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1 Introduction

In the plane of independent variables = and ¢ consider nonlinear wave equation of
the following form [see, e.g., Lions, 1969, p.57]

Lu = ugy — Ugy + plul?up + Mu|“u = f(2,t), (L.1)

where p, A and p,a > 0 are given constants; f is given and u is unknown real
functions.

Denote by D :={(z,t):0< 2 <t, 0<t<T} triangular domain, bounded
by characteristic segment v r:ax =t 0<t<T and by segments v 7 :2 =0,
0<t<T, y37r:t=T,0<z<T.

For equation (1.1) in angular domain D7 consider the boundary value problem
on determination of solution u(z,t) by conditions [see e.g., Bitsadze, 1981, p.228]

e = 0, i=1,2. (1.2)
Note that on questions of existence, uniqueness and blow-up of solutions of
initial, mixed, nonlocal and other problems posed for nonlinear hyperbolic type
equations there are devoted a number of papers (see, e.g., Lions, 1969; Bitsadze,
1981; John and Klainerman, 1984; Kato, 1980; Georgiev et al., 1977; Sideris,
1984; Hormander, 1997; Veron and Pohozaev, 2001; Mitidieri and Pohozaev, 2001;
Todorova and Vitillaro, 2005; Jokhadze, 2008; Berikelashvili et al., 2008). In linear
case, i.e., when p =\ =0, problem (1.1), (1.2), as it is known, is well-posed and a
global solvability takes place in corresponding function spaces (see, e.g., Bitsadze,
1981; Goursat, 1933; Kharibegashvili, 1995).

Definition 1.1: Let f € C(D7). Function u is called a strong y generalised solution
of problem (1.1), (1.2) of class C* in domain Dr, if u € C'(Dr) and there exists
such the sequence of functions u,, ECOQ(DT,FT), that u, — u and Lu, — f for
n — oo in spaces C'(Dr) and C(Dr), respectively, where C°?(Dr,T'p) := {v €
CQ(DT) : U’FT = 0}7 't :=vi,7Uyr.
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Remark 1.1: It is clear that if u € C°2(D7,I'7) is a classical solution of problem
(1.1), (1.2), then it is a strong generalised solution of this problem of class C' in
domain Dyp. In turn, if a strong generalised solution of problem (1.1), (1.2) of class
C' in domain Dr belongs to space C?(Dr), then it also is a classical solution of
the problem.

Definition 1.2: Let f € C(D,). We say that problem (1.1), (1.2) is globally
solvable in the class C!, if for any finite T > 0 it has a strong generalised solution
of the class C! in domain Drp.

The paper is organised as follows. In Section 2 it is obtained a priori estimates of
the solution of problem (1.1), (1.2) in the spaces C(Dr) and C*(Dz). In Section 3
problem (1.1), (1.2) is equivalently reduced to the system of nonlinear Volterra type
integral equations and the local solvability of this problem is proved. In Section 4
it is shown the global solvability of the considered problem, and in Section 5 the
uniqueness of the solution of the problem is proved. Finally, in Section 6 the
nonexistence of global solvability of this problem is shown.

2 A priori estimates of the solution of problem (1.1), (1.2)
in the spaces C'(D7) and C'(Dr)

Lemma 2.1: Let f € C(Dr) and
©>0, A>0. @.1)

Then for a strong generalised solution of problem (1.1), (1.2) of class C' in
domain Dr it is valid the following a priori estimate

lulle@y < collfllemy (2.2)
with positive constant ¢y = co(T), not dependent on u and f.
Proof: Let u be a strong generalised solution of problem (1.1), (1.2) of class C*
in domain Dr. Then due to Definition 1.1 there exists the sequence of functions
un € C°%(Dp,T'7), such that

nh_?;o l[un — “Hcl(ET) =0, nh—>Holo | Lun — ch(ET) =0, (23)

and therefore

i P — [l gy = 0. T [t e — [u]ul o5,y = 0. (24)

Consider function u,, € C°2(Dr,I'r), as a solution of the following problem
Lu, = fp, (2.5)

un|FT =0. (2.6)
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Here
fn = Lu,. (2.7)

Multiplying the both sides of equality (2.5) by = a“” and integrating the received in
domain D, := {(z,t) € Dr: 0 <t <7}, O<T§Twehave

1 0 [ Ouy, 2 8%u,, Ou, Oou, 2
_ — d _ t n 4 d
Q/DT(%((%)dxdt o atdd+,u/ |u<at>dxdt
A 0 a2 B Oouy,
+a+2/m 3¢l dxdt—/DT fu=gdadt

Assume that Q, := Do, N{t =7}, 0 < 7 <T. Then by virtue of (2.6), integrating
by parts the left side of the last equality, we obtain

8un 1 ouy, ouy, 2 ouy, 2 9 9
,, g it = /2[(3‘&) + (%) 0t as

[ 1)+ (5 ]

