Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 400, Issue 2, April 15,2013 1SSN 0022-247X

ELSEVIER

galm@w/a/
MATHEMATICAL
ANALYSIS AND

AFREICATIONS

Eelilors:  Steven G Krantz CoongChen  Richard M. Aron
R. Curta P. Sacks RH.Torres
Fivision Cele H.F u T. Witelski
1J. Nieto

wilssoeiate Edilors:
1A Ball A Dontchey P, Koskela HAR. Parks 1. Sis
1 e R. Durdn M. Laczkovich EJ. Straube
HH. Basschi L Fualkow W. Lyten MM.Peloso B, Stuaughan
TO. Benavides LA Filar P Lernarie-Rieusiet R Popovych Sulemn
BC. Beindt S Fulling L . B, Thamson
. Blecher (s ¥.Low VLo :mﬂ
. Bluman J. Gaermnond A Lunardi L
B, Banglorno C. Gatierre M. Mathieu MO el ki
M. Carms ¥. Huang |- Mawhin T Raraford W, L Wendland
B Caseabes AN ey PJ. McKemna gk J.5 M, Wrigh
A Cianchi K. Jarosz | Moggan E. Saksman )Xo

ad B Kaltenbache 7. Hoval s 7
A Duaiilidis H Kang K. Nishihara M. Schiosser X Zhang
M del Fna D, Khavinson . ORegan

Eelédor: P Boas, 1985-1991 Avaitable onfine al www.sclencedirect.com

Founcling Eulilors Rchsrd Betimn SciVerse ScienceDirect

Honovary Eelilor: George Leitmann - William F. Ames  James SW. Wong

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

J. Math. Anal. Appl. 400 (2013) 345-362

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and
Applications

journal homepage: www.elsevier.com/locate/jmaa = S

On the solvability of one boundary value problem for one
class of semilinear second order hyperbolic systems

S. Kharibegashvili **, B. Midodashvili ¢

2 1. Javakhishvili Thilisi State University, A. Razmadze Mathematical Institute, 2, University St., Thilisi 0143, Georgia
b Georgian Technical University, Department of Mathematics, 77, M. Kostava Str., Thilisi 0175, Georgia

¢ I. Javakhishvili Thilisi State University, Faculty of Exact and Natural Sciences, 2, University St., Thilisi 0143, Georgia
4 Gori Teaching University, Faculty of Education, Exact and Natural Sciences, 53, Chavchavadze Str., Gori, Georgia

ARTICLE INFO ABSTRACT

Articl'e history: For one class of semilinear second order hyperbolic systems it is considered the Sobolev
Received 9 October 2011 problem in the conic domain of time type which represents a multidimensional version
Available online 7 December 2012 of the Darboux second problem. The questions on global and local solvability, uniqueness,

Submitted by Kenji Nishihara and also nonexistence of a solution to this problem are studied.

© 2012 Elsevier Inc. All rights reserved.

Keywords:

Sobolev problem

Semilinear second order hyperbolic
systems

Local and global solvability

Nonexistence of a global solution

1. Introduction

In the space R™! of the independent variables x = (x1, X2, . . ., X,) and t consider a second order semilinear hyperbolic
system of the form

Ou; + fi(uq, ...,uy) =F, i=1,...,N, (1.1)
where f = (f1,...,fn), F = (Fq, ..., Fy) are given, and u = (uq, ..., uy) is an unknown real vector-function,n > 2, N >
L . 92
LD;W—AA;ZLW.

Let D be a conic domain in the space R™", i.e. D contains, along with the point (x, t) € D, the wholeray [ : (tx, tt), 0 <
T < o0o. Denote by S the conic surface dD. Suppose that D is homeomorphic to the conic domainw : t > |x[,and S \ O'is
a connected n-dimensional manifold of the class C*°, where O = (0, ..., 0, 0) is the vertex of S. Suppose also that D lies in
the half-spacet > Oand Dy .= {(x,t) e D :t < T},St .= {(x,t) € S:t < T}, T > 0.Itis clear thatif T = oo, then
Do, = DandS,, =S.

For the system of Eq. (1.1) we consider the problem on finding of a solution u(x, t) of this system in the domain Dy by
the boundary condition

uls, =g, (1.2)

where g = (g1, ..., gy) is a given vector-function on Sr.
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In the linear case, when f = 0, N = 1 and the conic manifold S = 9D is time-oriented, i.e.

n
2 2
Vo — E :Vi
i=1

where v = (vq, ..., Vp, V) is the unit vector of the outer normal to S \ O, the problem (1.1), (1.2) was posed by S.L. Sobolev
in the work [10], where the unique solvability of this problem in the corresponding functional spaces is proved. At the end
of the work [10] the author suggested that the obtained results will be valid also for scalar nonlinear wave equation. In the
work [5], for the scalar case (N = 1) and power nonlinearity f (u) = A|u|Pu (A = const, 0 < p = const < nZTl), the global
solvability of this problem for A > 0 and the absence of a global solution for A < 0 is shown, when the space dimension
of the wave equation equals n = 2. In our work [6], also for the scalar case with more general nonlinearity, the classes of
nonlinearity when in certain cases we have the global solvability of this problem are singled out, whereas in other cases not.
Besides, here the restriction n = 2 is removed. It is noteworthy that this problem can be considered as a multidimensional
version of the Darboux second problem, since the problem’s data support S represents a conic manifold of time type. In the
case when one part of the boundary of the conic domain D is of time type, while the other part represents a characteristic
manifold, then the boundary value problem can be considered as a multidimensional version of the Darboux first problem.
E.g,whenD :t > |x|, x, > 0 and boundary conditions have the form

<0, wls <0, (1.3)
s

ulp, =0, ulp, =0
or

au
O%n |,

:07 u|F] :Oa

where Iy = dD N {x, = 0} is a plane part of the boundary aD of time typeand Iy = aD\ [y : t = |x|, x, > Oisa
characteristic part of the boundary, then we have a multidimensional version of the Darboux first problem. Investigation of
the multidimensional version of the Darboux second problem faces great difficulties as compared with the first problem.
More detailed consideration of these problems in the linear case is given in A.V. Bitsadze’s monograph [2].

