +

∫

DP ′
0,τ

g2
n dx dt

≤ 2
∫

DP ′
0,τ

ω2
nt dx dt + ‖fn‖2

L2(DP0,τ ) + a2
0e

2K

∫

DP ′
0,τ

ω2
n dx dt. (3.10)

Next, by virtue of the first relation in (3.4), one can readily see that

ωn(x, t) = τn(x) +

t∫

0

ωnt(x, σ)dσ, (x, t) ∈ DP ′
0,τ .

By squaring both sides of this relation and by using the Cauchy and Schwarz inequalities, we obtain

|ωn(x, t)|2 ≤ 2τ 2
n(x) + 2t

t∫

0

ω2
nt(x, σ) dσ, (x, t) ∈ DP ′

0,τ .

By setting

v(x, t) =
{

ωnt(x, t) for (x, t) ∈ DP ′
0,τ

0 for (x, t) /∈ DP ′
0,τ ,

and by using the inequality t ≤ τ satisfied for (x, t) ∈ DP ′
0,τ , we arrive at the inequality

∫

DP ′
0,τ

ω2
n dx dt ≤ 2τ‖τn‖2

L2(γP0) + 2τ

x′
0+t′0∫

x′
0−t′0

dx

τ∫

0

( τ∫

0

v2(x, σ) dσ

)
dt

= 2τ‖τn‖2
L2(γP0 ) + 2τ 2

x′
0+t′0∫

x′
0−t′0

dx

τ∫

0

v2(x, t) dt = 2τ‖τn‖2
L2(γP0 ) + 2τ 2

∫

DP ′
0,τ

ω2
nt dx dt. (3.11)

It follows from relations (3.9)–(3.11) that

vn(τ) ≤ 2(τ 2a2
0e

2K + 1)
∫

DP ′
0 ,τ

ω2
nt dx dt

+ ‖fn‖2
L2(DP0,τ ) + ‖τ ′

n‖2
L2(γP0 ) + ‖νn‖2

L2(γP0 ) + 2τa2
0e

2K‖τn‖2
L2(γP0 )

≤ 2(t20a
2
0e

2K + 1)

τ∫

0

vn(σ)dσ + ‖fn‖2
L2(DP0 ) + ‖τ ′

n‖2
L2(γP0 ) + ‖νn‖2

L2(γP0 ) + 2τa2
0e

2K‖τn‖2
L2(γP0 ).
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Consequently, by the Gronwall lemma, for 0 < τ ≤ t′0, we obtain the estimate

vn(τ) ≤ c2(‖fn‖2
L2(DP0 ) + ‖τ ′

n‖2
L2(γP0) + ‖νn‖2

L2(γP0 ) + 2t0a2
0e

2K‖τn‖2
L2(γP0 )),

where c2 := exp{2t0(t20a2
0e

2K + 1)}. This, together with (3.9), implies that
∫

γ1,P ′
0

(νtωnx − νxωnt)2 ds

≤
√

2c2(‖fn‖2
L2(DP0 ) + ‖τ ′

n‖2
L2(γP0 ) + ‖νn‖2

L2(γP0 ) + 2t0a2
0e

2K‖τn‖2
L2(γP0 )), 0 < τ ≤ t′0.

Next, by reproducing the argument used in the derivation of the estimate (2.15), we obtain

|ωn(x′
0, t

′
0)|2 ≤ 2τ 2

n(x′
0 − t′0) + 4t20c2(t0‖fn‖2

C(DP0 )
+ 2‖τ ′

n‖2
C(γP0 )

+ 2‖νn‖2
C(γP0 ) + 4t0a2

0e
2K‖τn‖2

C(γP0
).

Consequently, by virtue of (3.7), we have limn→∞ |ωn(x′
0, t

′
0)| = 0; i.e., u2(x′

0, t
′
0) = u1(x′

0, t
′
0) for

any (x′
0, t

′
0) ∈ DP0 . This completes the proof of Theorem 3.1.