—i—,u/ |un|”(a > dxdt + A |un|a+2dx, (2.8)
D,

ot o+ 2

where v := (v, 1) is unit vector of outer normal to D, and v1 , ==y N{t <7}
Taking into account the fact that operator z/t% — I/m% is an interior differential
operator on 7,7, due to (2.6) we receive

ouy, ouy, _
(axyt — 6th;> = 0 (29)
V1,7
Further, it is clear that
v —v2)|, =0 (2.10)

Yi,7

Therefore, by virtue of (2.1) and (2.8)—(2.10) we get

wp (7)== /Q K%:) <3“") ]d <2/ fn vdt. (2.11)

Taking into account inequality

8un ou,, 2 9

due to (2.11) we have

2
wy (T) S/ (aun) da:dt—i—/ fAdzdt.
p, \ Ot D,
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According to the form of function w,,(7) it follows that

wn(7) < / wn(0)do + | full?, .
0

Whence, having the fact that the value | fn\|%2(DT), as a function of 7 is
non-decreasing, by the Gronwall’s lemma [see e.g., Henry, 1985, p.13] we receive

wy(7) < eXp(T)anH%z(D,)' (2.12)

If (z,t) € D, then by virtue of the condition (2.6) the following equality is valid

" Qup (o, t)

do.
0 8.13 o

un(x»t) = un(xvt) - Un(oat) =
Thus, taking into account obvious inequality

||fn||%2(DT) < ||fn||é(5T)m€s DT)

due to (2.12) we have

o) / / [&mgt]da
/ [aun o,t) ] do < 2w, (t) < twn(t)

<p(T) | full2 5, mes Dr = 27 T exp(D) | fullZy 5, (213)

\ /\

From this it follows that
[unlloyy < TV2 T exp2 )| fullopy)-

Passing in this inequality to limit for n — oo, and due to (2.3), (2.7), we have
lullos,) < TV2 T exp@ DI fll o, (2.14)

This proves estimate (2.2).

Remark 2.1: From (2.14) it follows that constant ¢q in estimate (2.2) can be taken
co :=TV2 1T exp (27'7). (2.15)

Below, taking into account estimate (2.2) and using the classical method of
characteristics, we receive a priori estimate in the space C'(Dr) for a strong
generalised solution u of problem (1.1), (1.2) of class C* in domain Dr.
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Lemma 2.2: Under the conditions of Lemma 2.1 for a strong generalised solution
u of problem (1.1), (1.2) of class C' in domain Dr it is valid the following a
priori estimate

lullor By < 1, (2.16)

with a positive constant c¢; = c1 (T, Cos 1y Py A, O Hf”C(ﬁT))’ not dependent on u,

where ||u||cl(ET) = max{||u||c(5T)7 H“z”c(ﬁTy HUtHc(ET)}-

Proof: Let u be a strong generalised solution of problem (1.1), (1.2) of class C*
in domain Dr. Then the limit equalities (2.3), (2.4) are valid, where u,, can be
considered as a solution of problem (2.5), (2.6) with f, given by (2.7). For fixed
natural n let us introduce the following functions

Unpl = Unt — Ung, Un2 ‘= Unt + Unzgy, Unp3 = Unp, (217)
which by taking into account (2.2) satisfy the following boundary conditions
Un1 (O,t) == —Ung(o,t)7 Ung(t, t) = 0, ung(t7t) = 0, 0 S t S T. (218)

With respect to unknown functions w1, tn2, un3 by virtue of (1.1) and (2.17) we
have the following system of first order partial differential equations

8unl + 8unl

= fn(xvt) - 2_1M‘un3|p(unl + un2) - )\‘un3|aun37

a@t a@m

U U _ N
2= 2 = f(w,t) = 27 pluns]? (s + tn2) — Auns|*uns,  (2:19)
ot or

6“%3 _ 8’&”3 o
ot oz - Unt-

Integrating the received system along the corresponding characteristic curves, due
to boundary conditions (2.18), we have

Un1 (2, 1) — un1(0,1)

= ftt_l_ (fo = 27 pluns|? (un1 + un2) — Aluns|“uns) (Pr)dr,
un2(l'vt) = fzt—l($+t) (fn - 271:u|un3|p(un1 + un2) - >‘|un3|aun3) (QT)dTv
Una(,8) = [31 gy Un1 (@),

where P, := (z —t+7,7), Qr :=(x+1t—7,7).

From the second equation of the received system and the first equality (2.18),
taking into account notation P, := (—t+ 7,7) this system can be rewritten as
follows

Up (, 1) = — ftt,m (2’1,u|un3|p(un1 + Un2) + )\|un3|0‘un3) (P.,-)dT
+ fztflt (271ﬂ|un3|p(un1 + un2) + >‘|un3|au"3) (PTo)dT
+Fo1(z,t),

unz(z,t) = — f;—l(wt) (27 uluns]? (unt + un2)

+ A tns|“un3) (Qr ) dT + Fpa(z,t),

Unz(x,t) = f2t*1(:c+t) Un1 (Qr)dT.