The work is organized in the following way. In Section 2 it is given a notion of a strong generalized solution of the problem
(1.1),(1.2) of the class Wzl in the domain Dy and a definition of a global solution of this problem of the class WZl in the domain
Dw. In the Section 3 we consider the cases of local and global solvability of the problem (1.1), (1.2) in the class Wzl. We
suppose that the growth of nonlinearity in the Eq. (1.1) does not exceed power nonlinearity with exponent @ = const > 0.
When o < 1, then for the solution of boundary value problem the a priori estimate (Lemma 3.1) is valid and no restrictions
are imposed on the structure of the vector-function f = f(u). When1 < o < Z%} as it turned out, the only constraint
on the growth of nonlinearity of the vector-function f = f(u) is not sufficient for the existence of the a priori estimate
for the solution of the boundary value problem. Here we need structural constraints on the vector-function f = f(u). E.g.,

when f = VG, ie. fi(u) = aiuiG(u), ueRV,i=1,... N, where G = G(u) € C'(RV) is a scalar function satisfying
conditions G(0) = 0 and G(u) > 0Vu e RV, then the a priori estimate of the solution of the boundary value problem and,
therefore, a global solvability of this problem (Theorem 3.3) are valid. If the vector-function f cannot be represented in the
form f = VG, where the scalar function G satisfies the conditions given above, then the boundary value problem may be
globally insolvable. For example, when N = n = 2 and f = (f1, f»), where f; = uf — 2u3, f, = —2u3 + u3, the exponent
of nonlinearity ¢ = 2and 1 < o < % and f is not representable in the form f = VG, then from the Theorem 5.1 we
have that when F; + F, > t% t > 1, where c = const > 0, y = const < 3; g = 0, the problem under consideration is not
globally solvable (see the Remark 5.1). In the Section 4 we give the conditions on the vector-function f providing uniqueness
and existence of a global solution of this problem of the class Wzl. Finally, in the Section 5 for certain additional conditions
on the vector-function f, F and g we prove nonexistence of a global solution of the problem (1.1), (1.2) of the class W21
in Dyo.

2. Definition of a generalized solution of the problem (1.1), (1.2) in Dy and D,

Let us rewrite the system (1.1) in the form of one vector equation
Lu:=0u+f(u) =F. (2.1)

Below we assume that the condition (1.3) is fulfilled and the nonlinear vector-function from (2.1) satisfies the following
requirement

feC®Y), Ifw|=<M;+Mul*, «=const >0, ueR", (2.2)

where | - | is the norm in the space RY, M; = const > 0, i = 1, 2.
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Let C2 (57, St) ={ue C? (ET) : uls; = 0}. Denote by Wz"(.Q) the Sobolev space consisting of elements L, (£2), having
generalized derivatives up to k-th order inclusively from L,(2). Let Wzl (D1, St) = {u € W21 (Dr) : uls, = 0}, where
the equality uls, = 0 must be understood in the sense of the trace theory [7]. Here and below we say that the vector
v = (vq, ..., vy) belongs to the space X if each component v;, 1 < i < N, of this vector belongs to the same X. In accordance
with this, for simplicity of record, where this will not cause misunderstanding, instead of v = (vq, v2, ..., vy) € [X]N we
use the record v € X.

Remark 2.1. The embedding operator | : [Wz] OHN — [Lq(DT)]N represents a linear continuous compact operator for
1<g< 251”_+11),when n > 1[7]. At the same time the Nemitski operator K : [Lq(DT)]N — [Ly(Dr)]V, acting by the formula

Ku = f(u), where u = (uy,...,uy) € [Ly(Dp)]V, and the vector-function f = (fy, ..., fy) satisfies the condition (2.2),

is continuous and bounded for ¢ > 2« [7]. Thus, if ¢ < % ie 2o < % then there exists number q such that
1<g< % and q > 2. Therefore, in this case the operator
1 N N
Ko =KI : [W;, (Dr)]" — [L2(Dp)] (2.3)
will be continuous and compact. It is clear that from u = (uq,...,uy) € W21 (Dr) it follows that f(u) € Ly(Dr) and, if

u™ — u in the space Wz1 (Dr), then f (u™) — f(u) in the space L,(Dr).

Definition 2.1. Let f = (fy, ..., fy) satisfy the condition (2.2), where 0 < o < % F = (F,...,Fy) € Ly(Dr) and
g =1(g1,...,8N) € W21 (S7). We call a vector-function u = (uq,...,uy) € W21 (Dr) a strong generalized solution of the
problem (1.1), (1.2) of the class Wz1 in the domain Dy if there exists a sequence of vector-functions u, € C%(Dr) such that
u™ — u in the space W21 (D), Lu™ — F in the space L,(Dr) and u™|s, — g in the space Wzl (St). The convergence of the
sequence {f (u™)} to the function f (u) in the space L,(Dr) when u™ — u in the space W21 (D7) follows from the Remark 2.1.

When g = 0, i.e. in the case of homogeneous boundary conditions (1.2), we assume that u™ € C2(Dr, Sr). Then, it is clear
thatu € W, (Dr, Sr).

It is obvious that a classical solution u € C?(Dr) of the problem (1.1), (1.2) represents a strong generalized solution of
this problem of the class W, in the domain Dr in the sense of the Definition 2.1.

Definition 2.2. Let f satisfy the condition (2.2), where 0 < a < %}; F € L)1oc(Dxo), 8 € Wzl’loc(Soo) and Flp, €
L,(Dr), gls; € Wz1 (S7) forany T > 0. We say that the problem (1.1), (1.2) is locally solvable in the class Wzl if there exists a

number Ty = Ty(F, g) > Osuchthatfor T < Ty this problem has a strong generalized solution of the class Wzl in the domain
Dy in the sense of the Definition 2.1.

Definition 2.3. Let f satisfy the condition (2.2), where 0 < o < ™1L:F € [;1oc(Dx), 8 € W, 10c(So0) and Flp, €
L,(Dr), gls; € W21 (St) forany T > 0. We say that the problem (1.1), (1.2) is globally solvable in the class W21 if for any

T > 0 this problem has a strong generalized solution of the class W21 in the domain Dy in the sense of the Definition 2.1.

Definition 2.4. Let f satisfy the condition (2.2), where 0 < a < MLF € L1oc(Dx),8 € W) (Sxo) and Flp, €
L,(Dr), gls; € W21 (Sr) forany T > 0. A vector-functionu = (uy, ..., uy) € W;leC(DOO) is called a global strong generalized
solution of the problem (1.1), (1.2) of the class WZl in the domain D if for any T > 0 the vector-function u|p, belongs to

the space W21 (Dr) and represents a strong generalized solution of the problem (1.1), (1.2) of the class W21 in the domain Dy
in the sense of the Definition 2.1.