4. EQUIVALENT REDUCTION OF PROBLEM (1.1), (1.3)
TO A NONLINEAR INTEGRAL EQUATION OF THE VOLTERRA TYPE

IN THE CLASS OF CONTINUOUS FUNCTIONS

Let u ∈ C2(Ω) be a classical solution of problem (1.1), (1.3). Set

Dx,t := {(x1, t1) : t1 + x − t < x1 < −t1 + x + t, t1 > 0}, (x, t) ∈ Ω.

Note that DP0 = Dx,t for x = x0 and t = t0. By using the initial conditions (1.3) for ϕ ∈ C2(R)
and ψ ∈ C1(R) and by integrating Eq. (1.1) over the domain Dx,t, we obtain the relation

u(x, t) + (�−1(aeu))(x, t) = F (x, t), (x, t) ∈ DP0 . (4.1)

Here
F (x, t) := (�−1f)(x, t) + (l1ϕ)(x, t) + (l2ψ)(x, t), (4.2)

and the continuous operators

l1 : Ck(γP0) → Ck(DP0), k = 0, 1, 2, l2 : Ck(γP0) → Ck+1(DP0), k = 0, 1,

�−1 : Ck(DP0) → Ck+1(DP0), k = 0, 1,
(4.3)

act by the formulas (e.g., see [4, p. 173])

(l1ϕ)(x, t) :=
1
2
[ϕ(x + t) + ϕ(x − t)], (l2ψ)(x, t) :=

1
2

x+t∫

x−t

ψ(ξ) dξ,

(�−1f)(x, t) :=
1
2

∫

Dx,t

f(ξ, τ) dξ dτ.

(4.4)

Remark 4.1. Relation (4.1) can be treated as a nonlinear integral equation of Volterra type.

Lemma 4.1. A function u ∈ C(DP0) is a strong generalized solution of problem (1.1), (1.3) of
the class C in the domain DP0 if and only if it is a continuous solution of the nonlinear integral
equation (4.1).
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Proof. Indeed, let u ∈ C(DP0) be a solution of Eq. (4.1). Since u(f) ∈ C(DP0) and the space
C2(DP0) is dense in C(DP0) (e.g., see [5, p. 37]), it follows that there exists a sequence of functions
wn(fn) ∈ C2(DP0) such that wn(fn) → u(f) in the space C(DP0) as n → ∞.

Likewise, since ϕ ∈ C1(γP0) [respectively, ψ ∈ C(γP0)], it follows that there exists a sequence of
functions ϕn ∈ C2(γP0) [respectively, ψn ∈ C1(γP0)] such that ϕn → ϕ (respectively, ψn → ψ) in
the space C1(γP0) [respectively, C(γP0)] as n → ∞.

Set un := −�−1(aewn)+�−1fn+l1ϕn+l2ψn, n = 1, 2, . . . One can readily see that un ∈ C2(DP0),
and since, by virtue of (4.3) and (4.4), l1, l2, and �−1 are linear continuous operators in the
corresponding spaces and moreover,

lim
n→∞

‖wn − u‖C(DP0 ) = 0, lim
n→∞

‖fn − f‖C(DP0 ) = 0,

lim
n→∞

‖ϕn − ϕ‖C1(γP0 ) = 0, lim
n→∞

‖ψn − ψ‖C(γP0 ) = 0,

it follows from (2.5) that un → −�−1(aeu) + �−1f + l1ϕ + l2ψ, un(·, 0) → ϕ, and unt(·, 0) → ψ
in the spaces C(DP0), C1(γP0), and C(γP0), respectively, as n → ∞. But from relations (4.1) and
(4.2), we obtain −�−1(aeu) + �−1f + l1ϕ + l2ψ = u. Therefore, we have

lim
n→∞

‖un − u‖C(DP0 ) = 0.

On the other hand, �un = −aewn + fn, which, together with the relations

lim
n→∞

‖un − u‖C(DP0 ) = 0, lim
n→∞

‖wn − u‖C(DP0 ) = 0, lim
n→∞

‖fn − f‖C(DP0 ) = 0,

implies that

Lun = �un + aeun = −aewn + fn + aeun = a(eun − eu) − a(ewn − eu) + fn → f

in the space C(DP0) as n → ∞. The converse is obvious.