(2.20)
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Here

t

Foi(x,t) = /t fu(Pr)dT — fult — 7, 7)dT,
t—x 2—1¢

Foo(a, ) = /2 Fa(Q2)dr 2.21)

~1(z4t)

By passing in the equalities (2.20), (2.21) to limit as n — oo in the space C (D7)
and taking into account (2.3), (2.4), (2.7) and (2.17) we have

ui(z,t) = — [ (27 plus|? (ur + us) + Nug|“us) (Pr)dr
+ f2t—1t (27 plug|P(ur + uz) + Aug|*us) (Pr, ) dr
+F1(.’17,t),
2.22
ug(z,t) = — f;l(ﬂt) (27 plusl? (ug + u2) + Alus|*us) (Q-)dr (2.22)
—|—F2($,t),
Ug(it, t) = fztfl(x+t) ul(QT)dTa
where u; := lim,, o0 up; (by the norm of space C(D7)), i = 1,2,3, and
¢ ¢
Fe,t)= [ fdr= [ gt nrar,
t—x 2-1¢
¢
Fy(z,t) = / F(Q.)dr. (2.23)
2-1(a+1)

It is clear that uz = u, which is a strong generalised solution of problem (1.1), (1.2)
of class C! in domain Dy, besides

Ul = Up — Uz, U = Us + Ug. (2.24)
Let

K = ool fllo@p (2.25)
where ¢ is defined by (2.15) and

vi(t) == sup |wi(§ 1), i=1,2,3, F(t):= sup [f(§ )] (2.26)
(§,T)€Dt (E#T)eDi

From (2.22), due (2.23) and (2.26) it follows that
t
lug (z, )] < ,qu/ (v1(7) + va(7))dr + 2ATK* " 4+ 2T F(T),
0

¢
lug (z, t)| < 24qu/ (vi(7) + vo(7))dr + A\TK*T + TF(T),
0

lug(x,t)] S/o vy (7)dT.
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Whence for (£,7) € D; we receive
lui (&, 7)| < pk? /OT (v1(71) + v2(11))dry + 2ATK*T! + 2T F(T),
lug(§,7)| < 27 K /OT (v1(71) + v2(m1))dr + A\TK*T + TF(T),
lus(§, 7) < /OT vi(71)dr1.

Thus due to (2.26) it follows that
i
vy (t) < pk? / (v1(7) + va(7))dr + 2AT K 4+ 2T F(T),
0
t
va(t) < 2_1uK”/ (vi(7) + va(7))dr + ATK* + TF(T),
0

Ug(t)SA Ul(’T)dT.

Setting that v(t) := maxj<;<sv;(f), 0 <t <T, from the inequalities given above
we have

t
o(t) < (2uK” + 1) / o(T)dr + 20ATK*t' 4+ 2TF(T), 0<t<T,
0

whence by virtue of Gronwall’s lemma we get

v(t) < 2T(AK*T! + F(T)) exp ((2uK? + 1)t)
<2T(AcoK* + 1) exp (2uK” + V)T | flom,y, 0t <T.

Now from (2.24) it is easy to receive
lllen ) < Iollonm < 2T (oK + 1) exp (2uK” + VT) | flley s,
Lemma 2.2 is proved, besides
1 :=2T (AcgK® + 1) exp ((2uK” + 1)T) 1flc@ry
where K is defined by (2.25).
3 The equivalency of problem (1.1), (1.2) and the system

of nonlinear volterra type integral equations (2.22)
and the local solvability of problem (1.1), (1.2)

First of all let us show that problem (2.5), (2.6) is equivalent to problem (2.19),
(2.18) in the classical sense. Indeed, if u, € C? is a solution of problem (2.5),
(2.6), then the system of functions w,i,un2 and wu,3 will, obviously, give the
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solution of problem (2.19), (2.18). Conversely, let w1, Un2, u,3 € C* be a solution
of problem (2.19), (2.18). Let us show that u,, := u,3 € C?, is a solution of problem
(2.5), (2.6) and satisfying the equalities (2.17). If we show that wu,s = unt + Una,
then, obviously, the following equalities u,; = % and up, = *225*=1 hold,
whence it follows that u,, € C? represents a solution of problem (2.5), (2.6) in the
classical sense.

Indeed, it follows from the first two equations of system (2.19) that

8Unl + aunl aun2 aun2

ot or ot ox (3.1)

Further, since wu,; € C' then from the third equation of (2.19) it follows that
2(2 - Z)upz € C and 2 (2 — 2)u,3 € C. Whence due to the commutative
property of the first order differential operators with constant coefficients,
we receive

o(0 0N (0 0Nd
at\at  ox)"™ "\t or)a
(o 0N (0 _0yo o,
ar\at  0z)" T \ot or)or
From these equalities, (3.1) and the third equation of system (2.19) we have

99 N s — g — ) = (2= 2 _ 09 _ 9
ot op )2 T Ut T Une) =G T e ) T i\ o T ox )t

0 (8 0 )u _ Oupa Oupg  Oupmi  Oupy

Tor\ot  ox ot Oz ot or

Whence according to the second and third equalities from (2.18) we conclude that
Un2 = Unt + Ung. This proves the equivalency of problems (2.5), (2.6) and (2.19),
(2.18) in the classical sense.