3. Some cases of global and local solvability of the problem (1.1), (1.2) in the class W2‘

Lemma 3.1. Let f satisfy the condition (2.2), where0 < o < 1;F € [,(Dr) and g € W21 (St). Then for any strong generalized
solution u of the problem (1.1), (1.2) of the class W21 in the domain Dy in the sense of the Definition 2.1 it is valid the following a
priori estimate

||U||W21(DT) < allFll,on + C2||g||W21(5T) +c3 (3.1)
with nonnegative constants ¢; = ¢;(S, f, T), i = 1, 2, 3, not depending on u, g and F, with¢; > 0, j = 1, 2.

Proof. Letu € Wzl (Dr) be a strong generalized solution of the problem (1.1), (1.2) of the class W21 in the domain Dy. Then
due to the Definition 2.1 there exists a sequence of vector-functions u™ = (uf', ..., uy) € C 2(Dr) such that
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im0 = gy =0, lim L™ = Fllimp =0, (32)
. m _
mh—r>noo [lu |ST g”wzl(sT) = 0. (3.3)

Consider the vector-function u™ € C?(Dr) as a solution of the following problem

L™ =F™, (3.4)

uls, =g". (3.5)
Here

F™ .= Lu™, g =u"s,. (3.6)

Scalarly multiplying the both sides of the vector equation (3.4) by and integrating in the domainD;, 0 < 7 < T, we
receive

2
1 0 [ du ou™ ou™
- — dxdt — A —ddt ——dxdt = F™ ——dxdt. 3.7
2/D,at(at) " /D T +/f(u) ¥ /D ot G7

Let 2, := DN {t = t} and denote by v = (vy, ..., vy, Vo) the unit vector of the outer normal to St \ {(0, ..., 0,0)}.
Integrating by parts, by virtue of the equality (3.5) and v|p, = (0, ..., 0, 1) we have

2 2
d [ ou™ m
/— L dxdt / BL Vods
Dy at ot 3D, ot
aum\” qum\’
/ ) ax+ / TN ods,
foR ot Se t
2
/ 92um aumdxdt / u™ Ju™ is 1[ 9  du™ et
- — vds — — 2=
b, X2 ot op, 0%, Ot 2 Jp ot \ ax;
2
d 0 1 ou™ ou™ ou™
/ u” ou™ v,»ds——/ a vods=/ Livids
9D¢ 8X' ot 2 D¢ 0x;i D¢ dx; Ot
2 2
1 ou™ 1 ou™
_‘/ = VodS——/ ) a.
2 St 3Xi 2 2¢ Bx,-

Whence, in view of (3.7), it follows

2
ou™ 1 Ly ou™
/F’”dedtzf — § Ll L
Dy ot St 21)() 8X1 at
M 2 " 9y 2
u u
E d —_— E —_— d

m. ou’™
+ /I;rf(u )Wdth (38)

From (2.2), when 0 < o < 1, it follows that |[f (u)| < M; + M, + Ms|u|, Yu € RV, therefore,

2 2
< [f ™ + (a;'t ) } < %[Z(M + My)? + 2M2 |[u™* + <88Lt> }

) ou™
= (M; + M)* + M3 |u"™? + . (3.9)

o

ot
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2 at

2 2 )
1 ou™ [ ou™ 1 " ou™ um
Z o L N P (AL T
2/Qf|:< 8t> +;(3xi) :| x_/sz 2|vo||:l;:<8x,' YT e v,) :| s

+ (M; 4+ My)* mes D, + M2 [u™ |2dxdt
D

2
um 1
n / M dxde + - / (F™?dxdt. (3.10)
D¢ at 2 D¢

Since S is a conic surface then sups, [vol™! = SUPsA(r=1) [vo|~!. At the same time S \ O is a smooth manifold,
SN {t =1} = 0§, is also a compact manifold. Therefore, noting that vy is a continuous function on S \ O we have

m m 2
Due to(1.3),(39) and [P < 1[ (%) + (F™)? ], from (3.8) we have

My = suplvo|_l = sup |vO|_1 < 400, |yl < |v|l=1. (3.11)
S\0 sn{t=1}

Taking into account that (v()% — vi%), i = 1,...,n,is an inner differential operator on Sr, then due to (3.5) we
1

2
° [ ou™ ou™ m 2 o
/SF [Z(B—Mvo—wvi ds < Iu"Is; 15, = 18" 15, (3.12)

=1

have

From (3.11) and (3.12) it follows that

2
1 [ ou™ ou™ 1 2
/s, 2|vy| [Z<a_xi”° - W”") }ds = 2Mollg s G13)

i=1

By virtue of (3.13) from (3.10) we have
ou™ ’ n ou™ 2
u u
- _ dx < M, my2 2M M 5 mes D
/QK at> +;<axi” < Mollg" %1, + 2(My + My)? mes Dy

ou™ 5
— | dxdt + (F™*dxdt, 0<7t <T. (3.14)
Dr

+ 2M; |um|2dxdt+2/ o

D¢ D¢

If t = y(x) is the equation of the conic surface S, then due to (3.5) we have

T

u™(x, ) = u"(x, y(x)) +f ium(x, s)ds
yoo Ot

o
= g™(x) +/ —u™(x,s)ds, (x,7) € 2.
7 (X) ot

Scalarly squaring the both parts of the obtained equality, integrating in the domain £2, and using the Schwartz inequality
we have

2
u™?dx <2 (gm(x,y(X)))deJrZ/ (/ iu’"(x, S)dS) dx
2: \Jyw 9t

2¢ 2¢
2
T aum
<2 @ids+2 [ t—-y®) / — | ds|dx<2 | (g™)?ds
St 27 y(x) ot N

2 2
T au™ ou™
+2T/ / SN s |ax =2 (gm)2d5+2T/ ) dxt. (3.15)
2| Jyw\ 9t e o \ 9t
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From (3.14) and (3.15) it follows

2 2
ou™ 2 fou™
[ (50) -2 (5) Jo

< (Mo +2)lIg" ||W1(S )+ 2(M; + M3)* mes Dy + 2M; / |u™ [*dxdt
D

2

2 2
) ou™ = [ u™
< (2M? +2(T+1))/ |:(u )2 +< T ) +;(8_x,) i|dxdt

[HFT"HLZ(DT) + (Mo + D"y 5, + 2(0My + M)’ mESDT:|- (3.16)

