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1. Introduction

In the Euclidean space R
n+1 of independent variables x = (x1, x2, . . . , xn) and

t consider a second order semilinear hyperbolic system of the form

�ui + fi(u1, . . . , uN ) = Fi, i = 1, . . . , N, (1.1)

where f = (f1, . . . , fN ), F = (F1, . . . , FN ) are given, and u = (u1, . . . , uN ) is an
unknown real vector-functions, n ≥ 2, N ≥ 2, � := ∂2

∂t2 − Δ, Δ :=
∑n

i=1
∂2

∂x2
i
.

Denote by D : t > |x|, xn > 0 the half of a light cone of the future
bounded by the part S0 : ∂D ∩ {xn = 0} of hyperplane xn = 0 and the
half S : t = |x|, xn ≥ 0 of the characteristic conoid C : t = |x| of the sys-
tem (1.1). Let DT := {(x, t) ∈ D : t < T}, S0

T := {(x, t) ∈ S0 : t ≤ T},
ST := {(x, t) ∈ S : t ≤ T}, T > 0.

For the system of equations (1.1) consider a problem on finding a solution
u(x, t) of this system by the following boundary conditions

∂u

∂xn

∣
∣
∣
S0

T

= 0, u
∣
∣
∣
ST

= g, (1.2)
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596 S. Kharibegashvili and B. Midodashvili NoDEA

where g = (g1, . . . , gN ) is a given vector-function on ST . In the case when
T = ∞ we have D∞ = D,S0

∞ = S0 and S∞ = S.
The problem (1.1), (1.2) represents a multidimensional version of the

Darboux first problem for the system (1.1), when one part of the problem
data support represents a characteristic manifold, while another part is of
time type manifold [1, p. 228, 233].

Questions on the existence and nonexistence of global solution of the
Cauchy problem for semilinear scalar equations of the form (1.1) with initial
conditions u|t=0 = u0, ∂u

∂t

∣
∣
t=0

= u1 have been considered by many authors
(see, e.g. [2–11]). As it is known for second order scalar linear hyperbolic equa-
tions multidimensional versions of the Darboux first problem are well-posed
and they are globally solvable in suitable function spaces [12–17]. In regard
to the multidimensional problem (1.1), (1.2) for scalar case, i.e. when N = 1,
in the case of nonlinearity of the form f(u) = λ|u|pu, as it is shown in the
paper [18], depending on the sign of the parameter λ and the values of power
exponent p, in some cases the problem (1.1), (1.2) is globally solvable, while in
other cases it is not globally solvable. Another multidimensional version of the
Darboux first problem for scalar semilinear equation of the form (1.1), where
instead of the boundary condition ∂u

∂xn

∣
∣
∣
S0

T

= 0 in (1.2) is taken u
∣
∣
∣
S0

T

= 0, is

considered in the work [19]. Worthy to note also that the multidimensional
version for the Darboux second problem for scalar semilinear equation of the
form (1.1) is studied in the work [20].

In the present work we give certain conditions for the nonlinear vector-
function f = f(u) from (1.1), which fulfilment ensures local or global solv-
ability of the problem (1.1), (1.2), while in some cases it will not have global
solution, though it will be locally solvable.

The paper is organized in the following way. In the Sect. 2 we define
a strong generalized solution of the problem (1.1), (1.2) of the class W 1

2 in
the domain DT and a global solution of this problem of the same class in the
domain D∞. In the Sect. 3, with some restrictions on the power of nonlinearity
of the vector function f , we consider the cases of local and global solvability of
the problem (1.1), (1.2) of the class W 1

2 . In Sect. 4 we give conditions for the
vector-function f , which provide the existence and uniqueness of a global solu-
tion of the class W 1

2 to this problem. Finally, in the Sect. 5, at some additional
conditions on the vector-functions f, F and g, we prove the nonexistence of a
global solution of the problem (1.1), (1.2) of the class W 1

2 in the domain D∞.

2. Definition of a generalized solution of the problem
(1.1), (1.2) in DT and D∞

Let
0

C 2(DT , S
0
T , ST ) :=

{

u ∈ C2(DT ) : ∂u
∂xn

∣
∣
∣
S0

T

= 0, u
∣
∣
∣
ST

= 0
}

.

Let also
0

W 1
2(DT , ST ) := {u ∈ W 1

2 (DT ) : u|ST
= 0}, where W k

2 (Ω) is
the Sobolev space consisting of the elements of L2(Ω) having up to k-th order
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generalized derivatives from L2(Ω), inclusively. Here the equality u|ST
= 0

must be understood in the sense of the trace theory [21, p. 71].
Below under belonging of the vector v = (v1, . . . , vN ) to some space X

we mean belonging of each component vi, 1 ≤ i ≤ N , of this vector to the
same space X. In accordance with this, for simplicity of record, where this will
not cause misunderstanding, instead of v = (v1, v2, . . . , vN ) ∈ [X]N we use the
record v ∈ X.

Rewrite the system of equations (1.1) in the form of one vector equation

Lu := �u+ f(u) = F. (2.1)

Together with the boundary conditions (1.2) we consider corresponding
homogeneous boundary conditions

∂u

∂xn

∣
∣
∣
S0

T

= 0, u
∣
∣
∣
ST

= 0. (2.2)

Below, on the nonlinear vector-function f = (f1, . . . , fN ) in (1.1) we
impose the following requirement

f ∈ C(RN ), |f(u)| ≤ M1 +M2|u|α, α = const ≥ 0, u ∈ R
N , (2.3)

where | · | is a norm in the space R
N , Mi = const ≥ 0, i = 1, 2.

Remark 2.1. The embedding operator I : [W 1
2 (DT )]N → [Lq(DT )]N represents

a linear continuous compact operator for 1 < q < 2(n+1)
n−1 , when n>1 [21, p. 86].

At the same time the Nemitski operator K : [Lq(DT )]N → [L2(DT )]N , acting
by the formula Ku = f(u), where u = (u1, . . . , uN ) ∈ [Lq(DT )]N , and the
vector-function f = (f1, . . . , fN ) satisfies the condition (2.3).0 is continuous
and bounded for q ≥ 2α [22, p. 349], [23, pp. 66, 67]. Thus, if α < n+1

n−1 , i.e.

2α < 2(n+1)
n−1 , then there exists number q such that 1 < q < 2(n+1)

n−1 and q ≥ 2α.
Therefore, in this case the operator

K0 = KI :
[
W 1

2 (DT )
]N → [L2(DT )]N (2.4)

will be continuous and compact. It is clear that from u = (u1, . . . , uN ) ∈
W 1

2 (DT ) it follows that f(u) ∈ L2(DT ) and, if um → u in the space W 1
2 (DT ),

then f(um) → f(u) in the space L2(DT ).

Definition 2.1. Let f = (f1, . . . , fN ) satisfy the condition (2.3), where 0 ≤ α <
n+1
n−1 , F = (F1, . . . , FN ) ∈ L2(DT ) and g = (g1, . . . , gN ) ∈ W 1

2 (ST ). We call
the vector-function u = (u1, . . . , uN ) ∈ W 1

2 (DT ) a strong generalized solution
of the problem (1.1), (1.2) of the class W 1

2 in the domain DT if there exists
a sequence of vector-functions um ∈ C2(DT ) such that ∂um

∂xn

∣
∣
∣
S0

T

= 0, um → u

in the space W 1
2 (DT ), Lum → F in the space L2(DT ) and um

∣
∣
∣
ST

→ g in

the space W 1
2 (ST ). Convergence of the sequence {f(um)} to f(u) in the space

L2(DT ) when um → u in the space W 1
2 (DT ) follows from the Remark 2.1

When g = 0, i.e. in the case of homogeneous boundary conditions (2.2), we

assume that um ∈ 0

C 2(DT , S
0
T , ST ). Then, it is clear that u ∈ 0

W 1
2(DT , ST ).
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598 S. Kharibegashvili and B. Midodashvili NoDEA

It is obvious, that the classical solution u ∈ C2(DT ) of the problem (1.1),
(1.2) is a strong generalized solution of the class W 1

2 in the domain DT in the
sense of the Definition 2.1.