Above we have reduced problem (1.1), (1.2) to the system of Volterra type
nonlinear integral equations (2.22). Before considering the question of local
solvability of problem (1.1), (1.2), let us make a remark which follows from
considerations given section 2.

Remark 3.1: Let u be a strong generalised solution of problem (1.1), (1.2) of
class C! in domain Dy, then uq := u; — Uy, Us 1= Us + Uy, U = u IS a continuous
solution of the system of nonlinear Volterra type integral equations (2.22) and vice
versa, if uy, us, ug is a continuous solution of system (2.22), then u := ug is a strong
generalised solution of problem (1.1), (1.2) of the class C! in domain D7, besides
the equalities u; = uy — ug, us = us + u, are valid.

Now let us prove the local solvability of the system of Volterra type nonlinear
integral equations (2.22).

Let

fe O(Eoo)a foo :=sup ‘f(x,t)| < 400 (32)
(z,t)€ED oo
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and
p>1 (3.3)

Theorem 3.1: Let the function f and the number p satisfy conditions (3.2), (3.3),
respectively. Then there exists positive number T := T,(u, p, A\, o, f), such that for
T < T, the problem (1.1), (1.2) will have at least one strong generalised solution
u of the class C' in domain Dy

Proof: According to Remark 3.1 problem (1.1), (1.2) in the space C'(D7) is
equivalent to the system of Volterra type nonlinear integral equations (2.22) in the
space C(Dr). Below we will prove a unique solvability of system (2.22) by the
principle of contraction mappings.

Let U := (u1,ua,u3). Consider vectorial operator ® := (&1, D5, P3), acting by
the formula

(@1U)(z,t) = — [ (27 plus | (ur + uz) + Aus|*uz) (Pr)dr
—|—f2t_1t (27 plus|P (ur + u2) + Aus|*us) (Pr, ) dr
+F1($7t)7 (3 4)

(@2U)(z,t) = — f;l(zﬂ) (27 plusl? (ur + u2) + Aus|*us) (Q-)dr '
+F2($7t)a

¢
(P3U)(x,t) = f2_1(I+t) u1 (Qr)dr.
Then the system (2.22) can be rewritten as follows
U = oU. (3.5)

Let ||U]| x, := maxi<i<3 {HUiHC(ﬁT)}v U € Xt := C(Dr;R3), where C(D7;R3) is
the set of all continuous vector-functions U : Dy — R3. Let us denote by Bp :=
{U € X1 : |U||x; < R} closed ball of radius R > 0 in Banach space X with a
centre in the null element.

Below we prove that: (i) & maps a ball By into itself; (ii)) ¢ is a contractive
mapping on Bpg.

Indeed, from (3.4) for U : |U||x,, < R we have

[(@10) (2, )] < 2T (|ulRPF + MR + (| Fllomy)) s

[(@2U)(,8)] < T(|ul R + NRH 4+ || fllopyy)s [(@3U)(z,t)] < TR.
From these estimates it follows that

19U || x, < 2T (|ul R + [NR™ + R+ (| fll o 5,)

< 2T(|u|R7H + NRH + R+ foo),

where f., is defined in (3.2).
Assume that the value of T" with fixed R > 0 is too small that

2T (|p|RPT + (AR + R+ f) < R, (3.6)
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so ®U € Bpg and therefore condition (i) is fulfilled.
Further, due to (3.3) and the first equality of (3.4) for U : |[U?|x,, < R, i = 1,2,
we have

(@102 — ©1U" ) (, t)|

t
< [l — el + o)+ 2l Pl + o -
t—x
t
Nl = b} (P + [ (27l = o + o
1t

+ 27 pllui Pt = up +ud = ual + (N[ [uf]*ud — |ug|*us|) (Pr, ) dr

<2T(|pl(p+ DR’ + [Al(e + 1)RY) |02 — Uil x,-
Analogously
(@202 = 22U ) (2, 8)| < T(|pl(p + DR’ + [Al(e + 1)R) Uz = Uh|x,
and
(@302 — 23U )(,8)| < T U — Uhlx,-
Assume that for fixed R > 0 number 7" is too small that
max (7,27 (|u(p+ 1)R” + |\[(a + 1)R*)) <27' < 1, (3.7)

and therefore || ®U? — ®U'||x, < 3||U? — U'||x,. Thus operator ® is a contractive
mapping on set Bg, i.e., condition (ii) is fulfilled.
From (3.6) and (3.7), in turn, follows that, if T' < T, where

) { R 1

T, := min ' o
2(|p|ReHT + (AR + R+ fo) ' 2

; }

A(|ul(p+ 1)Re + | A(a+ 1)R) |’

(3.8)

then || ®U| x, < R and [|®U? — ®U'||x, < 3||U? = U'||x, for U, U, U? € Bg.