2 . 2
ou™
+ — ] |dx, 3.17

w(r) < (2M2+2T+2)/ w(s)ds + [IF" I, o) + Mo +2)lIg™ I}

Putting

. ou™
w(t)._/gr ™? + a0

from (3.16) we have

W (S1)
+2(M; + M;)* mesDr], 0<7t <T. (3.18)

Whence by the Gronwall’s lemma it follows that
w(t) < AnexpMZ +2T +2)t, 0<t<T. (3.19)

Here
A = IF™ o) + Mo+ 218" Iy, -+ 2(M1 + M) mes D (3.20)
In view of (3.17) and (3.19) we find that
T

[u™ ||W](D ) /0 w(r)dt < AnT exp(2M; + 2T + 2)T. (3.21)

Due to (3.2)—(3.5) and (3.20), passing to the limit in (3.21) when m — oo we have

llull? < AT exp(2MZ + 2T + 2)T. (3.22)

Wl o) =
Here

A= IFI}, o, + Mo +2)11glI2,1, | +2(My + My)? mes Dr. (3.23)

W) (Sp)

1/2

Taking a square root from the both parts of inequality (3.22) and using obvious inequality (Z, 10 ) < Zle |a;|, due

to (3.23), finally we have
||u||w 1pp) = €1 IFllyop) + C2||g||w 1sp) 1 €3
Here

= VTexp(M2 +T + 1T,
¢ = VT(My+2)"?exp(M2 +T + 1T, (3.24)
= v/2T(M; + M) (mes Dy)/? exp(M22 + T+ 1T.

The Lemma 3.1 is completely proved. O
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Before passing to the question of solvability of the problem (1.1), (1.2) let us consider the same question for the linear
case of needed form, when in (1.1) the vector-function f = 0, i.e. for the problem

Lou:=0u=F(x,t), (x,t)€Dr, (3.25)

uls, = g. (3.26)
For the problem (3.25), (3.26), analogously to the Definition 2.1 for the problem (1.1), (1.2), we introduce a notion of a strong
generalized solution u = (uq,...,uUy) € Wzl (D7) of the class Wzl in the domain Dy with F = (Fy, ..., Fy) € Ly(Dr) and
g=1(g1,...,8N) € W21 (Sr), for which there exists a sequence of vector-functions u™ € C2(Dy) such that

n}i_r)noo u™ — u||w21(DT) =0, mll_)ﬂgo ILou™ — Fll,op) = 0, (3.27)

Him_(|u"ls; = gll;sp) = O- (3.28)

Note that, as it is clear from the proof of Lemma 3.1, by virtue of (3.24) when f = 0, i.e. when M; = M, = O for the
strong generalized solution u € Wzl (Dr) of the problem (3.25), (3.26) of the class Wzl in the domain Dy the following a priori
estimate is valid

Il oy = C(IFllz0r + 181wy sp))- (3.29)
where

¢ =VT(My+2)"?exp(T + DT. (3.30)

Consider the Sobolev weight space Wzk,a(D), 0<a<ook=1,2,...,consisting of the functions belonging to the class

Wzk, 1oc (D), for which the following norm is finite [5]

P .
; o'w
2 _ —20—2(k—i)
= r —_— dt,
Il o, ; /D a0
where
n 172 81' 81'
w w . . . .
r= E X+, = — ——, i=ij 4 +i+io.
= ax ot gxl ... dxy dtlo

Analogously we introduce the space Wz’"a(S), S =0dD|[5].
Together with the problem (3.25), (3.26) consider an analogous problem in the infinite cone D = D,:
Lou=F(x,t), (x,t) €D, (3.31)
uls =g. (3.32)
Due to (1.3), according to the result of the work [4], there exists a constant &g = «(k) > 1 such that for @ > «q the
problem (3.31), (3.32) has a unique solution u = (uq,...,uUy) € Wzk’a (D) foreach F = (Fy,...,Fy) € Wzk’gl_l(D) and

g=(g1,....8N) E WS, 1,5(8), k=2

Since the space C5°(Dr) of finite infinitely differentiable in Dr functions is dense in L,(Dr), then for a given F =
(F1, ..., Fy) € Ly(Dr) there exists a sequence of vector-functions F™ = (F", ..., F{") € C{°(Dr), such that limy,_, ||[F™ —
F|lr,;) = 0. For fixed m, extending the vector-function F™ by zero beyond the domain Dr and keeping the same notations,

we have F" € (C5°(D). It is obvious that F™ e W2",;]_1(D) forany k > 2and @ > 1, and also for ¢ > ag = ap(k). If
g € W, (Sr), then there exists § € W, (S) such that g = g|s, and diam suppg < +oo [8]. Besides, the space C2°(S)
= {g € C*(S) : diamsuppg < 400, O & suppg} is dense in Wz1 (S) [6]. Therefore, there exists a sequence g™ € C°(S)
such that lim,_, o, [|g™ — §||W21 sy = 0.Itis easy to see that g" € Wzk,a—uz (S) forany k > 2 and @ > 1, and, therefore, for
o > ag = a(k). According to what is mentioned above there exists a solution i € WZk,a (D) of the problem (3.31), (3.32)
for F =F™andg = g™ Letu™ = i"|p,. Since u™ € WX(Dr), then, taking number k sufficiently large, namely k > "zil + 2,
we have u™ e C2(Dy). By virtue of estimate (3.29) we have

”um —u" ”Wz](DT) = C(”Fm —F" ||L2(DT) + ”gm _gm “Wzl(ST))' (3.33)

Since sequences {F™} and {g™} are fundamental in the spaces L,(Dr) and W21 (St), respectively, then due to (3.33) the
sequence {u™} will be fundamental in the space W21 (Dr). Therefore, in view of the completeness of the space W, (Dr) there
exists a vector-function u € W, (Dr) such that limp,_, oo |Ju™ — u||W21 o =0, and since Lyu™ = F™ — F in the space L,(Dr)

and g™ = u™|s, — g in the space W21 (S7), i.e. the limit equalities (3.27) and (3.28) are fulfilled, then the vector-function
u is a strong generalized solution of the problem (3.25), (3.26) of the class W2l in the domain Dr. The uniqueness of this
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solution of the problem (3.25), (3.26) of the class Wzl in the domain Dy follows from a priori estimate (3.29). Therefore, for
the solution u of the problem (3.25), (3.26) we have u = Ly ' (F, g), where Ly ' : [Ly(Dr)]V x [WJ (Sp)IV — [W, D)V isa
linear continuous operator with a norm admitting in view of (3.29) the following estimate