Remark 2.2. It is easy to verify that if u ∈ C2(DT ) is a classical solution of
the problem (1.1), (1.2), then scalarly multiplying the both parts of the sys-
tem (2.1) by any test vector-function ϕ = (ϕ1, . . . , ϕN ) ∈ C1(DT ), satisfying
the condition ϕ

∣
∣
∣
t=T

= 0, after integration by parts, we receive the following
equality

∫

DT

[−utϕt + ∇u∇ϕ] dxdt = −
∫

DT

f(u)ϕdxdt

+
∫

DT

Fϕdxdt−
∫

S0
T ∪ST

∂u

∂ℵϕds, (2.5)

where ∂
∂ℵ = νn+1

∂
∂t − ∑n

i=1 νi
∂

∂xi
is the derivative with respect to the conor-

mal, ν = (ν1, . . . , νn, νn+1) is the unit vector of the outer normal to ∂DT ,
and ∇ = (∂/∂x1, . . . , ∂/∂xn). Taking into account that ∂

∂ℵ
∣
∣
∣
S0

T

= ∂
∂xn

and ST

represents a characteristic manifold, on which the operator ∂
∂ℵ is a inner dif-

ferential operator, from (1.2) we have ∂u
∂ℵ

∣
∣
∣
S0

T

= 0, ∂u
∂ℵ

∣
∣
∣
ST

= ∂g
∂ℵ

∣
∣
∣
ST

. Therefore,

the equality (2.5) takes the form
∫

DT

[−utϕt + ∇u∇ϕ]dxdt = −
∫

DT

f(u)ϕdxdt

+
∫

DT

Fϕdxdt−
∫

ST

∂g

∂ℵϕds. (2.6)

It is easy to see that the equality (2.6) is valid also for any vector-func-
tion ϕ = (ϕ1, . . . , ϕN ) ∈ W 1

2 (DT ) such that ϕ
∣
∣
∣
t=T

= 0 in the sense of the

trace theory. Note that the equality (2.6) is valid also for a strong generalized
solution u ∈ W 1

2 (DT ) of the problem (1.1), (1.2) of the class W 1
2 in the domain

DT in the sense of the Definition 2.1. Indeed, if um ∈ C2(DT ) is a sequence
of vector-functions from the Definition 2.1, then writing equality (2.6) for
u = um and passing to the limit for m → ∞, we receive (2.6). Note also that
the equality (2.6), valid for any test vector-function ϕ ∈ W 1

2 (DT ), satisfying
the condition ϕ

∣
∣
∣
t=T

= 0, can be put in the basis of the definition of a weak

generalized solution u ∈ W 1
2 (DT ) of the problem (1.1), (1.2) of the class W 1

2

in the domain DT .

Definition 2.2. Let f satisfy the condition (2.3), where 0 ≤ α < n+1
n−1 ; F ∈

L2,loc(D∞), g ∈ W 1
2,loc(S∞) and F

∣
∣
DT

∈ L2(DT ), g
∣
∣
ST

∈ W 1
2 (ST ) for any

T > 0. We say that the problem (1.1), (1.2) is locally solvable in the class
W 1

2 if there exists a number T0 = T0(F, g) > 0 such that for any T < T0 this
problem has a strong generalized solution of the class W 1

2 in the domain DT

in the sense of the Definition 2.1.
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Definition 2.3. Let f satisfy the condition (2.3), where 0 ≤ α < n+1
n−1 ; F ∈

L2,loc(D∞), g ∈ W 1
2,loc(S∞) and F

∣
∣
DT

∈ L2(DT ), g
∣
∣
ST

∈ W 1
2 (ST ) for any

T > 0. We say that the problem (1.1), (1.2) is globally solvable in the class
W 1

2 if for any T > 0 this problem has a strong generalized solution of the class
W 1

2 in the domain DT in the sense of the Definition 2.1.

Definition 2.4. Let f satisfy the condition (2.3), where 0 ≤ α < n+1
n−1 ; F ∈

L2,loc(D∞), g ∈ W 1
2,loc(S∞) and F

∣
∣
DT

∈ L2(DT ), g
∣
∣
ST

∈ W 1
2 (ST ) for any

T > 0. Vector-function u = (u1, . . . , uN ) ∈ W 1
2,loc(D∞) is called a global

strong generalized solution of the problem (1.1), (1.2) of the class W 1
2 in the

domain D∞ if for any T > 0 the vector-function u|DT
belongs to the space

W 1
2 (DT ) and represents a strong generalized solution of the problem (1.1),

(1.2) of the class W 1
2 in the domain DT in the sense of the Definition 2.1.

Remark 2.3. Reasoning used in the proof of the equality (2.6) makes it pos-
sible to conclude that the global strong generalized solution u = (u1, . . . , uN )
of the problem (1.1), (1.2) of the class W 1

2 in the domain D∞ in the sense of
the Definition 2.4 satisfies the following integral equality

∫

D∞
[−utϕt + ∇u∇ϕ]dxdt = −

∫

D∞
f(u)ϕdxdt

+
∫

D∞
Fϕdxdt−

∫

S∞

∂q

∂ℵϕds

for any test vector-function ϕ = (ϕ1, . . . , ϕN ) ∈ C1(D∞), which is finite with
respect to the variable r = (t2 + |x|2)1/2, i.e. ϕ = 0 for r > r0 = const > 0.

3. Some cases of local and global solvability of the problem
(1.1), (1.2) in the class W 1

2

For simplicity we consider the case when the boundary conditions (1.2) are
homogeneous. In this case the problem (1.1), (1.2) can be written in the form
(2.1), (2.2).

Remark 3.1. Before we consider the solvability of the problem (2.1), (2.2) let
us consider the same question for a linear case, when vector-function f = 0 in
(2.1), i.e. for the problem

L0u := �u = F (x, t), (x, t) ∈ DT , (3.1)

∂u

∂xn

∣
∣
∣
S0

T

= 0, u
∣
∣
ST

= 0. (3.2)

For the problem (3.1), (3.2), by analogy to that in the Definition 2.1 for the
problem (1.1), (1.2), we introduce a notion of the strong generalized solution
u = (u1, . . . , uN ) of the class W 1

2 in the domain DT for F = (F1, . . . , FN ) ∈
L2(DT ), i.e. for vector-function u = (u1, . . . , uN ) ∈ 0

W 1
2(DT , ST ), for which
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there exists a sequence of vector-functions um = (um
1 , . . . , u

m
N ) ∈ 0

C 2(DT , S
0
T ,

ST ), such that

lim
m→∞ ||um − u|| 0

W 1
2(DT ,ST )

= 0, lim
m→∞ ||L0u

m − F ||L2(DT ) = 0. (3.3)

For the solution u ∈ 0

C 2(DT , S
0
T , ST ) of the problem (3.1), (3.2) the

following estimate

||u|| 0
W 1

2(DT ,ST )
≤ c(T )||F ||L2(DT ), c(T ) =

√
T exp

1
2

(
T + T 2

)
, (3.4)

is valid. Indeed, after scalar multiplication of the both parts of the vector equa-
tion (3.1) by 2∂u

∂t and integration in the domain Dτ , 0 < τ ≤ T , and simple
transformations by help of the equalities (3.2) and integration by parts we
receive the equality [18], [24, p. 116]

∫

Ωτ

[(
∂u

∂t

)2

+
n∑

i=1

(
∂u

∂xi

)2
]

dx = 2
∫

Dτ

F
∂u

∂t
dxdt, (3.5)

where Ωτ := DT ∩{t = τ}. Since Sτ : t = |x|, xn ≥ 0, t ≤ T , then due to (3.2)
we have

u(x, τ) =
∫ τ

|x|

∂

∂t
u(x, s)ds, (x, τ) ∈ Ωτ .

Squaring scalarly the both parts of the received equality, integrating it in the
domain Ωτ and using the Schwartz inequality, we obtain

∫

Ωτ

u2dx =
∫

Ωτ

(∫ τ

|x|

∂

∂t
u(x, s)

)2

dx ≤
∫

Ωτ

(τ − |x|)
[∫ τ

|x|

(
∂u

∂t

)2

ds

]

dx

≤ T

∫

Ωτ

[∫ τ

|x|

(
∂u

∂t

)2

ds

]

dx = T

∫

Dτ

(
∂u

∂t

)2

dxdt. (3.6)

Let

w(τ) :=
∫

Ωτ

[

u2 +
(
∂u

∂t

)2

+
n∑

i=1

(
∂u

∂xi

)2
]

dx.