The application of the contraction mapping principle shows that there exists a
unique solution U of (3.5) in C(Dr;R3) for 0 < T < T.. Theorem 3.1 is proved
completely.

4 The case of global solvability of problem (1.1), (1.2)

Theorem 4.1: Ler the conditions (2.1), (3.2) and (3.3) are valid. Then for any
T > 0 the problem (1.1), (1.2) has a strong generalised solution of the class C' in
domain Dr.

Proof: As it was noted in Remark 3.1 the problem (1.1), (1.2) in space C*(Dr)
is equivalent to the system of nonlinear integral equations (2.22) in space C'(Dr).
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In view of (3.2), (3.3) the truth of the Theorem 4.1 for sufficiently small 7', namely
for T' < T, where T, is given by equality (3.8) follows from the Theorem 3.1. Let
now T > T,, and U™ := (ul*,ul*,u3*) is a solution of the system of nonlinear
integral equations (2.22) or, the same, of vector equation (3.5) in domain Dy, of
space C(Dr,) according to Theorem 3.1. For t > Aty := T, rewrite system (2.22)
as follows

un(@,) = = [0 oy (27 ilusl (w4 us) + Aus|“ug) (Pr)dr

k - o
+ faz(w,t;ml) (27 plugl? (w1 + uz) + Alus|“us) (P, )dr
+F1,At1 ($7t)a

3 ) N 4.1)
uala,0) = = [ oy (2 Milusl? (un + z) + Arus|ua) (Q:)dr
+F2,At1 (l‘,t),
t
U3($,t) - fag(m,t;Atl) ul(QT)dT + F3.at, (Ivt);
where
oy (x,t; Aty) := max(Aty, t — x), ap(x, t; Aty) := max(Aty, 27 1),
as(w, t; Aty) := max(Aty, 27 (z + t));
ay(z,t;Aty)
Fiag, (2,1) = 1( et ( T +ul)
+)\|u3* )(
az x,t,Atl) (2 H|u +u2 )
+)\|u3*|°‘ )(Pn, dT+F1 (x t) (4.2)
Fy Ay, (z,t) == 20431(:1;1?;1 ( +u2 )
A ud |oude )(Q dT+F2 (z t)
Fyniy (z,) i= [0 TQ, ) dr.

Ha+t)

Since the conditions of Lemma 2.2 are fulfilled, then for any positive 7 < T for a
solution of vector equation (3.5) in domain D, of space X, due to the (2.16) it is
valid a priori estimate

1Ullx, < RT(||ch(BT))7 (4.3)

where RT = R”(s) is a non-decreasing continuous function of its argument s > 0.
Let R, := RT Hch(ﬁT))- As the second step Aty with respect to ¢ we take

1

Aty = , 4.4
? 4Ry (upR{ + A(a + 1)RY) “4)

where
Ry = 1+42T (R + AR + ||F||xy, F = (Fy1, F2,0). 4.5)

Rewrite the system of equations (4.1) for ¢ € [Ty, Tx + Ats] in the form of one
vector equation

U =00, (4.6)
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where the vectorial operator W := (¥, ¥y, ¥3) acts by the formula

(O,U)(z,t) = — f‘il(I7t§At1) (27 plus|P(ur + uz) + Aug|*us) (Pr)dr

t — «
e @ g + ) + M) (P i
+F1,At1 (CU, t)?

. @.7)
(W) (,8) = = [1 (wineyy (27 plusl?(ur + us) + Alus|us) (Q-)dr
+F2,At1 (Z‘,t),
(U3U)(x,t) = faS(x tAL) u1(Qr)dT + F3 A, (z,1).
Let, analogously as in Section 3, [|U| x,,, ,,, = maxi<i<s {||ui||c(5[T . ])}, where
1 - — 1,42

X(r, 1] is the set of all continuous vector-functions U : Dir, ,) = R®, Dip, 1) =
Dn{T; <t< T}

First we show that the operator ¥ maps the ball B([T1,T:]; R1):={U €
Xiry 1) WU X, 2y < Ba}into itself, where Ty =T, and Ty = T + Ats.

Indeed, due to (4 2)—(4.5) and (4.7) we have

AUl (B, ) < 2(0BET + AR Aty +2(uRET + ARITY) Aty
+||F1Hc(ﬁ[Tl,T2])
<271 4 2T (uRETT + AR + ||| x, < Ry
Analogously: ||‘I’iUHC(E[T1,T2]) <Ry, 1=2,3.

