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1. Introduction

In the Euclidean space Rn+1 of the independent variables x1, x2, . . . , xn , t consider a nonlinear hyperbolic system of
the form

�ui + λ
∂

∂ui
G(u1, . . . , uN) = Fi(x, t), i = 1, . . . , N, (1.1)

where λ is a given real constant, G is a given real scalar function, F = (F1, . . . , F N ) is a given, and u = (u1, . . . , uN ) is
an unknown real vector-functions, n � 2, N � 2, � := ∂2

∂t2 − �, � := ∑n
i=1

∂2

∂x2
i

. We assume that function G together with its

first order partial derivatives ∂G
∂ui

, i = 1, . . . , N , is continuous in the space RN .
Consider the Cauchy characteristic problem on finding in the frustrum of the light cone of the future DT : |x| < t < T ,

T = const > 0, a solution u(x, t) of the system (1.1) by the boundary condition

u|ST = 0, (1.2)

where ST : t = |x|, t � T , is the conic surface, characteristic for the system (1.1). For the case when T = ∞ we assume that
D∞: t > |x| and S∞ = ∂ D∞: t = |x|.

A question on the existence and uniqueness of global solution of the Cauchy problem for semi-linear scalar equations of
the form (1.1) with initial conditions u|t=0 = u0, ∂u

∂t |t=0 = u1 has been considered by many authors (see, e.g. [1–11]), while
the Cauchy characteristic problem (1.1), (1.2) in the cone of the future for scalar semi-linear hyperbolic equations has been
considered in papers [12–18]. In the linear case, as it is known, this problem is well-posed in the corresponding function
spaces [18–24].
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Below we give certain conditions for function G providing global solvability of the problem (1.1), (1.2) and a uniqueness
of its solution. The uniqueness of this problem for the scalar case has not been considered in papers [12–18].

The paper is organized in the following way. In Section 2 we define a strong generalized solution of the problem (1.1),
(1.2) of the class W 1

2 in the domain DT and give its a priori estimate. In Section 3 we prove the existence of the strong
generalized solution for the problem (1.1), (1.2) of the class W 1

2 in DT , and in Section 4 we prove the uniqueness of this
solution. In Section 4 we give also a proof for the existence of unique global solution of the problem of the class W 1

2 in the
cone of the future D∞: t > |x|.

2. A priori estimate of the solution of the problem (1.1), (1.2) of the class W 1
2 in the domain D T

Let
◦

W 1
2(DT , ST ) := {u ∈ W 1

2 (DT ): u|ST = 0}, where W k
2(Ω) is the Sobolev space consisting of the elements of L2(Ω)

having up to k-th order generalized derivatives from L2(Ω), inclusively. The equality u|ST = 0 must be understood in the
sense of the trace theory [25, p. 71]. Note, that the system (1.1) can be rewritten in the form of one vector equation

Lλu := �u + λ∇u G(u) = F (x, t). (2.1)

Definition 2.1. Let F = (F1, . . . , F N ) ∈ L2(DT ). We call the vector-function u = u(u1, . . . , uN ) ∈ ◦
W 1

2(DT , ST ) a strong gener-
alized solution of the problem (1.1), (1.2) of the class W 1

2 in the domain DT if there exists a sequence of vector-functions

um ∈ ◦
C 2(D T , ST ) := {u ∈ C2(D T ): u|ST = 0} such that um → u in the space

◦
W 1

2(DT , ST ) and Lλum → F in the space L2(DT ),
where operator Lλ is defined by (2.1).

It is obvious, that the classical solution u ∈ ◦
C 2(D T , ST ) of the problem (1.1), (1.2) is a strong generalized solution of the

class W 1
2 in the domain DT .

Under belonging of the vector v = (v1, . . . , v N ) to some space X we mean belonging of each component vi , 1 � i � N ,
of this vector to the same space X .

Definition 2.2. Let F ∈ L2,loc(D∞) and F |DT ∈ L2(DT ) for any T > 0. Vector-function u = (u1, . . . , uN ) ∈ ◦
W 1

2,loc(D∞, S∞) is

called a global strong generalized solution of the problem (1.1), (1.2) of the class W 1
2 in the cone of the future D∞ , if u|DT

belongs to the space
◦

W 1
2(DT , ST ) and represents a strong generalized solution of the problem (1.1), (1.2) of the class W 1

2 in
the domain DT in the sense of Definition 2.1 for any T > 0.

