S. Kharibegashvili

THE CAUCHY MULTIDIMENSIONAL CHARACTERISTIC PROBLEM FOR ONE CLASS OF THE SECOND ORDER NONLINEAR HYPERBOLIC SYSTEMS

In the space \mathbb{R}^{n+1} of variables $x = (x_1, \ldots, x_n)$ and t we consider a nonlinear hyperbolic second order system of the type

$$(Lu)_{i} := \frac{\partial^{2} u_{i}}{\partial t^{2}} - \sum_{i=1}^{n} \frac{\partial^{2} u_{i}}{\partial x_{i}^{2}} + f_{i}(u_{1}, \dots, u_{N}) = F_{i}(x, t), \quad i = 1, \dots, N, \quad (1)$$

where $f = (f_1, \ldots, f_N)$, $F = (F_1, \ldots, F_N)$ are the given and $u = (u_1, \ldots, u_N)$ is the unknown real vector functions, $n \ge 2$, $N \ge 2$.

For the system of equations (1) we consider the Cauchy characteristic problem of finding a solution u(x,t) in a frustum of a cone of the future $D_T : |x| < t < T$, T = const > 0, under the boundary condition

$$u\big|_{S_T} = 0, \tag{2}$$

where $S_T : t = |x|, t \leq T$ is the conic surface, characteristic with respect to the system (1). For $T = \infty$, we assume that $D_{\infty} : t > |x|$ and $S_{\infty} = \partial D_{\infty} : t = |x|$.

Note that in the case of a scalar nonlinear wave equation this problem has been considered in the works [1]-[3].

Let $\overset{\circ}{C}{}^{2}(\overline{D}_{T}, S_{T}) := \{u \in C^{2}(\overline{D}_{T}) : u |_{S_{T}} = 0\}$ and $\overset{\circ}{W}{}^{1}_{2}(D_{T}, S_{T}) := \{u \in W_{2}^{1}(D_{T}) : u |_{S_{T}} = 0\}$, where $W_{2}^{k}(\Omega)$ is the Sobolev space consisting of elements $L_{2}(\Omega)$, whose generalized derivatives up to the k-th order, inclusive, belong to $L_{2}(\Omega)$, and the equality $u |_{S_{T}} = 0$ is understood in a sense of the trace theory.

Below, on the nonlinear vector function $f = (f_1, \ldots, f_N)$ in (1) we impose the following requirement:

$$f \in C(\mathbb{R}^N), \ |f(u)| \le M_1 + M_2 |u|^{\alpha}, \ \alpha = \text{const} \ge 0, \ u \in \mathbb{R}^N,$$
 (3)

where $|\cdot|$ is the norm in the space \mathbb{R}^N , and $M_i = \text{const} \ge 0, i = 1, 2$.

Remark. The imbedding operator $I: W_2^1(D_T) \to L_q(D_T)$ is the linear continuous compact operator for $1 < q < \frac{2(n+1)}{n-1}$ and n > 1. At the same

²⁰¹⁰ Mathematics Subject Classification. 35L51, 35L71.

Key words and phrases. Cauchy characteristic problem, nonlinear hyperbolic systems, local and global solvability.

¹⁵²

time, the Nemytskii operator $K: L_q(D_T) \to L_2(D_T)$ acting by the formula Ku = f(u), where $u = (u_1, \ldots, u_N) \in L_q(D_T)$, and the vector function $f = (f_1, \ldots, f_N)$ satisfies the condition (3), is continuous and bounded for $q \ge 2\alpha$. Therefore, if $\alpha < \frac{n+1}{n-1}$, then there exists a number q such that $1 < q < \frac{2(n+1)}{n-1}$ and $q \ge 2\alpha$. Thus, in this case the operator

$$K_0 = KI : \left[W_2^1(D_T) \right]^N \to \left[L_2(D_T) \right]^I$$

will be continuous and compact one. Hence from the fact that $u \in W_2^1(D_T)$, it follows that $f(u) \in L_2(D_T)$, and if $u^m \to u$ in the space $W_2^1(D_T)$, then $f(u^m) \to f(u)$ in the space $L_2(D_T)$.