5. EXISTENCE OF A STRONG GENERALIZED SOLUTION OF PROBLEM (1.1), (1.3)
OF THE CLASS C IN THE DOMAIN DP0 AND THE GLOBAL SOLVABILITY

IN THE SENSE OF DEFINITION 1.2

As was mentioned above, the operator �−1 occurring in (4.4) is a linear continuous operator
acting, by virtue of (4.3), from the space C(DP0) to the space of continuously differentiable functions
C1(DP0). Next, since the space C1(DP0) is compactly embedded in the space C(DP0) (e.g., see
[6, p. 135 of the Russian translation]), we readily obtain the following assertion.

Lemma 5.1. The operator �−1 : C(DP0) → C(DP0) occurring in (4.4) is a linear compact
operator.

We rewrite Eq. (4.1) in the form

u = Au := −�−1(aeu) + F, (5.1)

where the operator A : C(DP0) → C(DP0) is continuous and compact, because the nonlinear
operator N : C(DP0) → C(DP0) acting by the formula Nu := aeu is bounded and continuous
and the linear operator �−1 : C(DP0) → C(DP0) is compact by virtue of Lemma 5.1. At the
same time, by Lemma 2.1 and relation (2.14), for any value of the parameter τ ∈ [0, 1] and for
any solution u ∈ C(DP0) of the equation u = τAu, we have the a priori estimate (2.3) with the
same positive constant c1, which occurs in the estimate (2.3) and is independent of u, a, f , ϕ, ψ,
and τ . Therefore, by the Leray–Schauder theorem (e.g., see [7, p. 375]), under the assumptions of
Lemma 2.1, Eq. (5.1) has at least one solution u ∈ C(DP0). Therefore, by Lemma 4.1, the following
assertion holds.
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Theorem 5.1. If conditions (2.1) and (2.2) are satisfied , then problem (1.1), (1.3) is globally
solvable in the class C in the sense of Definition 1.2; i.e., for each point P0 ∈ Ω, this problem has
a strong generalized solution of the class C in the domain DP0 .

6. EXISTENCE OF A CLASSICAL SOLUTION OF PROBLEM (1.1), (1.2)
IN THE HALF-PLANE Ω

Lemma 4.1 and relations (5.1), (4.2), and (4.3) readily imply the following assertion.

Lemma 6.1. Let a, f ∈ C1(Ω), ϕ ∈ C2(R), and ψ ∈ C1(R). Then any strong generalized
solution u of problem (1.1), (1.3) of the class C in the domain DP0 in the sense of Definition 1.1
is classical , i.e., belongs to the class C2(DP0).

Lemma 6.2. Let a ∈ C1(Ω), and let condition (2.1) be satisfied. Then, for arbitrary f ∈ C1(Ω),
ϕ ∈ C2(R), and ψ ∈ C1(R), problem (1.1), (1.2) has a unique global classical solution u ∈ C2(Ω)
in the half-plane Ω.

Proof. By Theorem 3.1, Lemma 6.1, and the argument carried out in Section 5, in the domain
Dx0,t0 for t0 = n ∈ N, there exists a unique classical solution un ∈ C2(Dx0,n) of problem (1.1), (1.3).
Since un+1 is a classical solution of problem (1.1), (1.3) in the domain Dx0,n as well, it follows from
Theorem 3.1 that un+1|Dx0,n

= un. Therefore, the function u constructed in the domain Ω by the
rule u(x, t) = un(x, t) for n = [t] + 1, where (x, t) ∈ Ω and [t] is the integer part of the number t,
is the unique classical solution of problem (1.1), (1.2) of the class C2(Ω) in the half-plane Ω. This
completes the proof of Lemma 6.2.

7. LOCAL SOLVABILITY OF PROBLEMS (1.1), (1.3) AND (1.1), (1.2)

In what follows, we assume that a, f ∈ C(Ω), ϕ ∈ C1(R), and ψ ∈ C(R).

Theorem 7.1. For any given x0 ∈ R, there exists a positive number T := T (x0; a, f, ϕ, ψ) > 0
such that , for t0 ∈ (0, T ), problem (1.1), (1.3) in the domain DP0 has at least one strong generalized
solution u of the class C in the domain DP0 .