Taking into account the inequality 2F ∂u
∂t ≤

(
∂u
∂t

)2

+F 2, due to (3.5) and (3.6)
we have
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w(τ) ≤ (1 + T )
∫

DT

(∂u

∂t

)2

dxdt+
∫

Dτ

F 2dxdt

≤ (1 + T )
∫

DT

[

u2 +
(
∂u

∂t

)2

+
n∑

i=1

(
∂u

∂xi

)2
]

dxdt+ ||F ||2L2(DT )

= (1 + T )
∫ τ

0

w(s)ds+ ||F ||2L2(DT ), 0 < τ ≤ T. (3.7)

According to the Gronwall’s Lemma [25, p.13] from (3.7) it follows that

w(τ) ≤ ||F ||2L2(DT ) exp(1 + T )T, 0 < τ ≤ T. (3.8)

By help of (3.8) we have

||u||20
W 1

2(DT ,ST )
=

∫

Dτ

[

u2 +
(
∂u

∂t

)2

+
n∑

i=1

(
∂u

∂xi

)2
]

dxdt

=
∫ T

0

w(τ)dτ ≤ T ||F ||2L2(DT ) exp(1 + T )T,

whence it follows the estimate (3.4).

Remark 3.2. Due to (3.3) a priori estimate (3.4) is also valid for a strong
generalized solution of the problem (3.1), (3.2) of the class W 1

2 in the domain
DT .

Since the space C∞
0 (DT ) of finite infinitely differentiable in the DT func-

tions is dense in the L2(DT ), then for given F = (F1, . . . , FN ) ∈ L2(DT ) there
exists the sequence of vector-functions Fm = (Fm

1 , . . . , Fm
N ) ∈ C∞

0 (DT ) such
that limm→∞ ||Fm − F ||L2(DT ) = 0. For fixed m, extending Fm with even
manner with respect to the variable xn in the domain D−

T := {(x, t) ∈ R
n+1 :

xn < 0, |x| < t < T} and then with zero beyond the domain DT ∪ D−
T and

leaving the same notation for it, we shall have Fm ∈ C∞(Rn+1
+ ), for which the

support suppFm ⊂ D∞ ∪D−
∞, where R

n+1
+ := R

n+1 ∩ {t ≥ 0}. Denote by um

the solution of the Cauchy problem:

L0u
m := �um = Fm, um

∣
∣
∣
∣t=0 = 0,

∂um

∂t

∣
∣
∣
∣
t=0

= 0, (3.9)

which, as it is well-known [26, p. 192], exists, is unique and belongs to the space
C∞(Rn+1

+ ). Since suppFm ⊂ D∞∪D−
∞ ⊂ {(x, t) ∈ R

n+1 : t > |x|}, um|t=0 = 0
and ∂um

∂t

∣
∣
t=0

= 0, then taking into account geometry of the domain of depen-
dence of the solution of linear wave equation L0u

m = Fm, we shall have
supp um ⊂ {(x, t) ∈ R

n+1 : t > |x|} [26, p. 191] and, in particular, um
∣
∣
ST

= 0.
On the other hand the vector-function ũm(x1, . . . , xn, t) = um(x1, . . . ,−xn, t)
is also a solution of the same Cauchy problem (3.9), because the vector-function
Fm is even with respect to the variable xn. Therefore, due to the uniqueness of
the solution of the Cauchy problem we have ũm = um, i.e. um(x1, . . . ,−xn, t) =
um(x1, . . . , xn, t), and thereby the vector-function um is also an even function
with respect the variable xn. Whence, in turn, it follows that ∂um

∂xn

∣
∣
∣
xn=0

= 0,

which with the condition um
∣
∣
ST

= 0 means that if we leave the same notation
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602 S. Kharibegashvili and B. Midodashvili NoDEA

for the restriction of vector-function um in the domain DT , then it is obvi-

ous that um ∈ 0

C 2(DT , S
0
T , ST ). Further, due to (3.4) and (3.9) the following

inequality

lim
m→∞ ||um − uk|| 0

W 1
2(DT ,ST )

≤ c(T )||Fm − F k||L2(DT ) (3.10)

is valid.
Since the sequence {Fm} is fundamental in L2(DT ), then due to (3.10)

the sequence {um} is also fundamental in the complete space
0

W 1
2(DT , ST ).

Therefore, there exists a vector-function u ∈ 0

W 1
2(DT , ST ) such that limm→∞

||um−u|| 0
W 1

2(DT ,ST )
= 0, and since L0u

m = Fm → F in the space L2(DT ), then

this vector-function according to the Remark 3.1 will be a strong generalized
solution of the problem (3.1), (3.2) of the class W 1

2 in the domain DT . The

uniqueness of this solution from the space
0

W 1
2(DT , ST ) follows, due to the

Remark 3.2, from the a priori estimate (3.4). Therefore, for the solution u of
the problem (3.1), (3.2) we can write u = L−1

0 F , where L−1
0 : [L2(DT )]N →

[
0

W 1
2(DT , ST )

]N

is a linear continuous operator with a norm admitting in

view of (3.4) the following estimate

||L−1
0 ||

[L2(DT )]N →[
0

W 1
2(DT ,ST )]N

≤
√
T exp

1
2
(T 2 + T ). (3.11)

Remark 3.3. Taking into account (3.11), when the condition (2.3) is fulfilled,
where 0 ≤ α < n+1

n−1 and F ∈ L2(DT ), due to the Remark 2.1, it is easy to see

that the vector-function u = (u1, . . . , uN ) ∈ 0

W 1
2(DT , ST ) represents a strong

generalized solution of the problem (2.1), (2.2) of the class W 1
2 in the domain

DT if and only if u is a solution of the following functional equation

u = L−1
0 (−f(u) + F ) (3.12)

in the space
0

W 1
2(DT , ST ).

Remark 3.4. Let the condition (2.3) be fulfilled and 0 ≤ α < n+1
n−1 . Rewrite the

equation (3.12) in the form

u = Au := L−1
0 (−K0u+ F ), (3.13)

where the operator K0 : [
0

W 1
2(DT , ST )]N → [L2(DT )]N from (2.4) due to

the Remark 2.1 is a continuous and compact operator. Therefore, according

to (3.11) and (3.13) the operator A : [
0

W 1
2(DT , ST )]N → [

0

W 1
2(DT , ST )]N is

also continuous and compact. Denote by B(0, r0) := {u = (u1, . . . , uN ) ∈
0

W 1
2(DT , ST ) : ||u|| 0

W 1
2(DT ,ST )

≤ r0} a closed (convex) ball with radius r0 > 0

and center in null element in the Hilbert space
0

W 1
2(DT , ST ). Since the opera-

tor A from (3.13), acting in the space
0

W 1
2(DT , ST ), is a compact continuous
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operator, then, according to the Schauder principle, for solvability of the equa-

tion (3.13) in the space
0

W 1
2(DT , ST ) it suffices to prove that the operator A

maps the ball B(0, r0) into itself for some r0 > 0 [27, p. 370].

Theorem 3.1. Let f satisfy the condition (2.3), where 1 ≤ α < n+1
n−1 ; g = 0, F ∈

L2,loc(D∞) and F
∣
∣
DT

∈ L2(DT ) for any T > 0. Then the problem (1.1), (1.2)
is locally solvable in the class W 1

2 , i.e. there exists a number T0 = T0(F ) > 0
such that for any T < T0 this problem has a strong generalized solution of the
class W 1

2 in the domain DT in the sense of the Definition 2.1.

Proof. Due to Remark 3.4 it suffices to prove the existence of positive num-
bers T0 = T0(F ) and r0 = r0(T, F ) such that for T < T0 the operator A
from (3.13) maps the ball B(0, r0) into itself. For this purpose let us evaluate

||Au|| 0
W 1

2(DT ,ST )
for u ∈ 0

W 1
2(DT , ST ). If u = (u1, . . . , uN ) ∈ 0

W 1
2(DT , ST ),

then let us denote by ũ the vector-function which represents an even extension

of u through planes xn = 0 and t = T . It is obvious that ũ ∈ 0

W 1
2(D

∗
T ) := {v ∈

W 1
2 (D∗

T ) : v|∂D∗
T

= 0}, where D∗
T : |x| < t < 2T − |x|.