For the function G from Eq. (1.1) consider the following conditions

G(0, . . . ,0) = 0, G(u1, . . . , uN) � −M1

N∑
i=1

u2
i − M2, Mi = const � 0, i = 1,2. (2.2)

Lemma 2.1. Let condition (2.2) be fulfilled, λ > 0 and F ∈ L2(DT ). Then for any strong generalized solution u ∈ ◦
W 1

2(DT , ST ) of the
problem (1.1), (1.2) of the class W 1

2 in the domain DT the following estimate

‖u‖ ◦
W 1

2(DT ,ST )
� c1‖F‖L2(DT ) + c2 (2.3)

is valid with constants c1 = c1(λ, T , M1) > 0 and c2 = c2(λ, T , M1, M2) � 0, not depending on u and F .

Proof. Let u ∈ ◦
W 1

2(DT , ST ) be a strong generalized solution of the problem (1.1), (1.2) of the class W 1
2 in the domain DT .

Then, in view of Definition 2.1, there exists a sequence of functions um ∈ ◦
C 2(D T , ST ) such that

lim
m→∞

∥∥um − u
∥∥ ◦

W 1
2(DT ,ST )

= 0, lim
m→∞

∥∥Lλum − F
∥∥

L2(DT )
= 0. (2.4)

The function um ∈ ◦
C 2(D T , ST ) can be considered as a solution of the following problem

Lλum = F m, (2.5)

um
∣∣

ST
= 0. (2.6)

Here

F m = Lλum. (2.7)
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Multiplying both parts of the vector equality (2.5) scalarly by the vector ∂um

∂t in the space RN and integrating in the
domain Dτ , 0 < τ � T , due to (2.1) we have

1

2

∫
Dτ

∂

∂t

(
∂um

∂t

)2

dx dt −
∫

Dτ

�um ∂um

∂t
dx dt + λ

∫
Dτ

∂

∂t
G
(
um)

dx dt =
∫

Dτ

F m ∂um

∂t
dx dt. (2.8)

Here ( ∂um

∂t )2 = ∑N
i=1(

∂um
i

∂t )2, �um ∂um

∂t = ∑N
i=1 �um

i
∂um

i
∂t .

Set Ωτ : DT ∩ {t = τ } and denote by ν = (ν1, . . . , νn, ν0) a unit vector of the outer normal to S\{(0, . . . ,0,0)}. Integrating
by parts and taking into account the equalities (2.6) with ν|Ωτ = (0, . . . ,0,1), we obtain∫

Dτ

∂

∂t

(
∂um

∂t

)2

dx dt =
∫

∂ Dτ

(
∂um

∂t

)2

ν0 ds =
∫

Ωτ

(
∂um

∂t

)2

dx +
∫
Sτ

(
∂um

∂t

)2

ν0 ds,

∫
Dτ

∂2um

∂x2
i

∂um

∂t
dx dt =

∫
∂ Dτ

∂um

∂xi

∂um

∂t
νi ds − 1

2

∫
Dτ

∂

∂t

(
∂um

∂xi

)2

dx dt =
∫

∂ Dτ

∂um

∂xi

∂um

∂t
νi ds − 1

2

∫
∂ Dτ

(
∂um

∂xi

)2

ν0 ds

=
∫

∂ Dτ

∂um

∂xi

∂um

∂t
νi ds − −1

2

∫
Sτ

(
∂um

∂xi

)2

ν0 ds − 1

2

∫
Ωτ

(
∂um

∂xi

)2

dx,

∫
Dτ

∂

∂t
G
(
um)

dx dt =
∫

∂ Dτ

G
(
um)

ν0 ds =
∫

Ωτ

G
(
um)

dx.