Proof. In Section 4, problem (1.1), (1.3) in the space C(DP0) has been equivalently reduced to
the integral equation (4.1) of the Volterra type or, which is the same, (5.1). Since A : C(DP0) →
C(DP0) is a continuous and compact operator, it follows from the Schauder theorem that, for the
solvability of Eq. (5.1), it suffices to show that the operator A brings some ball

BR := {v ∈ C(DP0) : ‖v‖C(DP0 ) ≤ R}

of radius R > 0, which is a closed and convex set in the Banach space C(DP0), into itself. Let us
show that this is the case for sufficiently small t0.

Take a number T0 > 0 and set

ϕ0 := ‖ϕ‖C[x0−T0,x0+T0], ψ0 := ‖ψ‖C[x0−T0,x0+T0], a1 := ‖a‖C(DP1 ), f1 := ‖f‖C(DP1 ),

where P1 := P1(x0, T0). This, together with (4.2) and (4.4) for t0 < T0, implies that

‖Au‖C(DP0) ≤ 2−1t20a1‖eu‖C(DP0 ) + ‖F‖C(DP0 ) ≤ ϕ0 + [2−1T0(a1e
R + f1) + ψ0]t0. (7.1)

Now, by setting R := 2ϕ0 and T := min{T0, d
−1ϕ0}, where d := 2−1T0(a1e

R + f1) + ψ0, for t0 < T
from (7.1), we obtain the estimate

‖Au‖C(DP0) ≤ ϕ0 + ϕ0 = 2ϕ0 = R.

The proof of the theorem is complete.
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Now consider the following conditions:

ã1 := sup
(x,t)∈Ω

|a(x, t)| < +∞, f̃1 := sup
(x,t)∈Ω

|f(x, t)| < +∞,

ϕ̃0 := sup
x∈R

|ϕ(x)| < +∞, ψ̃1 := sup
x∈R

|ψ(x)| < +∞.
(7.2)

Theorem 7.2. Let a, f ∈ C1(Ω), ϕ ∈ C2(R), and ψ ∈ C1(R), and let condition (7.2) be satisfied.
Then there exists a number T∗ := T∗(a, f, ϕ, ψ) > 0 such that problem (1.1), (1.2) in the strip
Ω1 := R × (0, T∗) has a unique classical solution u ∈ C2(Ω1).

The proof of this theorem follows directly from the uniqueness theorem (Theorem 3.1), Theo-
rem 7.1, and the argument carried out in Lemma 6.2.

8. THE CASE OF ABSENCE OF A GLOBAL SOLUTION
OF PROBLEM (1.1), (1.3)

Remark 8.1. Below we show that, under certain conditions imposed on the functions a, f ∈
C(Ω), ϕ ∈ C1(R), and ψ ∈ C(R), for any fixed x0 ∈ R, there exists a number

T ∗ := T ∗(x0; a, f, ϕ, ψ) > 0

such that, for t0 ∈ (0, T ∗), problem (1.1), (1.3) has a strong generalized solution of the class C in
the domain DP0 , and for t0 > T ∗ it does not have such a solution in this domain.

Lemma 8.1. Let u be a strong generalized solution of problem (1.1), (1.3) of the class C in the
domain DP0 . Then one has the integral relation

∫

DP0

aeuχdx dt =

x0+t0∫

x0−t0

[ψ(x)χ(x, 0) − ϕ(x)χt(x, 0)] dx −
∫

DP0

u�χdx dt +
∫

DP0

fχ dx dt (8.1)

for any function χ such that

χ ∈ C2(DP0), χ|γi,P0
= 0, i = 1, 2. (8.2)

Proof. By the definition of a strong generalized solution u of problem (1.1), (1.3) of the class
C in the domain DP0 , we have u ∈ C(DP0), and there exists a sequence of functions un ∈ C2(DP0)
satisfying relations (2.4) and (2.5).