Using inequality [28, p. 258]

∫

Ω

|v|dΩ ≤ (mesΩ)1−1/p||v||p,Ω, p ≥ 1,

and taking into account equalities

||ũ||pLp(D∗
T ) = 4||u||pLp(DT ), ||ũ||20

W 1
2(D

∗
T )

= 4||u||20
W 1

2(DT ,ST )
,

from known multiplicative inequality [21, p. 78]

||v||p,Ω ≤ β||∇x,tv||α̃m,Ω||v||1−α̃
r,Ω ∀v ∈ 0

W
1
2(Ω), Ω ⊂ R

n+1,

∇x,t =
( ∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂t

)
, α̃ =

(1
r

− 1
p

)(1
r

− 1
m̃

)−1

, m̃ =
(n+ 1)m
n+ 1 −m

for Ω = D∗
T ⊂ R

n+1, v = ũ, r = 1,m = 2 and 1 < p ≤ 2(n+1)
n+1−m , where

β = const > 0 does not depend on v and T , we obtain the following inequality:

||u||Lp(DT ) ≤ c0(mesDT )
1
p + 1

n+1 − 1
2 ||u|| 0

W 1
2(DT ,ST )

∀u ∈ 0

W
1
2(DT , ST ), (3.14)

where c0 = const > 0 does not depend on u and T .
Since mesDT = ωn

n+1T
n+1, where ωn is the volume of a unit ball in R

n,
then for p = 2α from (3.14) we have
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||u||L2α(DT ) ≤ CT ||u|| 0
W 1

2(DT ,ST )
∀u ∈ 0

W
1
2(DT , ST ), (3.15)

where CT = c0

(
ωn

n+1

)α1

T (n+1)α1 , α1 = 1
2α + 1

n+1 − 1
2 .

Note that α1 = 1
2α + 1

n+1 − 1
2 > 0 for α < n+1

n−1 , and therefore

lim
T→0

CT = 0. (3.16)

For ||K0u||L2(DT ), where u ∈ 0

W 1
2(DT , ST ) and operator K0 acts accord-

ing to the formula (2.4), due to (2.3) and (3.15) we have the following estimate

||K0u||2L2(DT ) ≤
∫

DT

(M1 +M2|u|α)2dxdt ≤ 2M2
1mesDT

+2M2
2

∫

DT

|u|2αdxdt = 2M2
1mesDT + 2M2

2 ||u||2α
L2α(DT )

≤ 2M2
1mesDT + 2M2

2C
2α
T ||u||2α

0
W 1

2(DT ,ST )
,

whence we have

||K0u||L2(DT ) ≤ M1(2mesDT )
1
2 +

√
2M2C

α
T ||u||α0

W 1
2(DT ,ST )

. (3.17)

From (3.11), (3.13) and (3.17) it follows that

||Au|| 0
W 1

2(DT ,ST )
= ||L−1

0 (−K0u+ F )|| 0
W 1

2(DT ,ST )

≤ ||L−1
0 ||

[L2(DT )]N →
[

0
W 1

2(DT ,ST )

]N ||(−K0u+ F )||L2(DT )

≤
[√

T exp
1
2
(T + T 2)

]
(||K0u||L2(DT ) + ||F ||L2(DT )

)

≤
[√

T exp
1
2
(T + T 2)

] (
M1(2mesDT )

1
2

+
√

2M2C
α
T ||u||α0

W 1
2(DT ,ST )

+||F ||L2(DT )

)
= a(T )||u||α0

W 1
2(DT ,ST )

+ b(T ). (3.18)

Here

a(T ) =
√

2M2C
α
T

√
T exp

1
2
(T + T 2), (3.19)

b(T ) =
[√

T exp
1
2
(T + T 2)

] (
M1(2mesDT )1/2 + ||F ||L2(DT )

)
. (3.20)

For fixed T > 0 consider equation

azα + b = z (3.21)

with respect to unknown z ∈ R, where a = a(T ) and b = b(T ) are defined by
(3.19) and (3.20).

First consider the case when α > 1. Simple analysis, analogous to that
for α = 3 performed in the work [27, pp. 373, 374], shows that:

Author's personal copy



Vol. 20 (2013) The Darboux problem version for hyperbolic systems 605

1. for b = 0, together with trivial root z1=0, equation (3.21) has a unique
positive root z2 = a−1/(α−1);

2. if b > 0, then for 0 < b < b0, where

b0 = b0(T ) =
[
α−1/(α−1) − α−α/(α−1)

]
a−1/(α−1), (3.22)

equation (3.21) has two positive roots z1 and z2, 0 < z1 < z2, and for
b = b0 these roots merge and we have one positive root z1 = z2 = z0 =
(αa)−1/(α−1);

3. for b > b0 equation (3.21) does not have nonnegative roots. Note that for
0 < b < b0 the inequality z1 < z0 = (αa)−1/(α−1) < z2 is valid.
In view of absolute continuity of the Lebesgue integral we have limT→0

||F ||L2(DT ) = 0. Therefore, taking into account that mesDT = ωn

n+1T
n+1, then

from (3.20) it follows that limT→0 b(T ) = 0. At the same time, since − 1
α−1 < 0

for α > 1, due to (3.16) from (3.19) and (3.22) we get limT→0 b0(T ) = ∞.
Therefore, there exists a number T0 = T0(F ) > 0 such that for 0 < T < T0 in
view of (3.19)–(3.22) it will hold condition 0 < b < b0, and thereby equation
(3.21) will have at least one positive root, we denote it by r0 = r0(T, F ).

In the case when α = 1 equation (3.21) represents a linear equation,
where limT→0 a(T ) = 0. Therefore, for 0 < T < T0, where T0 = T0(F ) is a
sufficiently small positive number, this equation will have a unique positive
root z(T, F ) = b(1 − a)−1, which we also denote by r0 = r0(T, F ).

Now we will show that the operator A from (3.13) maps the ball B(0, r0)

⊂ 0

W 1
2(DT , ST ) into itself. Indeed, due to (3.18) and equality arα

0 + b = r0 for
any u ∈ B(0, r0) we have

||Au|| 0
W 1

2(DT ,ST )
≤ a||u||α0

W 1
2(DT ,ST )

+ b ≤ arα
0 + b = r0. (3.23)

In view of the Remark 3.4 this proves the Theorem 3.1.

Theorem 3.2. Let f satisfy the condition (2.3), where 0 ≤ α < 1; g = 0, F ∈
L2,loc(D∞) and F

∣
∣
DT

∈ L2(DT ) for any T > 0. Then the problem (1.1), (1.2)
is globally solvable in the class W 1

2 , i.e. for any T > 0 this problem has a
strong generalized solution of the class W 1

2 in the domain DT in the sense of
the Definition 2.1.

Proof. According to the Remark 3.4 for the proof of the Theorem 3.2 it suf-
fices to show that for any T > 0 there exists a number r0 = r0(T, F ) > 0 such

that the operator A from (3.13) maps the ball B(0, r0) ⊂ 0

W 1
2(DT , ST ) into

itself. Let 1/2 < α < 1, then, since 2α > 1 the inequality (3.15) is valid, and
therefore, the estimate (3.18) is also valid. For fixed T > 0, because α < 1
there exists a number r0 = r0(T, F ) > 0 such that

a(T )sα + b(T ) ≤ r0 ∀s ∈ [0, r0]. (3.24)

Indeed, the function λ(s)
s , where λ(s) = a(T )sα+b(T ), is a continuous decreas-

ing function and lims→+0
λ(s)

s = +∞, lims→+∞
λ(s)

s = 0. Therefore there exists
a number s = r0(T, F ) > 0 such that λ(s)

s

∣
∣
s=r0

= 1. Whence, since the function

Author's personal copy



606 S. Kharibegashvili and B. Midodashvili NoDEA

λ(s) for s ≥ 0 is a monotonic increasing function, (3.24) follows immediately.
Now, in view of (3.18) and (3.24), for any u ∈ B(0, r0) it is valid the inequality
(3.23), i.e. A(B(0, r0)) ⊂ B(0, r0).