Whence in view of (2.8) we have∫
Dτ

F m ∂um

∂t
dx dt =

∫
Sτ

1

2ν0

[
n∑

i=1

(
∂um

∂xi
ν0 − ∂um

∂t
νt

)2

+
(

∂um

∂t

)2
(
ν2

0 −
n∑

j=1

ν2
j

)]
ds

+ 1

2

∫
Ωτ

[(
∂um

∂t

)2

+
n∑

i=1

(
∂um

∂xi

)2
]

dx + λ

∫
Ωτ

G
(
um)

dx. (2.9)

Since Sτ represents a characteristic surface, then(
ν2

0 −
n∑

j=1

ν2
j

)∣∣∣∣∣
Sτ

= 0. (2.10)

Taking into account that (ν0
∂

∂xi
− νi

∂
∂t ), i = 1, . . . ,n, is an inner differential operator on Sτ , then due to (2.6) we have(

∂um

∂xi
ν0 − ∂um

∂t
νi

)∣∣∣∣
Sτ

= 0, i = 1, . . . ,n. (2.11)

From (2.9), in view of (2.10) and (2.11), we have∫
Ωτ

[(
∂um

∂t

)2

+
n∑

i=1

(
∂um

∂xi

)2
]

dx + 2λ

∫
Ωτ

G
(
um)

dx = 2
∫

Dτ

F m ∂um

∂t
dx dt. (2.12)

Since λ > 0 and 2F m ∂um

∂t � ( ∂um

∂t )2 + (F m)2, then in view of (2.12) we have

∫
Ωτ

[(
∂um

∂t

)2

+
n∑

i=1

(
∂um

∂xi

)2
]

dx � 2λ

∫
Dτ

[
M1

(
um)2 + M2

]
dx dt +

∫
Dτ

(
∂um

∂t

)2

dx dt +
∫

Dτ

(
F m)2

dx dt. (2.13)

Since um|ST = 0, then

um(x, τ ) =
τ∫

|x|

∂um(x, s)

∂t
ds, (x, τ ) ∈ Ωτ , τ � T ,

whence, using the Schwartz inequality, we obtain
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∫
Ωτ

(
um)2

dx �
∫

Ωτ

( τ∫
|x|

∂um(x, s)

∂t

)2

dx �
∫

Ωτ

(
τ − |x|)

[ τ∫
|x|

(
∂um(x, s)

∂t

)2

ds

]
dx

� T

∫
Ωτ

[ τ∫
|x|

(
∂um(x, s)

∂t

)2

ds

]
dx = T

∫
Dτ

(
∂um

∂t

)2

dx dt. (2.14)

From (2.13) and (2.14) it follows

∫
Ωτ

[(
um)2 +

(
∂um

∂t

)2

+
n∑

i=1

(
∂um

∂xi

)2
]

dx � (2λM1 + T + 1)

∫
Dτ

[(
um)2 +

(
∂um

∂t

)2

+
n∑

i=1

(
∂um

∂xi

)2
]

dx dt

+
∫

Dτ

(
F m)2

dx dt + 2λM2 mes Dτ , τ � T . (2.15)

Let

w(τ ) :=
∫

Ωτ

[(
um)2 +

(
∂um

∂t

)2

+
n∑

i=1

(
∂um

∂xi

)2
]

dx. (2.16)

Since mes Dτ = ωn
n+1 τn+1, where ωn is the volume of the unit ball in the Rn , then in view of (2.15) and (2.16) we have

w(τ ) � (2λM1 + T + 1)

τ∫
0

w(s)ds + ∥∥F m
∥∥2

L2(DT )
+ 2λM2ωn

n + 1
T n+1, τ � T ,

whence from the Gronwall’s Lemma [26, p. 13] it follows that

w(τ ) �
(∥∥F m

∥∥2
L2(DT )

+ 2λM2ωn

n + 1
T n+1

)
exp(2λM1 + T + 1)τ , τ � T . (2.17)

By help of (2.16) and (2.17) we find that

∥∥um
∥∥2◦

W 1
2(DT ,ST )

=
T∫

0

w(τ )dτ � T

(∥∥F m
∥∥2

L2(DT )
+ 2λM2ωn

n + 1
T n+1

)
exp(2λM1 + T + 1)T . (2.18)

From (2.18) we receive∥∥um
∥∥ ◦

W 1
2(DT ,ST )

� c1
∥∥F m

∥∥
L2(DT )

+ c2. (2.19)

Here

c1 = T
1
2 exp

1

2
(2λM1 + T + 1)T , c2 =

[
2λM2ωn

n + 1
T n+2 exp(2λM1 + T + 1)T

] 1
2

. (2.20)

Due to (2.4) and (2.5), from (2.19) by passing to the limit for m → ∞ we receive (2.3). The lemma is proved. �
3. Solvability of the problem (1.1), (1.2) in the domain D T