Set fn := Lun. We multiply both sides of the relation Lun = fn by the function χ and integrate
the resulting relation over the domain DP0 . As a result of integration by parts on the left-hand
side in this relation with regard of (8.2), we obtain

∫

DP0

aeunχdx dt =

x0+t0∫

x0−t0

[ψn(x)χ(x, 0) − ϕn(x)χt(x, 0)] dx

−
∫

DP0

un�χdx dt +
∫

DP0

fnχdx dt. (8.3)

Here
ϕn := un(·, 0), ψn := unt(·, 0). (8.4)

By passing in relation (8.3) to the limit as n → ∞ and by taking into account (2.4), (2.5), and
(8.4), we obtain the desired relation (8.1).
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Lemma 8.2. Let a function u ∈ C(DP0) be a strong generalized solution of problem (1.1), (1.3)
of the class C in the domain DP0 . If

a(x, t) ≤ −c3 := const < 0, f(x, t) ≥ 0, (x, t) ∈ Ω, ϕ(x) ≥ 0, ψ(x) ≥ 0, x ∈ R, (8.5)

then u ≥ 0 in the domain DP0 .

Proof. By virtue of (4.2), (4.4) and the property of the operator �−1, the nonnegativity of the
function u readily follows from the representation (5.1).

Under the assumptions of the lemma, by taking into account the inequality 2eu ≥ u2 for u ≥ 0,
from (8.1), we obtain

c3

∫

DP0

u2χdx dt

≤ 2

x0+t0∫

x0−t0

[ϕ(x)χt(x, 0) − ψ(x)χ(x, 0)] dx + 2
∫

DP0

u�χdx dt − 2
∫

DP0

fχ dx dt. (8.6)

We use the method of test functions (e.g., see [8, pp. 10–12]). Let us introduce a function
χ0 := χ0(x, t) such that

χ0 ∈ C2(D(0,1)), χ0|D(0,1) > 0, χ0|γi,(0,1) = 0, i = 1, 2, (8.7)

and

κ0 :=
∫

D(0,1)

|�χ0|2
χ0

dx dt < +∞. (8.8)

One can readily see that, for a function χ0 satisfying conditions (8.7) and (8.8), one can take,
e.g., the function

χ0 = χ∗(x, t) := [(1 − t)2 − x2]n, (x, t) ∈ D(0,1), (8.9)

for a sufficiently large positive integer n.
Now, by assuming that χP0(x, t) = χ0((x − x0)/t0, t/t0) and by taking into account (8.7), one

can readily see that

χP0 ∈ C2(DP0), χP0 |DP0
> 0, χP0 |γi,P0

= 0, i = 1, 2. (8.10)

We assume that the functions f , ϕ, and ψ and the number x0 are fixed and introduce a function
of the single variable t0,

ζ(t0) :=

x0+t0∫

x0−t0

[
ψ(x)χP0(x, 0) − ϕ(x)

∂χP0(x, 0)
∂t

]
dx +

∫

DP0

fχP0 dx dt. (8.11)

We have the following assertion on the absence of the global solvability of problem (1.1), (1.3).

Theorem 8.1. Let condition (8.5) be satisfied , and let a function u ∈ C(DP0) be a strong
generalized solution of problem (1.1), (1.3) of the class C in the domain DP0 . If

lim inf
t0→+∞

ζ(t0) > 0, (8.12)

then there exists a positive number T 0 := T 0(x0; a, f, ϕ, ψ) > 0 such that , for t0 > T 0, problem (1.1),
(1.3) does not have a strong generalized solution of the class C in the domain DP0 .
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Proof. Suppose that, under assumptions of this lemma, there exists a strong generalized solution
u of problem (1.1), (1.3) of the class C in the domain DP0 . Then, by Lemmas 8.1 and 8.2, we have
inequality (8.6), where, by virtue of (8.10), for the function χ, one can take the function χ = χP0 ;
i.e.,

c3

∫

DP0

u2χP0 dx dt ≤ 2
∫

DP0

u�χP0 dx dt − 2ζ(t0). (8.13)

By using the ε-inequality, we obtain

2u�χP0 ≤ 2|u�χP0 | = 2|u|√χP0

|�χP0 |√
χP0

≤ εu2χP0 +
|�χP0 |2
εχP0

.