The case 0 ≤ α ≤ 1
2 can be reduced to the previous case 1

2 < α < 1
because the vector-function f , satisfying the condition (2.3) for 0 ≤ α ≤ 1

2 ,
satisfies the same condition (2.3) for a certain fixed α = α1 ∈ ( 1

2 , 1) with
other positive constants M1 and M2 (it is easy to see that M1 + M2|u|α ≤
(M1 + M2) + M2|u|α1 ∀u ∈ R, α < α1). This proves the Theorem 3.2 com-
pletely.

Remark 3.5. The global solvability of the problem (1.1), (1.2) in the Theo-
rem 3.2 is proved for the case when the function f satisfies the condition (2.3),
where 0 ≤ α < 1. In the case 1 ≤ α < n+1

n−1 in the Theorem 3.1 it is proved the
local solvability of this problem, although in this case for additional conditions
posed on f , the problem (1.1), (1.2) will be globally solvable as it is shown in
the following theorem.

Theorem 3.3. Let f satisfy the condition (2.3), where 1 ≤ α < n+1
n−1 , and f =

∇G, i.e. fi(u) = ∂
∂ui

G(u), u ∈ R
N , i = 1, . . . , N , where G = G(u) ∈ C1(RN )

is a scalar function satisfying conditions G(0) = 0 and G(u) ≥ 0 ∀u ∈ R
N .

Let g = 0, F ∈ L2,loc(D∞) and F
∣
∣
DT

∈ L2(DT ) for any T > 0. Then the
problem (1.1), (1.2) is globally solvable in the class W 1

2 , i.e. for any T > 0 this
problem has a strong generalized solution of the class W 1

2 in the domain DT

in the sense of the Definition 2.1.

Proof. First let us show that for any fixed T > 0, when the conditions of
the Theorem 3.3 are fulfilled, for a strong generalized solution u of the prob-
lem (1.1), (1.2) of the class W 1

2 in the domain DT the a priori estimate (3.4)
is valid. Indeed, due to the Definition 2.1 there exists a sequence of of the

vector-functions um ∈ 0

C 2(DT , S
0
T , ST ) such that

lim
m→∞ ||um − u||W 1

2 (DT ) = 0, lim
m→∞ ||Lum − F ||L2(DT ) = 0. (3.25)

Let

Fm := Lum, (3.26)

then due to the equality (3.5) we have

∫

Ωτ

[
(∂um

∂t

)2

+
n∑

i=1

(∂um

∂xi

)2
]

dx = 2
∫

Dτ

(Fm − f(um))
∂um

∂t
dxdt. (3.27)

Since f = ∇G, then f(um)∂um

∂t = ∂
∂tG(um) and taking into account that

um|ST
= 0, νn+1|S0

τ
= 0, νn+1|Ωτ

= 1, G(0) = 0, by integration by parts we
have
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∫

Dτ

f(um)
∂um

∂t
dxdt =

∫

Dτ

∂

∂t
G(um)dxdt =

∫

∂Dτ

G(um)νn+1ds

=
∫

S0
τ ∪Sτ ∪Ωτ

G(um)νn+1ds =
∫

Ωτ

G(um)dx.

(3.28)

In view of (3.28) and G ≥ 0 from (3.27) we have
∫

Ωτ

[(∂um

∂t

)2

+
n∑

i=1

(∂um

∂xi

)2]
dx = 2

∫

Dτ

Fm ∂um

∂t
dxdt

−2
∫

Ωτ

G(um)dx ≤ 2
∫

Dτ

Fm ∂um

∂t
dxdt.

(3.29)

Using the same reasonings as those used for receiving the estimate (3.4),
from (3.29) we get the following inequality

||um|| 0
W 1

2(DT ,ST )
≤ c(T )||Fm||L2(DT ), c(T ) =

√
T exp

1
2
(T + T 2),

whence, due to (3.25) and (3.26), it follows (3.4).
According to the Remarks 3.3 and 3.4, at fulfilment of the conditions

of the Theorem 3.3, the vector-function u ∈ 0

W 1
2(DT , ST ) represents a strong

generalized solution of the problem (1.1), (1.2) of the class W 1
2 then and only

then, when u represents a solution to the functional equation u = Au from

(3.13) in the space
0

W 1
2(DT , ST ), where the operator A : [

0

W 1
2(DT , ST )]N →

[
0

W 1
2(DT , ST )]N is continuous and compact. At the same time, as it was shown

above, for any μ ∈ [0, 1] and for any solution of the equation u = μAu with the

parameter μ in the space
0

W 1
2(DT , ST ) it is valid the following a priori estimate

||u|| 0
W 1

2(DT ,ST )
≤ μc(T )||F ||L2(DT ) ≤ c(T )||F ||L2(DT ) with positive constant

c(T ), not depending on u, μ and F . Therefore, according to the Leray-Schau-
der theorem [27, p. 375] the equation (3.13), and therefore the problem (1.1),
(1.2) has at least one strong generalized solution of the class W 1

2 in the domain
DT for any T > 0. The Theorem 3.3 is proved.

4. The uniqueness and existence of a global solution
of the problem (1.1), (1.2) in the class W 1

2

Below we impose on the nonlinear vector-function f = (f1, . . . , fN ) from (1.1)
additional requirements

f ∈ C1(RN ),
∣
∣
∣
∂fi(u)
∂uj

∣
∣
∣ ≤ M3 +M4|u|γ ∀u ∈ R

n, 1 ≤ i, j ≤ N, (4.1)

where M3,M4, γ = const ≥ 0. For simplicity we assume that the vector-func-
tion g = 0 in the boundary condition (1.2).
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Remark 4.1. It is obvious that from (4.1) it follows the condition (2.3) for
γ = α− 1, and in the case γ < 2

n−1 we have 1 ≤ α = γ + 1 < n+1
n−1 .

Theorem 4.1. Let the condition (4.1) be fulfilled, where 0 ≤ γ < 2
n−1 ; F ∈

L2(DT ) and g = 0. Then the problem (1.1), (1.2) cannot have more than one
strong generalized solution of the class W 1

2 in the domain DT in the sense of
the Definition 2.1.

Proof. Let F ∈ L2(DT ), g = 0, and assume that the problem (1.1), (1.2) has
two strong generalized solutions u1 and u2 of the class W 1

2 in the domain DT

in the sense of Definition 2.1, i.e. there exist two sequences of vector-functions

uim ∈ 0

C 2(DT , S
0
T , ST ), i = 1, 2; m = 1, 2, . . . , such that

lim
m→∞ ||uim − ui|| 0

W 1
2(DT ,ST )

= 0, lim
m→∞ ||Luim − F ||L2(DT ) = 0, i = 1, 2.

(4.2)

Let

w = u2 − u1, wm = u2m − u1m, Fm = Lu2m − Lu1m. (4.3)

In view of (4.2) and (4.3) we have

lim
m→∞ ||wm − w|| 0

W 1
2(DT ,ST )

= 0, lim
m→∞ ||Fm||L2(DT ) = 0. (4.4)

In accordance with (4.3) consider the vector-function wm ∈ 0

C 2(DT , S
0
T ,

ST ) as a solution of the following problem

�wm = −[f(u2m) − f(u1m)] + Fm, (4.5)

∂wm

∂xn

∣
∣
∣
S0

T

= 0, wm|ST
= 0. (4.6)

From (4.5), (4.6) and in view of the equality (3.5) it follows
∫

Ωτ

[(
∂wm

∂t

)2

+
n∑

i=1

(
∂wm

∂xi

)2
]

dx = 2
∫

Dτ

Fm ∂wm

∂t
dxdt

−2
∫

Dτ

[f(u2m) − f(u1m)]
∂wm

∂t
dxdt, 0 < τ ≤ T. (4.7)

Taking into account the equality

fi(u2m) − fi(u1m) =
N∑

j=1

∫ 1

0

∂

∂uj
fi(u1m + s(u2m − u1m))ds(u2m

j − u1m
j ),

we receive
[
f(u2m) − f(u1m)

] ∂wm

∂t

=
N∑

i,j=1

[ ∫ 1

0

∂

∂uj
fi(u1m + s(u2m − u1m))ds

]