Together with (2.2) consider the following condition for the function G∣∣∇u G(u)
∣∣ � M3 + M4|u|α, α = const � 0, Mi = const � 0, i = 3,4; u ∈ RN . (3.1)

Remark 3.1. The embedding operator I : ◦
W 1

2(DT , ST ) → Lq(DT ) represents a linear continuous compact operator for

1 < q <
2(n+1)

n−1 , when n > 1 [25, p. 86]. At the same time the Nemitski operator K : [Lq(DT )]N → [L2(DT )]N , acting by

the formula (K u)i = ∂
∂ui

G(u), i = 1, . . . , N , u j ∈ Lq(DT ), j = 1, . . . , N , where function G satisfies the condition (3.1) is con-

tinuous and bounded for q � 2α [27, p. 349], [28, p. 67]. Thus, if α < n+1
n−1 , i.e. 2α <

2(n+1)
n−1 , then there exists number q such

that 1 < q <
2(n+1)

n−1 and q > 2α. Therefore, in this case the operator
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K0 = K I : [ ◦
W 1

2(DT , ST )
]N → [

L2(DT )
]N

(3.2)

will be continuous and compact. It is clear that from u = (u1, . . . , uN ) ∈ ◦
W 1

2(DT , ST ) it follows that K0u ∈ L2(DT ) and, if

um → u in the space
◦

W 1
2(DT , ST ), then K0um → K0u in the space L2(DT ).

Remark 3.2. Before passing to a question of the solvability of the problem (1.1), (1.2) let us consider the same question for
the linear case of the required form, when in (1.1) (or in (2.1)) the parameter λ = 0, i.e. for the problem

L0u := �u = F (x, t), (x, t) ∈ DT ,

u(x, t) = 0, (x, t) ∈ ST . (3.3)

In this case for F ∈ L2(DT ) we introduce a notion of a strong generalized solution u ∈ ◦
W 1

2(DT , ST ) of the problem (3.3) of

the class W 1
2 in the domain DT for which there exists a sequence of the functions um ∈ ◦

C 2(D T , ST ) such that

lim
m→∞

∥∥um − u
∥∥ ◦

W 1
2(DT ,ST )

= 0, lim
m→∞

∥∥L0um − F
∥∥

L2(DT )
= 0.

Note that, as it is clear from the proof of Lemma 2.1, for the strong generalized solution u ∈ ◦
W 1

2(DT , ST ) of the problem (3.3)
of the class W 1

2 in the domain DT a priori estimate (2.3) takes the following form

‖u‖ ◦
W 1

2(DT ,ST )
� c‖F‖L2(DT ), c = T

1
2 exp

1

2
(T + 1)T . (3.4)

Since the space C∞
0 (DT ) of finite infinitely differentiable in the DT functions is dense in the L2(DT ), then for

given F = (F1, . . . , F N ) ∈ L2(DT ) there exists the sequence of vector-functions F m = (F m
1 , . . . , F m

N ) ∈ C∞
0 (DT ) such that

limm→∞ ‖F m − F‖L2(DT ) = 0. For fixed m, extending F m with zero beyond the domain DT and leaving the same notation for
it, we shall have F m ∈ C∞(Rn+1+ ), for which the support supp F m ⊂ D∞ , where Rn+1+ := Rn+1 ∩{t � 0}. Denote by um the so-

lution of the Cauchy problem: L0um = F m , um|t=0 = 0, ∂um

∂t |t=0 = 0; as it is well known [29, p. 192] the solution exists, it is

unique and belongs to the space C∞ . Since supp F m ⊂ D∞ , um|t=0 = 0 and ∂um

∂t |t=0 = 0, then taking into account geometry
of the domain of dependence of the solution of linear wave equation L0um = F m , we shall have supp um ⊂ D∞ [29, p. 191].
Leaving the same notation for the restriction of function um in the domain DT , it is obvious that um ∈ ◦

C 2(D T , ST ) and
according to Remark 3.2 and (3.4) we shall have∥∥um − uk

∥∥ ◦
W 1

2(DT ,ST )
� c

∥∥F m − F k
∥∥

L2(DT )
. (3.5)

Since the sequence {F m} is fundamental in L2(DT ), then in view of (3.5) the sequence {um} is fundamental in the
complete space

◦
W 1

2(DT , ST ) too. Therefore, there exists a vector-function u ∈ ◦
W 1

2(DT , ST ) such that

lim
m→∞

∥∥um − u
∥∥ ◦

W 1
2(DT ,ST )