Here and below, the belonging of the vector $v = (v_1, \ldots, v_N)$ to some space X implies that every component v_i , $1 \le i \le N$, of that vector belongs to the space X.

Definition 1. Let $f = (f_1, \ldots, f_N)$ satisfy the condition (3), where $0 \leq \alpha < \frac{n+1}{n-1}, F = (F_1, \ldots, F_N) \in L_2(D_T)$. The vector function $u = (u_1, \ldots, u_N) \in \overset{\circ}{W_2^1}(D_T, S_T)$ is said to be a strong generalized solution of the problem (1), (2) of the class W_2^1 in the space D_T if there exists a sequence of vector functions $u^m \in \overset{\circ}{C}^2(\overline{D}_T, S_T)$ such that $u^m \to u$ in the space $W_2^1(D_T)$ and $Lu^m \to F$ in the space $L_2(D_T)$. The convergence of the sequence $\{f(u^m)\}$ to f(u) in the space $L_2(D_T)$, as $u^m \to u$ in the space $W_2^1(D_T)$, follows from the above Remark.

Obviously, a classical solution $u \in C^2(\overline{D}_T)$ of the problem (1), (2) is likewise a strong generalized solution of that problem of the class W_2^1 in the domain D_T in a sense of Definition 1.

Definition 2. Let f satisfy the condition (3), where $0 \le \alpha < \frac{n+1}{n-1}$, $F \in L_{2,\text{loc}}(D_{\infty})$ and $F|_{D_T} \in L_2(D_T)$ for any T > 0. We say that the problem (1), (2), is locally solvable in the class W_2^1 if there exists a number $T_0 = T_0(F) > 0$ such that for any $T < T_0$ this problem has a strong generalized solution of the class W_2^1 in the domain D_T in a sense of Definition 1.

Definition 3. Let f satisfy the condition (3), where $0 \leq \alpha < \frac{n+1}{n-1}$; $F \in L_{2,\text{loc}}(D_{\infty})$ and $F|_{D_T} \in L_2(D_T)$ for any T > 0. We say that the problem (1), (2) is globally solvable in the class W_2^1 if for any T > 0 this problem has a strong generalized solution of the class W_2^1 in the domain D_T in a sense of Definition 1.

Theorem 1. Let f satisfy the condition (3), where $1 < \alpha < \frac{n+1}{n-1}$; $F \in L_{2,\text{loc}}(D_{\infty})$ and $F|_{D_T} \in L_2(D_T)$ for any T > 0. Then the problem (1), (2) is locally solvable in the class W_2^1 in a sense of Definition 2.

Theorem 2. Let f satisfy the condition (3), where $0 \le \alpha \le 1$; $F \in L_{2,\text{loc}}(D_{\infty})$ and $F|_{D_T} \in L_2(D_T)$ for any T > 0. Then the problem (1), (2) is globally solvable in the class W_2^1 in a sense of Definition 3.

References

- S. Kharibagashvili, On the existence or the absence of global solutions of the Cauchy characteristic problem for some nonlinear hyperbolic equations. J. Boundary Value Problems 2005, No. 3, 359–376.
- S. Kharibagashvili, On the nonexistence of global solutions of the characteristic Cauchy problem for a nonlinear wave equation on a conical domain. (Russian) Differentsial'nye Uravneniya 42 (2006), No. 2, 261–271; English transl.: Differential Equations 42 (2006), No. 2, 279–290.
- S. Kharibagashvili, Boundary value problems for some classes of nonlinear wave equations. Mem. Differential Equations Math. Phys. 46 (2009), 1–114.

Author's address:

- A. Razmadze Mathemetical Institute
- I. Javakhishvili Tbilisi State University
- 2, University Str., Tbilisi 0186

Georgia

E-mail: khar@rmi.ge