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THE CAUCHY MULTIDIMENSIONAL CHARACTERISTIC
PROBLEM FOR ONE CLASS OF THE SECOND ORDER

NONLINEAR HYPERBOLIC SYSTEMS

In the space Rn+1 of variables x = (x1, . . . , xn) and t we consider a
nonlinear hyperbolic second order system of the type

(Lu)i :=
∂2ui

∂t2
−

n∑

i=1

∂2ui

∂x2
i

+ fi(u1, . . . , uN
) = Fi(x, t), i = 1, . . . , N, (1)

where f = (f1, . . . , fN ), F = (F1, . . . , FN ) are the given and u = (u1, . . . , uN )
is the unknown real vector functions, n ≥ 2, N ≥ 2.

For the system of equations (1) we consider the Cauchy characteristic
problem of finding a solution u(x, t) in a frustum of a cone of the future
DT : |x| < t < T , T = const > 0, under the boundary condition

u
∣∣
ST

= 0, (2)

where ST : t = |x|, t ≤ T is the conic surface, characteristic with respect to
the system (1). For T = ∞, we assume that D∞ : t > |x| and S∞ = ∂D∞ :
t = |x|.

Note that in the case of a scalar nonlinear wave equation this problem
has been considered in the works [1]–[3].

Let
◦
C 2(DT , ST ) := {u ∈ C2(DT ) : u

∣∣
ST

= 0} and
◦

W 1
2(DT , ST ) := {u ∈

W 1
2 (DT ) : u

∣∣
ST

= 0}, where W k
2 (Ω) is the Sobolev space consisting of ele-

ments L2(Ω), whose generalized derivatives up to the k-th order, inclusive,
belong to L2(Ω), and the equality u

∣∣
ST

= 0 is understood in a sense of the
trace theory.

Below, on the nonlinear vector function f = (f1, . . . , fN ) in (1) we impose
the following requirement:

f ∈ C(RN ), |f(u)| ≤ M1 + M2|u|α, α = const ≥ 0, u ∈ RN , (3)

where | · | is the norm in the space RN , and Mi = const ≥ 0, i = 1, 2.

Remark. The imbedding operator I : W 1
2 (DT ) → Lq(DT ) is the linear

continuous compact operator for 1 < q < 2(n+1)
n−1 and n > 1. At the same
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time, the Nemytskii operator K : Lq(DT ) → L2(DT ) acting by the formula
Ku = f(u), where u = (u1, . . . , uN

) ∈ Lq(DT ), and the vector function
f = (f1, . . . , fN ) satisfies the condition (3), is continuous and bounded for
q ≥ 2α. Therefore, if α < n+1

n−1 , then there exists a number q such that

1 < q < 2(n+1)
n−1 and q ≥ 2α. Thus, in this case the operator

K0 = KI :
[
W 1

2 (DT )
]N → [

L2(DT )
]N

will be continuous and compact one. Hence from the fact that u ∈ W 1
2 (DT ),

it follows that f(u) ∈ L2(DT ), and if um → u in the space W 1
2 (DT ), then

f(um) → f(u) in the space L2(DT ).

Here and below, the belonging of the vector v = (v1, . . . , vN ) to some
space X implies that every component vi, 1 ≤ i ≤ N , of that vector belongs
to the space X.

Definition 1. Let f = (f1, . . . , fN ) satisfy the condition (3), where
0 ≤ α < n+1

n−1 , F = (F1, . . . , FN ) ∈ L2(DT ). The vector function u =

(u1, . . . , uN ) ∈
◦

W 1
2(DT , ST ) is said to be a strong generalized solution of

the problem (1), (2) of the class W 1
2 in the space DT if there exists a

sequence of vector functions um ∈
◦
C 2(DT , ST ) such that um → u in the

space W 1
2 (DT ) and Lum → F in the space L2(DT ). The convergence of

the sequence {f(um)} to f(u) in the space L2(DT ), as um → u in the space
W 1

2 (DT ), follows from the above Remark.

Obviously, a classical solution u ∈ C2(DT ) of the problem (1), (2) is
likewise a strong generalized solution of that problem of the class W 1

2 in the
domain DT in a sense of Definition 1.

Definition 2. Let f satisfy the condition (3), where 0 ≤ α < n+1
n−1 , F ∈

L2,loc(D∞) and F |DT ∈ L2(DT ) for any T > 0. We say that the problem
(1), (2), is locally solvable in the class W 1

2 if there exists a number T0 =
T0(F ) > 0 such that for any T < T0 this problem has a strong generalized
solution of the class W 1

2 in the domain DT in a sense of Definition 1.

Definition 3. Let f satisfy the condition (3), where 0 ≤ α < n+1
n−1 ;

F ∈ L2,loc(D∞) and F |DT
∈ L2(DT ) for any T > 0. We say that the

problem (1), (2) is globally solvable in the class W 1
2 if for any T > 0 this

problem has a strong generalized solution of the class W 1
2 in the domain

DT in a sense of Definition 1.

Theorem 1. Let f satisfy the condition (3), where 1 < α < n+1
n−1 ; F ∈

L2,loc(D∞) and F |DT
∈ L2(DT ) for any T > 0. Then the problem (1), (2)

is locally solvable in the class W 1
2 in a sense of Definition 2.

Theorem 2. Let f satisfy the condition (3), where 0 ≤ α ≤ 1; F ∈
L2,loc(D∞) and F |DT ∈ L2(DT ) for any T > 0. Then the problem (1), (2)
is globally solvable in the class W 1

2 in a sense of Definition 3.
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