= 0

and since L0um = F m → F in the space L2(DT ), then this vector-function due to Remark 3.2 is a strong generalized solution
of the problem (3.3) of the class W 1

2 in the domain DT . The uniqueness of this solution of the space
◦

W 1
2(DT , ST ) follows

from a priori estimate (3.4). Therefore, for the solution u of the problem (3.3) we have u = L−1
0 F , where L−1

0 : [L2(DT )]N →
[ ◦
W 1

2(DT , ST )]N is a linear continuous operator with a norm admitting in view of (3.4) the following estimate

∥∥L−1
0

∥∥
[L2(DT )]N→[

◦
W 1

2(DT ,ST )]N
� T

1
2 exp

1

2
(T + 1)T . (3.6)

Remark 3.3. Let the condition (3.1) be fulfilled and F ∈ L2(DT ), 0 � α < n+1
n−1 . In view of (3.6) and Remark 3.1 it is easy to

see that the vector-function u = (u1, . . . , uN ) ∈ ◦
W 1

2(DT , ST ) is a strong generalized solution of the problem (1.1), (1.2) of the
class W 1

2 in the domain DT if and only if u is a solution of the following functional equation

u = L−1
0

(−λ∇u G(u) + F
)

(3.7)

in the space
◦

W 1
2(DT , ST ).

Rewrite Eq. (3.7) in the form

u = Au := L−1
0 (−λK0u + F ), (3.8)
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where the operator K0 : [ ◦
W 1

2(DT , ST )]N → [L2(DT )]N from (3.2) due to Remark 3.1 is a continuous and compact operator.

Therefore, according to (3.6) and (3.8) the operator A : [ ◦
W 1

2(DT , ST )]N → [ ◦
W 1

2(DT , ST )]N is also continuous and compact.
At the same time according to Lemma 2.1 for any parameter τ ∈ [0,1] and any solution of the equation u = τ Au with
parameter τ it is valid a priori estimate (2.3) with the same constants c1 and c2 from (2.20), not depending on u, F and τ .
Therefore, due to the Leray–Schauder Theorem [30, p. 375] Eq. (3.8) has at least one solution u ∈ ◦

W 1
2(DT , ST ), and in view

of Remark 3.3 it represents a strong generalized solution of the problem (1.1), (1.2) of the class W 1
2 in the domain DT .

Therefore it is valid the following theorem.

Theorem 3.1. Let λ > 0, 0 � α < n+1
n−1 and the conditions (2.2), (3.1) be fulfilled. Then for any F ∈ L2(DT ) the problem (1.1), (1.2)

has at least one strong generalized solution u ∈ ◦
W 1

2(DT , ST ) of the class W 1
2 in the domain DT in the sense of Definition 2.1.

Remark 3.4. As it follows from the results of the works [12–18], concerning the Cauchy characteristic problem in the light
cone of the future for the scalar nonlinear equation �u + λ f (u) = F , violation of the conditions of Theorem 3.1 may cause
an absence of a solution of the problem (1.1), (1.2) of the class W 1

2 in the domain DT in the sense of Definition 2.1.

For N = 2 let us consider one class of functions G(u) satisfying the conditions of Theorem 3.1:

G(u1, u2) =
m∑

i=1

bi|u1|αi |u2|βi +
2∑

j=1

d j|u j|γ j +
2∑

i, j=1

aijuiu j +
2∑

i=1

aiui,

where αi , βi > 1; (αi − 1)pi , βiqi , αi ṕi , (βi − 1)q́i < n+1
n−1 ; 1

pi
+ 1

qi
= 1, 1

ṕi
+ 1

q́i
= 1; pi,qi, ṕi, q́i > 1; 1 < γ j < 2n

n−1 ; bi,d j =
const � 0; aij,ai = const.

4. Uniqueness of the solution and global solvability of the problem (1.1), (1.2)

Let us impose on the function G of Eq. (1.1) additional requirements

G ∈ C2(RN)
,

∣∣∣∣ ∂2

∂ui∂u j
G(u)

∣∣∣∣ � a + b|u|γ , 1 � i, j � N; γ = const � 0, (4.1)

where |u| = ‖u‖RN = (
∑N

i=1 u2
i )

1
2 ; a,b = const � 0.