-1
ILo ”[Lz(DT)]NX[WQ(ST)]N%[WQ(DT)]N = (3.34)

where constant c is determined from (3.30).
Because of linearity of the operator Lgl : [Ly(DP)IN x [Wzl SHIN — [Wz1 (Dr)]N we have a representation

L' (F, ) = Ly (F) + L)' (g), (3.35)

where Ly : [L(Dr)]Y — [W,)(Dp)IY and Ly, : [W,) (Sp)IY — [W, (Dr)]" are linear continuous operators, and in view of
(3.34) we have

-1 -1
L1 ||[Lz(Dr)]N—>[W§<DT>]N =6 Loz ||[W21(ST)JN—>[W2‘<DT>1N =¢ (3.36)

Remark 3.1. Note that for F € L,(Dy), g € Wz1 (S7) and (2.2), where 0 < o < % in view of (3.34), (3.35), (3.36) and the
Remark 2.1 the vector-function u = (uq, ..., uy) € W21 (Dr) is a strong generalized solution of the problem (1.1), (1.2) of

the class W21 in the domain D7 if and only if u is a solution of the following functional equation

u = Loy (—=f (W) + Loy (F) + Ly (2) (3.37)
in the space W, (Dr).
Rewrite the Eq. (3.37) in the form

u = Aot := —Ly,' (Kou) + Ly} (F) + Ly, (2), (3.38)

where the operator Kj : [W2l (DT)]N — [Lz (DT)]N from (2.3) due to the Remark 2.1 is a continuous and compact operator.

Therefore, according to (3.36), the operator Ay : [W21 (DT)]N — [Wzl (DT)]N is also continuous and compact. At the same
time according to the Lemma 3.1 and the equalities (3.24) for any parameter T € [0, 1] and any solution u of the equation
u = tApu with parameter t it is valid the same a priori estimate (3.1) with the constants ¢; from (3.24), not depending on
u, F, g and t. Therefore, due to Schaefer’s fixed point theorem [3] the Eq. (3.38), and, therefore, according to the Remark 3.1,
the problem (1.1), (1.2) has at least one solution u € Wz1 (Dr). Thus, we have proved the following theorem.

Theorem 3.1. Let f satisfy the condition (2.2), where 0 < o < 1. Then forany F € L,(Dr) and g € Wzl (St) the prob-
lem (1.1), (1.2) has at least one strong generalized solution u of the class Wzl in the domain Dy in the sense of the Definition 2.1.

A global solvability of the problem (1.1), (1.2) in the class W2l in the sense of the Definition 2.3 immediately follows from
the Theorem 3.1 when the conditions of this theorem are fulfilled.

Remark 3.2. In the Theorem 3.1 a global solvability of the problem (1.1), (1.2) is proved for the case when f satisfies the
condition (2.2), where0 < « < l.Inthecasewhen1 < « < Z%} the problem (1.1), (1.2), generally speaking, is not globally
solvable, as it will be shown in the Section 5. At the same time below we prove that when 1 < o < % the problem (1.1),
(1.2) is locally solvable in the sense of the Definition 2.2.

Theorem 3.2. Let f satisfy the condition (2.2), where 1 < a < %}; g =0,F € L 1oc(Dso) and F|p, € L,(Dr) forany T > 0.
Then the problem (1.1), (1.2) is locally solvable in the class W.}, i.e. there exists number Ty = To(F) > 0 such that for T < Ty this
problem has strong generalized solution of the class W2l in the domain Dy in the sense of the Definition 2.1.

Proof. According to the Definition 2.1 and the Remark 3.1 the vector-function u € Wzl (Dr,St) =={v € Wzl (Dr) : vls, =0}
is a strong generalized solution of the problem (1.1), (1.2) of the class W21 in the domain Dy for g = 0 then and only then,
when u is a solution of the functional Eq. (3.38) forg = 0, i.e.

u = Agu = —Ly; (Kou) + Ly, (F) (3.39)

in the space W21 (Dr, St). Denote by B(0, rg) := {u = (uy,...,uy) € W; (Dr, St) - ||u||W21(DT,ST) < 1o} a closed (convex)
ball in the Hilbert space Wzl (Dr, St) with a center in null element and the radius ry > 0. Since the operator Ag from (3.39),

acting in the space W21 (Dr, St) is a continuous compact operator, then, according to the Schauder theorem, for solvability

of the Eq. (3.39) in the space Wz1 (Dr, St) it suffices to prove that the operator Ag maps the ball B(0, rp) into itself for certain
ro > 0[3]. Below we show that for any fixed ro > 0 there exists a number Top = To(ro, F) > O such that for T < Ty the
operator Ag from (3.39) maps the ball B(0, rp) into itself. With this purpose we evaluate ||A0u||W21 (Dr.57) foru e Wzl (Dr, S7).
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Ifu=(uy,...,uy) € Wzl (Dr, St), then let us denote by ii the vector-function which represents an even extension of u
through plane t = T in the domain D}, symmetrical to the domain Dy with respect to the same plane, i.e.
~ u(xa t)’ (Xa t) € DT,
T |ux, 2T —t), (x,t) € D}

and ii(x, t) = u(x, t) for t = T in the sense of the trace theory. It is obvious that ii € W; (Dr) =={v e w,) (Dr) : vlys, = 0},

where Dy = Dy U £2, UD%, 2, :=D N {t =T).
Using inequality

/IvldQf(me59)1‘”pllvllp,g, p>1,
2

and taking into account equalities

~12 2
= 2|[ullf [l = 2|Ju]|

~1P
”””Lp@T) Lp(Dr)° W (Dr) W, (Dr.S1)

from known multiplicative inequality [8]

a 1-a 171 1
Ivlpe < BlIVxevlm olvly g’ YveW,(2), 2 € R™,

-1

0 0 0 . 1 1 1 1 - (n+ 1)m

vxt= U IR BN y o = - - - - - = k) m=———
’ 0X1 ox, Ot r p r m n+1—m

2(n+1)

, where 8 = const > 0 does not depend on v and T, it
n+1—m

for2 =D CR™ v=0,r=1m=2and1 <p <
follows the following inequality

1,1 1 o
[ulli,op) < Co(mes Dy)p " 172 Il o5y YU € W, (Dr, Sr), (3.40)

where ¢y = const > 0 does not depend on u and T.
Since mes Dy = H%T”“, where w is the n-dimensional measure of section £2; := D N {t = 1}, then for p = 2« from