From the last inequality and from (8.13), we obtain the inequality

(c3 − ε)
∫

DP0

u2χP0 dx dt ≤ 1
ε

∫

DP0

|�χP0 |2
χP0

dx dt − 2ζ(t0),

which, for ε < c3, implies that
∫

DP0

u2χP0 dx dt ≤ 1
ε(c3 − ε)

∫

DP0

|�χP0 |2
χP0

dx dt − 2
c3 − ε

ζ(t0). (8.14)

Since min0<ε<c3

1
ε(c3 − ε)

=
4
c2
3

is attained for ε =
c3

2
, we find that inequality (8.14) acquires

the form ∫

DP0

u2χP0 dx dt ≤ 4
c2
3

∫

DP0

|�χP0 |2
χP0

dx dt − 4
c3

ζ(t0). (8.15)

Since χP0(x, t) = χ0((x − x0)/t0, t/t0), it follows from conditions (8.7) and (8.8) that, after the
substitution x = x0 + t0x

′, t = t0t
′, we obtain

∫

DP0

|�χP0 |2
χP0

dx dt =
1
t20

∫

D(0,1)

|�χ0|2
χ0

dx′ dt′ =
κ0

t20
< +∞.

Then, by virtue of condition (8.10), from inequality (8.15), we derive the inequality

0 ≤
∫

DP0

u2χP0 dx dt ≤
(

2
c3t0

)2

κ0 −
4
c3

ζ(t0). (8.16)

By virtue of the definition (8.8), we have limt0→+∞(2/(c3t0))2κ0 = 0. Therefore, by (8.12), there
exists a positive number T 0 := T 0(x0; a, f, ϕ, ψ) > 0 such that for t0 > T 0 the right-hand side of
inequality (8.16) is negative, while the left-hand side in this inequality is nonnegative. This implies
that if there exists a strong generalized solution u of problem (1.1), (1.3) of the class C in the
domain DP0 , then we necessarily have t0 ≤ T 0, which completes the proof of Theorem 8.1.

Remark 8.2. By Remark 8.1, by T ∗ := T ∗(x0; a, f, ϕ, ψ) we denote the least upper bound of
t0 > 0 for which problem (1.1), (1.3) is solvable in the domain DP0 . It follows from Theorems 7.1
and 8.1 that 0 < T ∗ ≤ T 0; moreover, problem (1.1), (1.3) is solvable in the domain DP0 for t0 < T ∗

and has no solution for t0 > T ∗.
Remark 8.3. One can readily see that if, in addition to (8.5), we additionally require that one

of the following inequalities is satisfied:

(i) f(x, t) ≥ c, (x, t) ∈ Ω; (ii) ϕ(x) ≥ c; (iii) ψ(x) ≥ c, x ∈ R, (8.17)
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where c := const > 0, and for the function χP0 , we take

χP0(x, t) = χ∗((x − x0)/t0, t/t0),

where χ∗ is given by (8.9), then condition (8.12) is satisfied, and, therefore, in this case, prob-
lem (1.1), (1.3) with sufficiently large t0 does not have a strong generalized solution u of the class C
in the domain DP0 .

Indeed, by performing the transformation of the independent variable x by the formula
x = x0 + t0τ in the first integral in (8.11) in the case in which, for example, the third condi-
tion (8.17) is satisfied, after simple manipulations, we obtain

ζ(t0) ≥
x0+t0∫

x0−t0

ψ(x)χP0(x, 0) dx = t0

1∫

−1

ψ(x0 + t0τ)χ∗(τ, 0) dτ ≥ ct0

1∫

−1

(1 − τ 2)n dτ

= 2ct0

1∫

0

(1 − τ 2)n dτ = ct0B(2−1, n + 1) > 0, (8.18)

where B(a, b) is a well-known Euler integral of the first kind (e.g., see [9, p. 750]). It readily
follows from (8.18) that inequality (8.12) holds. The remaining cases in (8.17) can be considered
in a similar way. The proof of Theorem 8.1 is complete.

Remark 8.4. If condition (8.17) fails, then, in general, problem (1.1), (1.2) can have a global
solution. Indeed, the function

u(x, t) = ln
8

(ex + e−x)2

is a global solution of problem (1.1), (1.2) for

f = 0, ψ = 0, ϕ(x) = ln
8

(ex + e−x)2
, x ∈ R.
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