It is obvious that the condition (3.1) follows from (4.1) for α = γ +1, and in the case γ < 2
n−1 we shall have α = γ +1 <

n+1
n−1 .

Theorem 4.1. Let 0 � γ < 2
n−1 and the condition (4.1) be fulfilled. Then the problem (1.1), (1.2) cannot have more than one strong

generalized solution of the class W 1
2 in the domain DT in the sense of Definition 2.1.

Proof. Assume that F ∈ L2(DT ) and the problem (1.1), (1.2) has two strong generalized solutions u1 and u2 of the class W 1
2

in the domain DT in the sense of Definition 2.1, i.e. there exist two sequences uim ∈ ◦
C 2(D T , ST ), i = 1,2; m = 1,2, . . . , of

vector-functions such that

lim
m→∞

∥∥uim − ui
∥∥ ◦

W 1
2(DT ,ST )

= 0, lim
m→∞

∥∥Lλuim − F
∥∥

L2(DT )
= 0, i = 1,2. (4.2)

Let

w = u2 − u1, wm = u2m − u1m, F m = Lλu2m − Lλu1m. (4.3)

In view of (4.2) and (4.3) we have

lim
m→∞

∥∥wm − w
∥∥ ◦

W 1
2(DT ,ST )

= 0, lim
m→∞

∥∥F m
∥∥

L2(DT )
= 0. (4.4)

In accordance with (2.1) and (4.3) consider the function wm ∈ ◦
C 2(DT , ST ) as a solution of the following problem

�wm = −λ
[∇u G

(
u2m) − ∇u G

(
u1m)] + F m, (4.5)

wm
∣∣

ST
= 0. (4.6)

Multiplying both parts of the vector equation (4.5) scalarly by the vector ∂ wm

∂t in the space RN , integrating it by parts in
the domain DT , 0 < τ � T , and taking into account (4.6), in the same way as in the case of receiving the equality (2.12), we
shall have
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∫
Ωτ

[(
∂ wm

∂t

)2

+
n∑

i=1

(
∂ wm

∂xi

)2
]

dx = 2
∫

Dτ

F m ∂ wm

∂t
dx dt − 2λ

∫
Dτ

[∇u G
(
u2m) − ∇u G

(
u1m)]∂ wm

∂t
dx dt,

0 < τ � T . (4.7)

Taking into account the equality

∂

∂ui
G
(
u2m) − ∂

∂ui
G
(
u1m) =

N∑
j=1

1∫
0

∂2

∂ui∂u j
G
(
u1m + s

(
u2m − u1m))

ds
(
u2m

j − u1m
j

)

we receive

[∇u G
(
u2m) − ∇u G

(
u1m)]∂ wm

∂t
=

N∑
i, j=1

[ 1∫
0

∂2

∂ui∂u j
G
(
u1m + s

(
u2m − u1m))

ds

](
u2m

j − u1m
j

)∂ wm
i

∂t
. (4.8)

From (4.1) and obvious inequality |d1 + d2|γ � 2γ max(|d1|γ , |d2|γ ) � 2γ (|d1|γ + |d2|γ ) for γ � 0, di ∈ R, we have

∣∣∣∣∣
1∫

0

∂2

∂ui∂u j
G
(
u1m + s

(
u2m − u1m))

ds

∣∣∣∣∣ �
1∫

0

[
a + b

∣∣(1 − s)u1m + su2m
∣∣γ ]

ds

� a + 2γ b
(∣∣u1m

∣∣γ + ∣∣u2m
∣∣γ )

. (4.9)

From (4.8) and (4.9), taking into account (4.3), it follows∣∣∣∣[∇u G
(
u2m) − ∇u G

(
u1m)]∂ wm

∂t

∣∣∣∣
�

N∑
i, j=1

[
a + 2γ b

(∣∣u1m
∣∣γ + ∣∣u2m

∣∣γ )]∣∣wm
j

∣∣∣∣∣∣∂ wm
i

∂t

∣∣∣∣
� N

1
2
[
a + 2γ b

(∣∣u1m
∣∣γ + ∣∣u2m

∣∣γ )]∣∣wm
∣∣∣∣∣∣∂ wm

∂t

∣∣∣∣
� 1

2
N

1
2 a

[(
wm)2 +

(
∂ wm

∂t

)2]
+ 2γ N

1
2 b

(∣∣u1m
∣∣γ + ∣∣u2m

∣∣γ )∣∣wm
∣∣∣∣∣∣∂ wm

∂t

∣∣∣∣. (4.10)