(3.40) we have

Il 0p) < Crlltllig oy.syy  Yu € W3 (D1, 1), (341)
where
oq 1
w 1 1
Cr=c T g = — 4 S 3.42
! °<n + 1) "T 20 T n+1 2 (342)
Since @ < ™, theno; = 5 + # — 1 > 0and due to (3.41) and (3.42) for any u € W, (Dr, Sr) we have
||u||L2a(DT) =< CT] ”u”Wzl(DTqST) vT =< T17 (343)

where T; is a fixed positive number.
For ||[Koul|1, ;). Where u € W21 (Dr, St), T < T4, and operator Ky acts according to the formula (2.3), due to (2.2) and

(3.43) we have the following estimate

IKoull, b,y < /D (M; + My|u|*)?dxdt < 2M? mes Dy
T

+2M? / |u|**dxdt = 2M; mes Dy + 2M5 ||ul[}% .,
Dr

2 2 ~2a 20
< 2Mj mesDr, + 2M;Cy ||u||W21(DT,ST)’

whence we have

2 V2MyC Jull® 3.44
1Koty p;y < M1(2 mesDr,)2 + 2 Tl||u||W21(DT,ST)' (3.44)
From (3.30), (3.36), (3.39) and (3.44) it follows that
—1
1Aoully 075y = Mot lliypy—tiv) or spyp 1Kotz 0p)

-1
+ Loy ||[L2(DT)]N—>[W21(DT,ST)]N IF Iy o)
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< c[y/2mesDr,M; + v2M,Cy, 105 57y IF Il or, )]
< VT(Mo + 2)"/? exp(T; + DT1[/2 mes Dp, M; + v2M,Cf, Il o 60y
2 ’

+ ||F||L2(DT])] VT < Ty, Yu € W, (Dr, Sr). (3.45)

Since the right side of the inequality (3.45) contains +/T as a factor vanishing for T — 0, then there exists positive
number Ty < T; such that for T < Ty and ||u||W21(DT!5T) < 19, due to (3.45) we have ||A0u||W21(DT’5T) < 1y, i.e. the operator

Ao : V°V21 (Dr, St) — V°V21 (Dr, St) from (3.39) maps the ball B(0, rp) into itself. The Theorem 3.2 is proved. O

Remark 3.3. In the case when f satisfies the condition (2.2), where 1 < a < % the Theorem 3.2 ensures a local solvability
of the problem (1.1), (1.2), although in this case, with additional conditions imposed on f, as we show in the following

theorem, this problem is globally solvable.

Theorem 3.3. Let f satisfy the condition (2.2), where 1 < o < % and f = VG, ie. fi(u) = %G(u), ueRV,i=1,...,N,
where G = G(u) € C1(RV) is a scalar function satisfying conditions G(0) = 0 and G(u) > 0 Yu € RN.Let g = 0, F € L, 1oc(Doo)
and F|p, € Ly(Dr) forany T > 0. Then the problem (1.1), (1.2) is globally solvable in the class W, ie. forany T > O this problem

has a strong generalized solution of the class W21 in the domain Dy in the sense of the Definition 2.1.

Proof. First let us show that for any fixed T > 0, with the conditions of the Theorem 3.3, for a strong generalized solution
u of the problem (1.1), (1.2) of the class W, in the domain Dr it is valid the following estimate

1
lullig or.sp) < CDIFllL@n, — c(T) = vTexp ST+TH). (3.46)

Indeed, according to the Definition 2.1 in the case when g = O there exists a sequence of the vector-functions
u™ € C*(Dr, St) == {v € C*(Dr) : v|s, = 0} such that

mli_)mOo lu™ — u||W21(DT) =0, mli_)moo [Lu™ — F|lL,p,) = 0. (3.47)
Putting
F™ = L™ (3.48)

and taking into account that u™|s, = 0 and the operator vo% — vi% is an inner differential operator on Sr, and, therefore,
1

(Mv - %vi)lgT =0,i=1,...,n dueto(1.3)from (3.8) we have

0X;
ou™ 1 ou™ ’ [ ou™ ’ ou™
F™ —dxdt > — —_ —_ dx u™) ——dxdt. 3.49
/DZ at —2/%[(&) +;<ax,-)} +/Drf( )t (349)

Sincef = VG thenf(u’")% = %G(um), and, taking into account that u™|s, = 0, vo|, = 1, G(0) = 0, integrating by parts
we receive

ou™ 0
fW™)——dxdt = —G@u™)dxdt = G(u™)yvods
D¢ 3t Dy 8t 9D;
:/ G(um)vods:/ G(u™)dx. (3.50)
S:ULR, 27

Because G(u) > 0Vu € R", then due to (3.50) from (3.49) we have

2 2
a m n a m 8 m
/ ) 3= dx§2/ Fm 2 ixde
o ot —\ 9x Dy ot
2
ou™ 2
< — | dxdt + (F™)“dxdt, 0 <t <T. (3.51)
p, \ Ot Dr

Since u™|s, = 0, then u(x,7) = fyr(x) %u’”(x, s)ds, where t = y(x) is the equation of conic surface S. Therefore, as in
receiving the inequality (3.15), we have
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woe [ ([ dens)

™) dx:/ / —u™(x, s)ds | dx

2¢ ¢ y(x) ot
2

/(r—|x|) / D) ds |ax

2 yeo \ Ot

T m 2 m 2

T/ / T s dx:T/ LU s (3.52)

2 [ Jyw \ 9t p, \ Ot

Denoting w(t) = fQI [(um)2 + (M) + Z?:] (33“71) ]dx. in view of (3.51) and (3.52) we have

IA

IA

ot

m

2
d
w(r) = (1+T) (ai) dxdt + | (F™)*dxdt
D t D¢

2 2
aum " [ ou™
2 2
<(1+T) . |:(um) + <_ar ) + ?:1 (_Bxi) }dde— IF™ 1%, 0,

T
=1+ T)/ w(s)ds + ||F’"||fz(Dr), 0<t<T. (3.53)
0
By virtue of the Gronwall’s Lemma from (3.53) it follows that

w(t) < IFI,p,, exp(1+T)T < |[FII},p, exp(1+T)T, 0<7 <T. (3.54)
According to (3.54) we have