Now let us show that the operator ¥ is a contractive mapping in this ball.
Indeed, for (z,t) € Dip, 1,) due to (4.4) and (4.7) we have

[(01U? = U U (2, 1)
t
<[ e - g
(ItAtl)
+ 27 pfug|P|uf — up + u3 — ug| 4+ A||u3|*u3 — ud|“ui|) (Pr)dr

t
+f (27 alloBlP — el
as(z,t;Aty)
+uz| 27 pluglPluf — up + uf — s + Al |u3|*ug — Jug|*ug|) (Pr, ) dr
< 2(upRY + Mo + DRY) Ata|luf — uzll ooy, o )
+ 2uR AU — Ul xr, 1,
< (27 + @RI = UMlxn, ) = a0 = UM lxe,

,T2]?

where ¢ := 2_1(1 + Rfl) < 1, since Ry > 1 in view of (4.5).
Analogously we receive, that

|(\I’ZU2 - \IJZUl)(xvt” < ql||U2 - U1||X[T1’T2]7 0< qi ‘= const < 17 1= 2a3

Thus, YU|x, 1, < B, |oU? — <I>U1||X[T1,T2] < q|U? - U1||X[T1,T2]’ where 0 <
¢; <1, i =1,2,3 and due to the theorem about contraction mapping it follows the
unique solvability of vector equation (4.6) in the space Xz, 1.
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Continuing this process step by step, and taking into account the fact that in
view of global a priori estimate (4.3) the length of each step At; does not depend on
i we receive the global solvability of the system of equations (2.22), and therefore
of problem (1.1), (1.2) in domain Dy for any 7" > 0.

5 Uniqueness of the solution of problem (1.1), (1.2)

Lemma 5.1: Let the condition (3.3) is fulfilled. Then for any T > 0 problem (1.1),
(1.2) can not have more than one strong generalised solution of the class C* in
domain Dr.

Proof: Indeed, suppose that problem (1.1), (1.2) has two different possible strong
generalised solutions u' and w? of the class C' in domain Dp. According to
Definition 1.1 there exists the sequence of functions u’, € C°?(Dr,'r), such that

i [up, — vl pgy =0, lim (|1l = fllogp,,y =0,
im (|l Put = |0 Pl op,y = 0, lim [l — o]l o,y = 0,
i=1,2. (5.1)

Let us use known notation [J := 92 /9t? — 9 /0z? and assume that w,, := u2 — ul.

It is easy to see that function w, € C°%(D7,I'y) and satisfies the following
identities

Owy, + gn = fn, (5.2)
w"|FT =0, (5.3)

where

g = (0 oy = WublPuke) + A2~ o[ ud), = D Lot
(5.4)

Due to the first equality from (5.1) there exists the number A := const > 0, not
dependent on indices i and n, such that

||Ui1|\01(ET) < A (5.5
According to the second equalities from (5.1) and (5.4) it follows that
nhjfolo ||anc(5T) =0. (5.6)
From (3.3), (5.5) and the first equality of (5.4) it is clear that
n <200 (jup Py — fupPue)” + 20 (Ju2 = | )

= 22 (U2 [Pwne + (Ju2]? — Jub P uby)? + 222 (jud]*u2 — Jul]*ul)?
< YPAPWE, + (AP pP A% 42X (a + 1)2 A% w?. (5.7
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Multiplying the both sides of (5.2) by w,; and integrating the received equality in
domain D., due to boundary conditions (5.3), as it was in receiving of (2.11) from
(2.5), (2.6) we shall have

wy(T) := /Q (wfn + wit)d:ﬁ = 2/D (fn - gn)w”tdajdt. (5.8)

Due to estimate (5.7) and the inequality of Cauchy we shall have

2/ (fn = gn)wpedadt S/ (fo — gn)2dxdt+/ w2, dxdt
D, D, D,

<2 / fidxdt + 2 / g2dadt + / wZ dzdt
D, D, D

-

<2 / f2dzdt + (1+8u”A*P) / w2, dxdt
D,

-

+4(20°p* A% + X2 (a + 1) A%) / widzdt. (5.9)

-

Further, from equality w,(z,t) = fgj wnt(z,7)d7, (2,t) € Dy, which follows from
(5.3), by wuse of standard considerations we receive inequality [see e.g.
Ladyzhenskaya, 1973, p. 63]

/ w2dadt < 7° / w2, dzxdt. (5.10)
D, D,

From (5.8)—(5.10) it follows that

wy, (1) < (1+ 8u2 A% 4+ 82 p? A% + AN T2 (o + 1)2A2a) / w?, dxdt
D,
+2[| fullZ, o)
< (1+8uP A + 8p>T?p” A% + AN T3 (o + 1)2 A7) / wy(0)do
0
+2[| fullZ, (D)

Whence by the Gronwall’s lemma we receive that
wn (1) < ol full,ppy, 0<7<T, (5.11)

where ¢y := 2exp((1 + 8u2 A% + 8u2T?p? A% + AN?T? (o + 1)2 A% T.
Conducting the same considerations, as those used for receiving of (2.13), and
also due to (5.11), for (z,t) € Dy we have

jwn (2, ) < twn(t) < Tea mes Drll fullf 5, = 27 2Tl full

— 2 —
D) C(Dr)’

From this inequality it follows immediately that

lwnllc@my S TV2 T fallo @y (5.12)
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Recalling the definition of function w,, according to the first equality from (5.1)
we have

: 2 1
nlgr;o ||Wn||cl(ET) =[u" —u Hcl(BT)

and all the more

nlggo ”w””C(BT) - ||u2 n u1||C(ET)'
Due to this equality and (5.6), passing in (5.12) to limit for n — oo we receive
[u* —u'| o5,y =0, ie, u' = u?, which proves Lemma 5.1.