(u2m
j − u1m

j )
∂wm

i

∂t
. (4.8)
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From (4.1) and obvious inequality |d1 + d2|γ ≤ 2γmax(|d1|γ , |d2|γ) ≤
2γ(|d1|γ + |d2|γ) for γ ≥ 0, di ∈ R, we have
∣
∣
∣

∫ 1

0

∂

∂uj
fi(u1m + s(u2m − u1m))ds

∣
∣
∣ ≤

∫ 1

0

[M3 +M4|(1 − s)u1m + su2m|γ ]ds

≤ M3 + 2γM4

(|u1m|γ + |u2m|γ)
. (4.9)

From (4.8) and (4.9), taking into account (4.3), it follows
∣
∣
∣
[
f(u2m) − f(u1m)

] ∂wm

∂t

∣
∣
∣ ≤

N∑

i,j=1

[
M3 + 2γM4

(|u1m|γ + |u2m|γ)] |wm
j |

∣
∣
∣
∂wm

i

∂t

∣
∣
∣

≤ N2
[
M3 + 2γM4

(|u1m|γ + |u2m|γ)] |wm|
∣
∣
∣
∂wm

∂t

∣
∣
∣

≤ 1
2
N2M3

[

(wm)2 +
(
∂wm

∂t

)2
]

+2γN2M4

(|u1m|γ + |u2m|γ) |wm|
∣
∣
∣
∂wm

∂t

∣
∣
∣.

(4.10)

Due to (4.7) and (4.10) we have
∫

Ωτ

[(∂wm

∂t

)2

+
n∑

i=1

(∂wm

∂xi

)2]
dx ≤

∫

Dτ

[(∂wm

∂t

)2

+ (Fm)2
]
dxdt

+N2M3

∫

Dτ

[
(wm)2 +

(∂wm

∂t

)2]
dxdt

+2γ+1N2M4

∫

DT

(|u1m|γ + |u2m|γ) |wm|
∣
∣
∣
∂wm

∂t

∣
∣
∣dxdt. (4.11)

The latter integral in the right side of (4.11) can be estimated by Holder’s
inequality

∫

DT

(|u1m|γ + |u2m|γ) |wm|
∣
∣
∣
∂wm

∂t

∣
∣
∣dxdt

≤
( ∣

∣
∣
∣
∣|u1m|γ∣

∣
∣
∣
Ln+1(DT )

+
∣
∣
∣
∣|u2m|γ∣

∣
∣
∣
Ln+1(DT )

)
||wm||Lp(Dτ )

∣
∣
∣
∣
∣
∣
∂wm

∂t

∣
∣
∣
∣
∣
∣
L2(Dτ )

.

(4.12)

Here 1
n+1 + 1

p + 1
2 = 1, i.e. for

p =
2(n+ 1)
n− 1

. (4.13)

In view of (3.14) for q ≤ 2(n+1)
n−1 we have

||v||Lq(DT ) ≤ Cq(T )||v|| 0
W 1

2(DT ,ST )
∀v ∈ 0

W
1
2(Dτ , Sτ ), 0 < τ ≤ T, (4.14)

with positive constant Cq(T ), not depending on v ∈ 0

W 1
2(Dτ , Sτ ) and τ ∈

[0, T ].
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According to the theorem γ < 2
n−1 and, therefore, γ(n + 1) < 2(n+1)

n−1 .
Thus, from (4.13), (4.14) we receive

∣
∣
∣
∣|uim|γ∣

∣
∣
∣
Ln+1(DT )

=
∣
∣
∣
∣uim

∣
∣
∣
∣γ
Lγ(n+1)(DT )

≤ Cγ
γ(n+1)(T )

∣
∣
∣
∣uim

∣
∣
∣
∣γ

0
W 1

2(DT ,ST )
,

i = 1, 2; m ≥ 1, (4.15)

||wm||Lp(Dτ ) ≤ Cp(T )||wm||W 1
2 (Dτ ),m ≥ 1. (4.16)

In view of the first equality from (4.2) there exists natural number m0

such that for m ≥ m0 we shall have
∣
∣
∣
∣uim

∣
∣
∣
∣γ

0
W 1

2(DT ,ST )
≤ ∣

∣
∣
∣ui

∣
∣
∣
∣γ

0
W 1

2(DT ,ST )
+ 1, i = 1, 2; m ≥ m0. (4.17)

In view of these inequalities from (4.12)–(4.16) it follows that

2γ+1N2M4

∫

Dτ

(|u1m|γ + |u2m|γ) |wm|
∣
∣
∣
∂wm

∂t

∣
∣
∣dxdt

≤ 2γ+1N2M4C
γ
γ(n+1)(T )

(

||u1||γ0
W 1

2(DT ,ST )

+||u2||γ0
W 1

2(DT ,ST )
+ 2

)

Cp(T )||wm|| 0
W 1

2(Dτ ,Sτ )

∣
∣
∣
∣
∣
∣
∂wm

∂t

∣
∣
∣
∣
∣
∣
L2(Dτ )

≤ M5

(
||wm||2W 1

2 (Dτ ) +
∣
∣
∣
∣
∣
∣
∂wm

∂t

∣
∣
∣
∣
∣
∣
2

L2(Dτ )

)
≤ 2M5||wm||2W 1

2 (Dτ )

= 2M5

∫

Dτ

[

(wm)2 +
(
∂wm

∂t

)2

+
n∑

i=1

(
∂wm

∂xi

)2
]

dxdt, (4.18)

whereM5 = 2γN2M4C
γ
γ(n+1)(T )

(
||u1||γ0

W 1
2(DT ,ST )

+||u2||γ0
W 1

2(DT ,ST )
+2

)
Cp(T ).

Due to (4.17) from (4.11) we have
∫

Ωτ

[(
∂wm

∂t

)2

+
n∑

i=1

(
∂wm

∂xi

)2
]

dx ≤ M6

∫

Dτ

[

(wm)2 +
(
∂wm

∂t

)2

+
n∑

i=1

(
∂wm

∂xi

)2
]

dxdt+
∫

DT

(Fm)2dxdt, 0 < τ ≤ T, (4.19)

where M6 = 1 +M3N
2 + 2M5.

Note, that the inequality (3.6) is valid for wm too, and, therefore,
∫

Ωτ

(wm)2dx ≤ T

∫

Dτ

(∂wm

∂t

)2

dxdt

≤ T

∫

Dτ

[

(wm)2 +
(
∂wm

∂t

)2

+
n∑

i=1

(
∂wm

∂xi

)2
]

dxdt. (4.20)

Putting

λm(τ) :=
∫

Ωτ

[

(wm)2 +
(
∂wm

∂t

)2

+
n∑

i=1

(
∂wm

∂xi

)2
]

dx (4.21)
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and adding (4.18) to (4.19), we receive

λm(τ) ≤ (M6 + T )
∫ τ

0

λm(s)ds+ ||Fm||2L2(DT ).

Whence, by the Gronwall’s lemma [25, p. 13], it follows that

λm(τ) ≤ ||Fm||2L2(DT ) exp(M6 + T )τ. (4.22)

From (4.20) and (4.21) we have

||wm||2W 1
2 (DT ) =

∫ T

0

λm(τ)dτ ≤ T ||Fm||2L2(DT ) exp(M6 + T )T. (4.23)

In view of (4.3), (4.4) from (4.22) it follows that

||w||W 1
2 (DT ) = lim

m→∞ ||w − wm + wm||W 1
2 (DT )

≤ lim
m→∞ ||w − wm||W 1

2 (DT ) + lim
m→∞ ||wm||W 1

2 (DT )

= lim
m→∞ ||w − wm||W 1

2 (DT ) = lim
m→∞ ||w − wm|| 0

W 1
2(DT ,ST )

= 0.

Therefore w = u2 − u1 = 0, i.e. u2 = u1. The Theorem 4.1 is proved.
From the Theorems 3.2, 3.3, 4.1 and the Remark 4.1 it follows the next

theorem of existence and uniqueness.

Theorem 4.2. Let the vector-function f satisfy the condition (4.1), where 0 ≤
γ < 2

n−1 , and either f satisfy the condition (2.3) for α < 1 or f = ∇G, where
G ∈ C1(RN ), G(0) = 0 and G(u) ≥ 0 ∀u ∈ R

N . Then for any F ∈ L2(DT )
and g = 0 the problem (1.1), (1.2) has unique strong generalized solution u ∈
0

W 1
2(DT , ST ) of the class W 1

2 in the domain DT in the sense of the Defini-
tion 2.1. The following theorem on existence of global solution of this problem
follows from the Theorem 4.2.