2 2
ou™ = ou™
mn2 _ my2
14" 153 0. 51) = /DT {(u )+ (_8t ) +;<_8x,-> :|dxdt

T
= / w(D)dr < TIF" |0 exp(1 + DT,
0

whence, due to the limit equalities (3.47), it follows the estimate (3.46). .
According to the Remark 3.1, when the conditions of the Theorem 3.3 are fulfilled, the vector-functionu € Wzl (Dr, S7) is

a strong generalized solution of the problem (1.1),(1.2) of the class Wzl if and only if u is a solution of the following functional
equation u = Apu from (3.39) in the space Wzl (Dr, St), where the operator Ay, acting in the space Vn\/zl (Dr, St), is continuous
and compact. At the same time, due to (3.46) for any . € [0, 1] and for any solution of the equation u = uAgu an a priori
estimate is valid ||u||W21 Or.sp) = mC(MIFllyop) < c(DIIF L, o,y With positive constant ¢(T), not depending on u, y and F.
Thus, according to Schaefer’s fixed point theorem [3] the Eq. (3.46), and therefore the problem (1.1), (1.2), has at least one
strong generalized solution of the class Wzl in the domain Dy for any T > 0. The Theorem 3.3 is proved. O

4. The uniqueness and existence of a global solution of the problem (1.1), (1.2) of the class W21

Below we impose on the nonlinear vector-function f = (fy, ..., fy) from (1.1) the additional requirements
afi(u
fecl®Y), Q” <M; +Malul" Vu e RY, 1< i j <N, (4.1)
Y

where M3, My, y = const > 0. For simplicity of reasoning we suppose that the vector-function g = 0 in the boundary
condition (1.2).

Remark 4.1. It is obvious that from (4.1) it follows the condition (2.2) for¢ = y 4 1, and in the case y < nf—l we have

n+1

a < .

Theorem 4.1. Let the condition (4.1) be fulfilled, where0 < y < %; F € L,(Dr) and g = 0. Then the problem (1.1), (1.2) can-

not have more than one strong generalized solution of the class Wzl in the domain Dy in the sense of the Definition 2.1.

Proof. Let F € L,(Dr), g = 0, and the problem (1.1), (1.2) have two strong generalized solutions u' and u? of the class Wz]

in the domain Dy in the sense of the Definition 2.1, i.e. there exist two sequences of vector-functions u™ e C2(Dy, Sp) =
{ue C?(Dr) :uls, =0},i=1,2; m=1,2,...,such that
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. im i _ : im __ _ N
mlgnoo ”u —u ||W2](DT’ST) - Ov mleOO ”Lu F”Lz(DT) - Oa 1= 17 2 (4'2)
Let
w=u’—u', w™ = u?m —ym, F™ = L™ — L™, (4.3)

In view of (4.2) and (4.3) we have
Him [ = wligops) =0 M IF" li,0p = 0. (4.4)
In accordance with (4.3) consider the vector-function w™ € C2(Dr, Sr) as a solution of the following problem

Dw™ = —[f @™ —f@"™] +F", (45)
wmlgT =0.

Analogously to how the inequality (3.49) was obtained from (4.5), (4.6) it follows

2 2
9 m n 9 m 9 m
/ e Y dng/ Fm Y
Qz 8t i—1 8Xl‘ Dr at
ow
d

—2 [ [F@®™ —f@'™)] tm dxdt, 0<7t<T. (4.7)
D

Taking into account the equality
N 1 3
[@?™ = fiw™ =30 [ @™ s — ut™)ds™ —u™),
= s ou; J J

we receive

m

2my 1m M_N /1i 1m 2m _ ,,1m 2m 1ma&
[f@™ —f™)] ” —i;[o aujf,w s — ut)ds | (" — ™) =L (4.8)

By virtue of (4.1) and obvious inequality |dy + d3|7 < 2¥ max(|dq|”, |d2|Y) < 2V (|d1|” + |dz|") fory > 0, d; € R, we
have

19
/ _ﬁ(ulm + s(uZm _ u]m))ds
0

Buj

1
< / [M3 4+ My|(1 — s)u'™ + su®™|” 1ds
0

< Mz + 2" My (u'™[” + Ju>"”). (4.9)
From (4.8) and (4.9), taking into account (4.3), it follows

o)~ 2| < 3w 2w ) [l |2
L T ot

2 im 2m m awm

< N*| M3 + 2" My(Ju™)” + |u*™") ||w™| or

IA

1N2M my2 awm2
A R T

m
+ 2" N* My ([u™)” + [u?™”) |w™| TS (4.10)
Due to (4.7) and (4.10) we have
B 2 n [ gy 2 S 2
w w w
— — ) |dx < — F™)? |dxdt
LICE) 805 Jos () +oore
ow™ ’
+N2M3/ |:(w’")2+ (i) }dxdt
D, ot
+1 52 im 2m m, [OW"
+27FINMy [ (™) + ™)) W™ prre dxdt. (4.11)
Dr
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The last integral in the right hand part of (4.11) can be estimated by Holder’s inequality

ow™
/ (Ju"™” + (™7 ) [w™| | —— | dxdt
Dy ot
ow™
= (” |U1m|y”Ln+1(DT) + |l |u2m|y”Ln+1(DT))”wm”Lp(Dr) T ’ (4.12)
Ly (D7)
Here n+_l + —|— = 1, i.e. for
2(n+1
_ 2+ (4.13)
n—1
By virtue of (3.40) for g < 21 we have
Wllgo0 < C(D vl ppsy Yo €Wy(Dr So), 0 <7 <T, (4.14)
with positive constant C;(T), not depending on v € Wzl (D;,S;)and t € (0, T].
According to the theorem y < -2- and, therefore, y (n + 1) < 21 Thus, from (4.13), (4.14) we receive
™ leyor) = 160 oy < DIy o = 1.20m = 1, (4.15)
1™ ly00) < G MW" s,y ™ = mo. (4.16)

In view of the first limit equality from (4.2) there exists a natural number my such that for m > my we have

™7, 7 +1, i=1,2; m>mg.

W) (Dr 5)—| W, (Dr.51)

In view of these inequalities from (4.12)-(4.16) it follows that

m
reintm, [ (a1 e |2
Dr
< 2"FIN2MLCY (T v v +2)G (M) ||w™ gu”
4C (n+1)( ) ||u HW 1 Or.5) + ||U ”W 1Dy S) Cp( Mw ||W21(D'[qs'[) ot L(D2)
2(Dr

2
ow™

=M (IIw 12,1 ‘D>+H7 o )) < 2Ms||w™ ||W 10,)
2\Ur

2 2
_ o [ Ow™ = [ ow™
= 2Ms /D |:(w )% + (_at ) +;(_8x,- ) }dxdt, (4.17)

where Ms = 2/N2MaC] oy (D (1 W,
Due to (4.17) from (4.11) we have

2 2 2 2
ow™ [ ow™ ow™ [ owm
-— — | lax < M, dxdt
/g o) T ) | 2s GfD R e R B
T —1 T i=1
+/ (F™%dxdt, 0<7t <T, (4.18)
D
where Mg = 1+ M3N? + 2Ms.