Due to (4.10) from (4.7) we have∫
Ωτ

[(
∂ wm

∂t

)2

+
n∑

i=1

(
∂ wm

∂xi

)2
]

dx �
∫

Dτ

[(
∂ wm

∂t

)2

+ (
F m)2

]
dx dt + |λ|N 1

2 a

∫
Dτ

[(
wm)2 +

(
∂ wm

∂t

)2]
dx dt

+ 2γ +1|λ|N 1
2 b

∫
DT

(∣∣u1m
∣∣γ + ∣∣u2m

∣∣γ )∣∣wm
∣∣∣∣∣∣∂ wm

∂t

∣∣∣∣dx dt. (4.11)

The latter integral in the right side of (4.11) can be estimated by Holder’s inequality∫
DT

(∣∣u1m
∣∣γ + ∣∣u2m

∣∣γ )∣∣wm
∣∣∣∣∣∣∂ wm

∂t

∣∣∣∣dx dt �
(∥∥∣∣u1m

∣∣γ ∥∥
Ln+1(DT )

+ ∥∥∣∣u2m
∣∣γ ∥∥

Ln+1(DT )

)∥∥wm
∥∥

L p(DT )

∥∥∥∥∂ wm

∂t

∥∥∥∥
L2(DT )

.

(4.12)

Here 1
n+1 + 1

p + 1
2 = 1, i.e.

p = 2(n + 1)

n − 1
. (4.13)

Since dim DT = n + 1, then according to the Sobolev embedding theorem [25, p. 111] for 1 � q � 2(n+1)
n−1 we have

‖v‖Lq(DT ) � Cq‖v‖W 1
2 (DT ), ∀v ∈ W 1

2 (DT ) (4.14)

with positive constant Cq , not depending on v ∈ W 1
2 (DT ).



Author's personal copy

S. Kharibegashvili, B. Midodashvili / J. Math. Anal. Appl. 376 (2011) 750–759 757

According to the theorem γ < 2
n−1 and, therefore, γ (n + 1) <

2(n+1)
n−1 . Thus, from (4.13), (4.14) we receive

∥∥∣∣uim
∣∣γ ∥∥

Ln+1(DT )
= ∥∥uim

∥∥γ

Lγ (n+1)(DT )
� Cγ

γ (n+1)

∥∥uim
∥∥γ

W 1
2 (DT )

, i = 1,2; m � 1, (4.15)∥∥wm
∥∥

L p(DT )
� C p

∥∥wm
∥∥

W 1
2 (DT )

, m � 1. (4.16)

In view of the first equality from (4.2) there exists natural number m0 such that for m � m0 we shall have∥∥uim
∥∥γ

W 1
2 (DT )

= ∥∥uim
∥∥γ

◦
W 1

2(DT ,ST )
�

∥∥ui
∥∥γ

◦
W 1

2(DT ,ST )
+ 1, i = 1,2; m � 1. (4.17)

From (4.12), (4.15)–(4.17) it follows that

2γ +1|λ|N 1
2 b

∫
DT

(∣∣u1m
∣∣γ + ∣∣u2m

∣∣γ )∣∣wm
∣∣∣∣∣∣∂ wm

∂t

∣∣∣∣dx dt

� 2γ +1|λ|N 1
2 bCγ

γ (n+1)

(∥∥u1
∥∥γ

◦
W 1

2(DT ,ST )
+ ∥∥u2

∥∥γ
◦

W 1
2(DT ,ST )

+ 2
)
C p

∥∥wm
∥∥

W 1
2 (DT )

∥∥∥∥∂ wm

∂t

∥∥∥∥
L2(DT )

� M3

(∥∥wm
∥∥2

W 1
2 (DT )

+
∥∥∥∥∂ wm

∂t

∥∥∥∥
2

L2(DT )

)
� 2M3

∥∥wm
∥∥2

W 1
2 (DT )

= 2M3

∫
DT

[(
wm)2 +

(
∂ wm

∂t

)2

+
n∑

i=1

(
∂ wm

∂xi

)2
]

dx dt, (4.18)

where 2M3 = 2γ +1|λ|N 1
2 bCγ

γ (n+1)(‖u1‖γ
◦

W 1
2(DT ,ST )

+ ‖u2‖γ
◦

W 1
2(DT ,ST )

+ 2)C p .