Theorem 4.3. Let the vector-function f satisfy the condition (4.1), where 0 ≤
γ < 2

n−1 , and either f satisfy the condition (2.3) for α < 1 or f = ∇G, where
G ∈ C1(RN ), G(0) = 0 and G(u) ≥ 0 ∀u ∈ R

N . Let g = 0, F ∈ L2,loc(D∞)
and F |DT

∈ L2(DT ) for any T > 0. Then the problem (1.1), (1.2) has unique

global strong generalized solution u ∈ 0

W 1
2,loc(D∞, S∞) of the class W 1

2 in the
domain D∞ in the sense of the Definition 2.1.

Proof. According to Theorem 4.2 when the conditions of Theorem 4.3 are
fulfilled for T = k, where k is a natural number, there exists unique strong

generalized solution uk ∈ 0

W 1
2(DT , ST ) of the problem (1.1), (1.2) of the class

W 1
2 in the domain DT=k in the sense of Definition 2.1. Since uk+1

∣
∣
DT=k

is also
a strong generalized solution of the problem (1.1), (1.2) of the class W 1

2 in the
domain DT=k, then in view of Theorem 4.2 we have uk = uk+1

∣
∣
DT=k

. Thus

one can construct unique global generalized solution u ∈ 0

W 1
2,loc(D∞, S∞) of

the problem (1.1), (1.2) of the class W 1
2 in the domain D∞ in the sense of the

Definition 2.4 in the following way:
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u(x, t) = uk(x, t), (x, t) ∈ D∞, k = [t] + 1,

where [t] is an integer part of the number t. The Theorem 4.3 is proved.

5. The cases of absence of a global solution of the problem
(1.1), (1.2) of the class W 1

2

Theorem 5.1. Let the vector-function f = (f1, . . . , fN ) satisfy the condition
(2.3), where 1 < α < n+1

n−1 , and there exist numbers l1, . . . , lN ,
∑N

i=1 |li| �= 0,
such that

N∑

i=1

lifi(u) ≤ c0 − c1

∣
∣
∣

N∑

i=1

liui

∣
∣
∣
β

∀u ∈ R
N , 1 < β = const <

n+ 1
n− 1

, (5.1)

where c0, c1 = const, c1 > 0. Let F ∈ L2,loc(D∞), g ∈ W 1
2,loc(S∞) and F |DT

∈
L2(DT ), g|ST

∈ W 1
2 (ST ) for any T > 0. Let at least one of functions F0 =

∑N
i=1 liFi − c0 or ∂g0

∂ℵ
∣
∣
∣
S∞

, where g0 =
∑N

i=1 ligi, is nontrivial (i.e. differs from

zero on a subset with positive measure in D∞ or S∞, respectively). Then if

g0 ≥ 0,
∂g0
∂ℵ

∣
∣
∣
S∞

≤ 0, F0|D∞ ≥ 0, (5.2)

there exists finite positive number T0 = T0(F, g) such that for T > T0 the prob-
lem (1.1), (1.2) does not have a strong generalized solution of the class W 1

2

in the domain DT in the sense of the Definition 2.1. Here ∂
∂ℵ is a derivative

with respect to the conormal to S∞, i.e. ∂
∂ℵ = νn+1

∂
∂t − ∑N

i=1 νi
∂

∂xi
, where

ν = (ν1, . . . , νn, νn+1) is a unit vector of the outer normal to ∂D∞ = S∞,
which is an inner differential operator on the characteristic manifold S∞.

Proof. Let GT : |x| < t < T, G−
T = GT ∩ {xn < 0}, S−

T : t = |x|, xn ≤ 0, t ≤ T .
It is obvious that DT = G+

T : GT ∩ {xn > 0} and GT = G−
T ∪ (S0

T \∂S0
T ) ∪

G+
T , where S0

T = ∂DT ∩ {xn = 0}. Let u = (u1, . . . , uN ) represents a strong
generalized solution of the problem (1.1), (1.2) of the class W 1

2 in the domain
DT in the sense of the Definition 2.1. Let us extend the vector-functions u, F
and g evenly with respect to variable xn in G−

T and S−
T , respectively. For

simplicity we leave the same notations u, F and g to the extended functions
defined in GT and S−

T ∪ ST . Let us show that the function u = (u1, . . . , uN ),
defined in the domain GT , satisfies the following integral equality

∫

GT

[−utwt + ∇u∇w]dxdt = −
∫

GT

f(u)wdxdt

+
∫

GT

Fwdxdt−
∫

S−
T ∪ST

∂g

∂ℵwds (5.3)

for any vector-function w = (w1, . . . , wN ) ∈ W 1
2 (GT ) such that w|t=T = 0

in the sense of the trace theory. Indeed, if w ∈ W 1
2 (GT ) and w|t=T = 0,

then it is obvious that w|DT
∈ W 1

2 (DT ) and w̃ ∈ W 1
2 (DT ), where by defini-

tion w̃(x1, . . . , xn, t) = w(x1, . . . ,−xn, t), (x1, . . . , xn, t) ∈ DT , and w̃|t=T = 0.
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Therefore, according to the equality (2.6) from the Remark 2.2, for ϕ = w and
ϕ = w̃ we have

∫

DT

[−utwt + ∇u∇w]dxdt = −
∫

DT

f(u)wdxdt

+
∫

DT

Fwdxdt−
∫

ST

∂g

∂ℵwds (5.4)

and
∫

DT

[−utw̃t + ∇u∇w̃]dxdt = −
∫

DT

f(u)w̃dxdt

+
∫

DT

Fw̃dxdt−
∫

ST

∂g

∂ℵ w̃ds, (5.5)

respectively. Since u, F and g are even vector-functions with respect to var-
iable xn and w̃(x1, . . . , xn, t) = w(x1, . . . ,−xn, t), (x1, . . . , xn, t) ∈ DT , then
we have

∫

DT

[−utw̃t + ∇u∇w̃]dxdt =
∫

G−
T

[−utwt + ∇u∇w]dxdt, (5.6)

−
∫

DT

f(u)w̃dxdt+
∫

DT

Fw̃dxdt−
∫

ST

∂g

∂ℵ w̃ds

= −
∫

G−
T

f(u)wdxdt+
∫

G−
T

Fwdxdt−
∫

S−
T

∂g

∂ℵwds. (5.7)

From (5.5)–(5.7) it follows that
∫

G−
T

[−utwt + ∇u∇w]dxdt = −
∫

G−
T

f(u)wdxdt

+
∫

G−
T

Fwdxdt−
∫

S−
T

∂g

∂ℵwds. (5.8)

Finally, summing the equalities (5.4) and (5.8) we receive (5.3).
Let us use the method of test functions [9, pp. 10–12].
In the integral equality (5.3) for test vector-function w we choose w =

(l1ψ, . . . , lNψ), where ψ = ψ0[2T−2(t2 + |x|2)], while a scalar function ψ0 ∈
C2(R) satisfies the following conditions: ψ0 ≥ 0, ψ′

0 ≤ 0; ψ(σ) = 1 for 0 ≤
σ ≤ 1 and ψ(σ) = 0 for σ ≥ 2 [9, p. 22]. For the chosen test function w, using
notations v =

∑N
i=1 liui, g0 =

∑N
i=1 ligi, F∗ =

∑N
i=1 liFi, f0 =

∑N
i=1 lifi, the

integral equality (5.3) takes the following form
∫

GT

[−vtψt + ∇v∇ψ]dxdt = −
∫

GT

f0(u)ψdxdt

+
∫

GT

F∗ψdxdt−
∫

S−
T ∪ST

∂g0
∂ℵ ψds. (5.9)
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Due to ψ|t≥T = 0 and the equality v|S−
T ∪ST

= g0 in the sense of the trace
theory, integrating by parts the left side of the equality (5.9), we get

∫

GT

[−vtψt + ∇v∇ψ]dxdt =
∫

GT

v�ψdxdt−
∫

S−
T ∪ST

v
∂ψ

∂ℵ ds

=
∫

GT

v�ψdxdt−
∫

S−
T ∪ST

g0
∂ψ

∂ℵ ds. (5.10)