6 The case of nonexistence of a global solution of problem (1.1), (1.2)

Below we will show that violation of condition (2.1) may cause the absence of
global solvability of problem (1.1), (1.2) in the sense of Definition 1.2. Indeed, in
equation (1.1) we consider the case, when the parameter p = 0, while the parameter
A <.

Lemma 6.1: Let u be a strong generalised solution of problem (1.1), (1.2) of the
class C' in domain Dr in the sense of Definition 1.1. Then it is valid the following
integral equality

/ updzdt = — A\ |u|“updrdt + fedxdt (6.1)
Dr Dt Dr

for any function @, such that

o —

p€C*(Dr), ¢l,_p=0. @, _p=0. |, =0 (6.2)
Proof: According to the definition of strong generalised solution u of problem
(1.1), (1.2) of the class C' in domain Dr, function u € C'(Dr) and there exists
the sequence of functions u,, € C°2(Dz,T'r), such that the equalities (2.3), (2.4) are
valid.

Suppose that f, := Lu,. Multiplying the both sides of equality Lu, = f,, by
function ¢ let us integrate the received equality in domain Dp. As a result of
integration by parts of the left side of this equality, due to (6.2) and the boundary
conditions (1.2) we receive

/ upOpdzdt = —\ [t | pdadt + Sfnpdxdt.
D~ Dr D~

By passing to limit in this equality for n — oo, according to (2.3), (2.4) we receive
equality (6.1). Thus Lemma 6.1 is proved.

Lemma 6.2: Let A\ <0 and the function uw € C'(Dr) be a strong generalised
solution of the problem (1.1), (1.2) of the class C' in domain Dr. If f>0 in
domain Dr, then uw > 0 in domain Dr.
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Proof: Let P := P(x,t) be an arbitrary point in domain Dp. Denote by G, a
quadrangle with vertices P and also P, and P, P;, which lay on data supports
Yor and 7, respectively, ie., Pp:=Pi(0,t—x), P = Py(5%, 52%), Py =
P. (LH Lﬂ)
s\ 2 )
Let u € C%(Dr) be a classical solution of problem (1.1), (1.2). By integration of
equation (1.1) in domain G, using homogeneous boundary conditions (1.2) it is

easy to see that function u satisfies the following Volterra type integral equation
u(e.t)= [ b€ nu(€ndgdn + Flat), (o.0) € Dr, (63)
Gz,t

where k(z,t) := —3|u(z,t)|* € C(Dr) and F(z,t) := 1 fG f(&,n)dédn, (z,t) €

Dy. By virtue of suppositions made in Lemma 6.2 we have
k(z,t) >0, F(x,t)>0, VY(z,t) € Dr. (6.4)

Assuming that function k(x,t) is given, let us consider Volterra type linear integral
equation

Mawzﬁ;k@mwam%m+Fu¢»<%nebT (6.5)

in the class C(Dr) with respect to unknown function v. As it is known
[see e.g., Bitsadze, 1982, p.188], equation (6.5) in the class C(Dr) has unique
continuous solution v, which can be obtained by use of the method of consecutive
approximations:

Vol t) = 0, vy () = /‘ k(€. n)on (€, m)dEdn + F(x,1),

ot
n=0,1,2,. (z,t) € Dr.

From these equalities according to (6.4) we have v, > 0 in D for all n =0,1,...
On the other hand, v,, — v in the class C (ﬁT) for n — oo. Therefore, limit function
v > 0 in domain Dr. We have just note, that by virtue of equality (6.3) function u
is also a solution of equation (6.5), and therefore due to the uniqueness of solution
of this equation we finally receive © = v > 0 in domain D7. Lemma 6.2 is proved.

For A <0, according to the last lemma, equality (6.1) can by rewritten in the
form

/ |u|Opdzdt = |)\|/ |ulPpdzdt + fodzdt, p:=a+1>1. (6.6)
D~ Dr Dr

Let us introduce into consideration function [see e.g., Mitidieri and Pohozaev, 2001,
pp.10-12] ° := ©%(z,t) such that

QOO S 02(500), QDO|DT:1 > O, SDO|'Y2,0<> = 07 SOO’tZl =0 (67)
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and

Oy’ 1
Ko i= / | 090 ,|_1dxdt <400, p=1+—-. (6.8)
Dy [P0 a

It is easy to verify that in the role of function ¢°, satisfying conditions (6.7) and
(6.8), one may use function

0 Z‘n(l — t)m, (l‘,t) S DT:17
x,t) =
¢ (z,t) {Q .

for sufficiently large positive numbers n and m.
Suppose that o7 (z,t) :=¢" (%, %), T > 0. Due to (6.7) it is easy to see that
der

=0, 90T|t:T =0, ot

Y=
pr € C*(Dr), ¢r|p, >0, er|, .