Due to (4.18) from (4.11) we have

∫
Ωτ

[(
∂ wm

∂t

)2

+
n∑

i=1

(
∂ wm

∂xi

)2
]

dx � M4

∫
DT

[(
wm)2 +

(
∂ wm

∂t

)2

+
n∑

i=1

(
∂ wm

∂xi

)2]
dx dt +

∫
DT

(
F m)2

dx dt,

0 < τ < T , (4.19)

where M4 = 1 + a|λ|N 1
2 + 2M3.

Note, that the inequality (2.14) is valid for wm too, and, therefore,

∫
Ωτ

(
wm)2

dx � T

∫
DT

(
∂ wm

∂t

)2

dx dt � T

∫
DT

[(
wm)2 +

(
∂ wm

∂t

)2

+
n∑

i=1

(
∂ wm

∂xi

)2
]

dx dt. (4.20)

Putting

ξm(τ ) :=
∫

Ωτ

[(
wm)2 +

(
∂ wm

∂t

)2

+
n∑

i=1

(
∂ wm

∂xi

)2
]

dx (4.21)

and adding (4.19) to (4.20), we receive

ξm(τ ) � (M4 + T )

τ∫
0

ξm(s)ds + ∥∥F m
∥∥2

L2(DT )
.

Whence, by the Gronwall Lemma [26, p. 13], it follows that

ξm(τ ) �
∥∥F m

∥∥2
L2(DT )

exp(M4 + T )τ . (4.22)

From (4.21) and (4.22) we have

∥∥wm
∥∥2

W 1
2 (DT )

=
T∫

0

ξm(τ )dτ � T
∥∥F m

∥∥2
L2(DT )

exp(M4 + T )T . (4.23)
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In view of (4.3), (4.4) from (4.23) it follows that

‖w‖W 1
2 (DT ) = lim

m→∞
∥∥w − wm + wm

∥∥
W 1

2 (DT )
� lim

m→∞
∥∥w − wm

∥∥
W 1

2 (DT )
+ lim

m→∞
∥∥wm

∥∥
W 1

2 (DT )

= lim
m→∞

∥∥w − wm
∥∥

W 1
2 (DT )

= lim
m→∞

∥∥w − wm
∥∥ ◦

W 1
2(DT ,ST )

= 0.

Therefore w = u2 − u1 = 0, i.e. u2 = u1. The theorem is proved. �
The next theorem of existence and uniqueness immediately follows from Theorems 3.1 and 4.1.

Theorem 4.2. Let λ > 0, 0 � γ < 2
n−1 and the conditions (2.2), (4.1) be fulfilled. Then for any F ∈ L2(DT ) the problem (1.1), (1.2)

has unique strong generalized solution u ∈ ◦
W 1

2(DT , ST ) of the class W 1
2 in the domain DT in the sense of Definition 2.1.

The following theorem on existence of global solution of this problem follows from Theorem 4.2.

Theorem 4.3. Let λ > 0, 0 � γ < 2
n−1 and the conditions (2.2), (4.1) be fulfilled. Then for any F ∈ L2,loc(D∞) such that

F |DT ∈ L2(DT ) for each T > 0, the problem (1.1), (1.2) has unique global strong generalized solution u ∈ ◦
W 1

2,loc(D∞, S∞) of the

class W 1
2 in the cone of the future D∞ in the sense of Definition 2.2.

Proof. According to Theorem 4.2 when the conditions of Theorem 4.3 are fulfilled for T = k there exists unique strong
generalized solution uk ∈ ◦

W 1
2(DT , ST ) of the problem (1.1), (1.2) of the class W 1

2 in the domain DT =k in the sense of
Definition 2.1. Since uk+1|DT =k is also a strong generalized solution of the problem (1.1), (1.2) of the class W 1

2 in the domain
DT =k , then in view of Theorem 4.2 we have uk = uk+1|DT =k . Thus one can construct unique global generalized solution

u ∈ ◦
W 1

2,loc(D∞, S∞) of the problem (1.1), (1.2) of the class W 1
2 in the cone of the future D∞ in the sense of Definition 2.2

in the following way:

u(x, t) = uk(x, t), (x, t) ∈ D∞, k = [t] + 1,

where [t] is an integer part of the number t . �
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