From (5.9) and (5.10), in view of (5.1) and ψ ≥ 0, we have

∫

GT

v�ψdxdt ≥
∫

GT

[c1|v|β − c0]ψdxdt+
∫

GT

F∗ψdxdt+
∫

S−
T ∪ST

g0
∂ψ

∂ℵ ds

−
∫

S−
T ∪ST

∂g0
∂ℵ ψds = c1

∫

GT

|v|βψdxdt+
∫

GT

(F∗ − c0)ψdxdt

+
∫

S−
T ∪ST

g0
∂ψ

∂ℵ ds−
∫

S−
T ∪ST

∂g0
∂ℵ ψds. (5.11)

In view of the properties of the function ψ and the inequalities (5.2) we
have

∂ψ

∂ℵ
∣
∣
∣
S−

T ∪ST

≥ 0,
∫

S−
T ∪ST

g0
∂ψ

∂ℵ ds ≥ 0,

(5.12)∫

S−
T ∪ST

∂g0
∂ℵ ψds ≤ 0,

∫

GT

F0ψdxdt ≥ 0,

where F0 = F∗ − c0 =
∑N

i=1 liFi − c0. In derivation of the inequality (5.12) we
took into account that νn+1|S−

T ∪ST
< 0.

Assuming that the functions F, g and ψ are fixed, introduce into consid-
eration a function of one variable

γ(T ) =
∫

GT

F0ψdxdt+
∫

S−
T ∪ST

g0
∂ψ

∂ℵ ds−
∫

S−
T ∪ST

∂g0
∂ℵ ψds, T > 0. (5.13)

Because of the absolute continuity of integral and the inequalities (5.12),
the function γ(T ) from (5.13) is nonnegative, continuous and nondecreasing
function and

lim
T→0

γ(T ) = 0. (5.14)

Besides, since according to supposition at least one from the functions
∂g0
∂ℵ

∣
∣
∣
S−∞∪S∞

or F0 is nontrivial, then

lim
T→+∞

γ(T ) > 0. (5.15)

In view of (5.13) the inequality (5.11) can be rewritten as follows

c1

∫

GT

|v|βψdxdt ≤
∫

GT

v�ψdxdt− γ(T ). (5.16)
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If in Young’s inequality with the parameter ε > 0

ab ≤ ε

β
aβ + (β′εβ′−1)−1bβ ,

where β′ = β/(β − 1), we take a = |v|ψ1/β , b = |�ψ|/ψ1/β , then taking into
account equality β′

β = β′ − 1, we have

|v�ψ| = |v|ψ1/β |�ψ|
ψ1/β

≤ ε

β
|v|βψ +

1
β′εβ′−1

|�ψ|β′

ψβ′−1
. (5.17)

In view of (5.17) from (5.16) we have
(

c1 − ε

β

) ∫

GT

|v|βψdxdt ≤ 1
β′εβ′−1

∫

GT

|�ψ|β′

ψβ′−1
dxdt− γ(T ),

whence for ε < c1β we obtain
∫

GT

|v|βψdxdt ≤ β

(c1β − ε)β′εβ′−1

∫

GT

|�ψ|β′

ψβ′−1
dxdt− β

c1β − ε
γ(T ). (5.18)

Taking into account inequalities β′ = β/(β−1), β = β′/(β′ −1) and also
equality

min
0<ε<c1β

β

(c1β − ε)β′εβ′−1
=

1

cβ
′

1

,

which is reached for ε = c1, then from (5.18) it follows that
∫

GT

|v|βψdxdt ≤ 1

cβ
′

1

∫

GT

|�ψ|β′

ψβ′−1
dxdt− β′

c1
γ(T ). (5.19)

According to the properties of the function ψ0, the test function ψ(x, t) =
ψ0[2T−2(t2 + |x|2)] = 0 for r = (t2 + |x|2)1/2 > T. Therefore after substitution
of variables t = 1√

2
Tξ0, x = 1√

2
Tξ we have

∫

GT

|�ψ|β′

ψβ′−1
dxdt =

∫

r = (t2 + |x|2)1/2 < T
t > |x|

|�ψ|β′

ψβ′−1
dxdt =

( 1√
2
T

)n+1−2β′

æ0.

(5.20)

Here

æ0 :=
∫

1 < |ξ0|2 + |ξ|2 < 2
ξ0 > |ξ|

|2(1 − n)ψ′
0 + 4(ξ20 − |ξ|2)ψ′′

0 |β′

ψβ′−1
0

dξdξ0 < +∞.

(5.21)

As it is known the test function ψ(x, t) = ψ0[2T−2(t2 + |x|2)] with properties
mentioned above, for which the condition (5.21) is valid, exists [9, p. 22].
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Due to (5.20), from the inequality (5.19) and equality ψ0(σ) = 1, for
0 ≤ σ ≤ 1, we have

∫

r≤T/
√

2

|v|βdxdt ≤
∫

DT

|v|βψdxdt ≤
(

1√
2
T

)n+1−2β′

cβ
′

1

æ0 − β′

c1
γ(T ). (5.22)

When β < (n+ 1)/(n− 1), i.e. when n+ 1 − 2β′ < 0, the equation

λ(T ) =

(
1√
2
T

)n+1−2β′

cβ
′

1

æ0 − β′

c1
γ(T ) = 0 (5.23)

has a unique positive root T = T0(F, g), since the function

λ1(T ) =

((
1√
2
T

)n+1−2β′

/cβ
′

1

)

æ0

is a positive, continuous, strictly decreasing function on the interval (0,+∞),
besides, limT→0 λ1(T ) = +∞ and limT→+∞ λ1(T ) = 0, and function γ(T ), as
it is stated above, is a nonnegative, continuous and nondecreasing function,
satisfying the conditions (5.14) and (5.15). Besides, λ(T ) < 0 for T > T0 and
λ(T ) > 0 for 0 < T < T0. Therefore, for T > T0 the right side of the inequal-
ity (5.22) is negative value, which is impossible. This contradiction proves the
Theorem 5.1

Remark 5.1. Let us consider one class of vector-functions f , satisfying the
condition (5.1):

fi(u1, . . . , uN ) =
N∑

j=1

aij |uj |βij + bi, i = 1, . . . , N, (5.24)

where aij = const > 0, bi = const, 1 < βij = const < n+1
n−1 ; i, j = 1, . . . , N . In

this case we can assume that l1 = l2 = . . . = lN = −1. Indeed, let us choose
β = const in such a way that 1 < β < βij ; i, j = 1, . . . , N . Then it is easy to
verify that |s|βij ≥ |s|β − 1 ∀s ∈ (−∞,+∞). Using the inequality [29, p. 302]

N∑

i=1

|yi|β ≥ N1−β
∣
∣
∣

N∑

i=1

yi

∣
∣
∣
β

∀y = (y1, . . . , yN ) ∈ R
N , β = const > 1,

we have
N∑

i=1

fi(u1, . . . , uN ) ≥ a0

N∑

i,j=1

|uj |βij +
N∑

i=1

bi ≥ a0

N∑

i,j=1

|(uj |β − 1) +
N∑

i=1

bi

= a0N

N∑

j=1

|uj |β − a0N
2 +

N∑

i=1

bi ≥ a0N
2−β

∣
∣
∣

N∑

j=1

uj

∣
∣
∣
β

+
N∑

i=1

bi − a0N
2,

a0 = min
i,j

aij > 0.
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Whence it follows the inequality (5.1), where

l1 = l2 = . . . = lN = −1, c0 = a0N
2 −

N∑

i=1

bi, c1 = a0N
2−β > 0.

Note that the vector-function f , represented by the equalities (5.24), also sat-
isfies the condition (5.1) for l1 = l2 = . . . = lN = −1 for less restrictive
conditions, when aij = const ≥ 0, but aiki

> 0, where k1, . . . , kN is any
arbitrary fixed permutation of the numbers 1, 2, . . . , N ; i, j = 1, . . . , N .

Remark 5.2. From the Theorem 5.1 it follows that when its conditions are
fulfilled, then the problem (1.1), (1.2) can not have a global strong generalized
solution of the class W 1

2 in the domain D∞ in the sense of the Definition 2.4.
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