(6.9)

Supposing that function f is fixed, let us introduce into consideration a function of
one variable T’

¢(T) = fordzdt, T > 0. (6.10)
Dt

The following theorem on the nonexistence of a global solution of problem (1.1),
(1.2) is valid.

Theorem 6.1: Let A <0, p>0, a >0, f € C(Dy) and f >0 in domain Dy, If

lim nf §(7) > 0, (6.11)

then there exists positive number T* :=T*(f), such that for T > T* problem (1.1),
(1.2) cannot have strong generalised solution u of the class C* in domain Dr.

Proof: Suppose, that in conditions of this theorem there exists strong generalised
solution u of problem (1.1), (1.2) of the class C! in domain Dr. Then according to

Lemmas 6.1 and 6.2 equality (6.6) holds, where due to (6.9) in the role of function
o can be taken function ¢ = ¢, ie.,

/ |u|Oprdxdt = \)\|/ |u|p<pdedt—|—/ fordzdt.
Dr Dr Dr
Taking into account (6.10) this equality can be rewritten in the form

A |WWMW:/|MMMMFQH. 6.12)
DT DT
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If in Young inequality with parameter € > 0

1 / 1 1
abgiaer —b: a,b>0, —-+—==1
p per! p P
1 ’
we shall take a = |ulp],b = B2zl then since E =p'—1 we obtain
o1
3 0pr| _ € 1 |Oerl”
|U|:ISDT‘ = ‘ulsp% 1 < 7‘u|p(pT + rep —1 p—1 °
op P P or

According last inequality from (6.12) we have

1 Oor|?
(w—g) | erasie s ——— [ B - ),
P/ Jpr p'e? Dr i

whence for £ < |A|p we receive

p [ p
|u|Pordedt < - / ——dxdt — ¢(T).
/DT (IAlp —e)p'e?’ =t Jp, b7t [Alp — ¢
Since p/ = %, p= p’;lll and min0<g<|)\|p W = ‘)\#, which is achieved
for e = |}, it follows, that
1 g [P’ /
/ luPordedt < —— / | ‘p,T_|1 dz dt — L¢(T). (6.13)
Dr AP b, @b Al

Since ¢r(z,t) := ¢°(%, %), then due to (6.7), (6.8), after changing variables = =
Tx', t =Tt, it is easy to verify, that

Oer|?’ , OO’ ,
/ | SOT| dedt = T—2(p —1) / | 14 | dl‘/dtl _ T—Q(p _1)K/O-
Dt

bt Droy 0171

According to (6.9) and the last inequality from (6.13) we receive

/
og/ lulPordadt < T2 =Dy —%‘C(T). (6.14)
Dr

AP’

Since p' = z% > 1, then —2(p’ — 1) < 0 and due to (6.8) we have

; —2(p'-1) . _
T1—1>r4rrloo |)\|P/T o = 0.

Therefore, by virtue of (6.11) there exists positive number 7% := T*(f), such that
for T' > T* the right hand side of inequality (6.14) will be negative, whereas the left
hand side of this inequality is non-negative. This means that if there exists strong
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generalised solution u of problem (1.1), (1.2) of the class C* in domain D7, then
necessarily 7' < 7™, which proves the Theorem 6.1.

Remark 6.1: It is easy to verify that if f € C(Dy) and f(x,t) > ct=™ for t > 1,
where ¢ := const > 0,0 < m := const < 2, then condition (6.11) will be fulfilled,
and so for A < 0,p > 0,a > 0 problem (1.1), (1.2) for sufficiently large 7" will not
have strong generalised solution u of the class C! in domain Dy.

Indeed, let us introduce in (6.10) the transformation of independent variables x
and ¢ by formula x = Txy, t = T't;, after some estimates we have

C(T) = T2 /D f(T.’l?l,Tt1>g00($1,t1)d$1dt1

Z CT2_m / tfmgoo(xl,tl)dxldtl
DTzlﬁ{tl ZTﬁl}

+T2/ f(TxhTtl)goo(xl,tl)dxldtl
Dr—in{t1<T—1}

in supposition that 7" > 1. Further, let 77 > 1 be any fixed number. Then from the
last inequality for function ¢ we have

(T) = CTQ_m/ 7" (w1, t)dy dty
DTzlﬁ{tlszl}

> C/ t;mwo(ﬂfl,tl)dl‘ldtl,
Dr—yn{t;>T; '}

if T > Ty > 1. From the latter inequality immediately follows the validity of (6.11).
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