Note, that the inequality (3.52) is valid for w™ too, and, therefore,

2
m

(w™)2dx < T/ (8“’ ) dxdt
@ b\ ot

a m 2 n a m 2

w w
T w™? + [ — ] + —— | |dxdt. (4.19)
/DT|: Jat ; 0X;

Y
1 W 51 +2)G(M).

IA
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Putting

2 2
. - ow™ [ dw™
A (T) = /Q |:(w 2+ (_at ) +;(_ax,- ) :|dx (4.20)

and adding (4.18) to (4.19), we receive

T
Am(T) < (Mg + T)/ Am(s)ds + IIFmIIwaTy
0
Whence, by the Gronwall’s lemma, it follows that

Am(T) < ™17, b,y €XP(Ms + T)T. (4.21)
From (4.20) and (4.21) we have

T
||w'"||5vzl(DT) = fo Am(T)dT < T||F'"||f2(DT) exp(Mg + T)T. (4.22)
In view of (4.3), (4.4) from (4.22) it follows that
”w||W21(Dr) = mll—>moo lw—w™+ wm”Wzl(DT)

< lim [|w —w™ lim [jw™

~ m=o00 ” ”WZ](DT) + o> 00 ” ”Wz](DT)

— H _ m — 1i _ my —
= Jim = 0"l = m e = w"lige, s =0
Therefore w = u, — u; = 0, i.e. U = uq. The Theorem 4.1 is proved. O

From the Theorems 3.1, 3.3 and 4.1 and the Remark 4.1 it follows the following theorem of existence and uniqueness.

Theorem 4.2. Let the vector-function f satisfy the condition (4.1), where0 < y < nzj and either f satisfy the condition (2.2) for
a < lorf = VG where G € C'(R"),G(0) = 0and G(u) > OVYu € RN. Then for any F € Ly(D;) and g = O the

problem (1.1), (1.2) has unique strong generalized solution u € W; (D1, St) of the class Wzl in the domain Dy in the sense of
the Definition 2.1.

The following theorem on existence of global solution of this problem follows from the Theorem 4.2.

Theorem 4.3. Let the vector-function f satisfy the condition (4.1), where0 < y < nle and either f satisfy the condition (2.2) for
o < lorf = VG whereG e C'(R"), G(0) = 0and G(u) > 0 Vu € RV. Let g = 0, F € L, joc(Do) and F|p, € L,(Dr) for each
T > 0. Then the problem (1.1), (1.2) has unique global strong generalized solution u € Wzl. (Do) of the class Wzl in the domain
Do, in the sense of the Definition 2.4.

loc

Proof. According to the Theorem 4.2 when the conditions of Theorem 4.3 are fulfilled for T = k, where k is a natural number,
there exists unique strong generalized solution u* e Wzl (D, St) of the problem (1.1), (1.2) of the class W21 in the domain
Dr—y in the sense of the Definition 2.1. Since u**! Ip;_, is also a strong generalized solution of the problem (1.1), (1.2) of the
class W; in the domain Dr_y, then in view of the Theorem 4.2 we have u* = u**1|, _, . Therefore one can construct unique

global generalized solution u € V°V21, (Do) of the problem (1.1), (1.2) of the class Wzl in the domain D, in the sense of the
Definition 2.4 in the following way:

loc

ux, t) = uf(x, t), (x,t) € Do, k=[t]1+ 1,

where [t] is an integer part of the number t. The Theorem 4.3 is proved. O

5. The cases of nonexistence of a global solution of the problem (1.1), (1.2) of the class W21

Theorem 5.1. Let the vector-function f = (fi, ..., fy) satisfy the condition (2.2), where 1 < o < %} and there exist numbers
Ly ..o I, SO0 || # 0, such that

N B

Zlifi(u) < —C1

i=1

N

n+1
Yue RN, 1 < B = const < Pt (5.1)

liu;
1
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where ¢y, ¢y = const,c; > 0. Let F € Ljjoc(Dso) and Flp, € Ly(Dr) forany T > 0,g = 0. Let the scalar function
Fy = Z?’Z 1 liFi — o in the domain Dy satisfy the following conditions

Fo >0, lirJIl inft"Fy(x,t) > c; =const >0, y =const<n-+ 1. (5.2)
t——+o0

Then there exists a finite positive number Ty = Ty(F) such that for T > T, the problem (1.1), (1.2) does not have a strong
generalized solution of the class W21 in the sense of the Definition 2.1.

Proof. Letu = (uq, ..., uy) be a strong generalized solution of the problem (1.1), (1.2) of the class Wzl in the domain Dr in
the sense of the Definition 2.1. It is easy to verify that

/ uOedxdt = — / fWedxdt + / Fodxdt (5.3)

Dr Dt Dr
for any test vector-function ¢ = (@1, ..., @y), such that
_ ap
¢ €C*(Dr),  @lioy = —| =0, (5.4)
av oDy

where v is the unit vector of the outer normal to dDr. Indeed, according to the definition of the strong generalized solution
of the problem (1.1), (1.2) of the class W2l in the domain Dy there exists a sequence of the vector-functions u™ € C?(Dr, St),
for which the limit equalities (3.47) are valid. Taking into account (3.48) and scalarly multiplying both parts of the equality
Lu™ = F™ by test vector-function ¢ = (@1, ..., ¢y), due to (5.4) after integrating by parts, we receive

/ u"Dedxdt = — f(u’")<pdxdt+f F™pdxdt. (5.5)
Dy Dy Dy

By virtue of (3.47) and the Remark 2.1, passing in the equality (5.5) to the limit for m — oo we receive (5.3).
Let us use the method of test functions [9]. Consider a scalar function ¢° = ¢°(x, t) such that

_ 9¢°
¢° € C*(D), ¢°Ioy_, >0,  ¢°li=1=0,  ¢°lap,_, = —— =0 (5.6)
v aDr_;
and
2 = / |DO¢—O,|I3;dxdt < 400, 1 + l/ =1. (5.7)
Dr_, 1@ A= B B

Itis easy to see that in the capacity of the function ¢, satisfying the conditions (5.6) and (5.7), we can choose the following
function

X
P t) — {w’" (5)a-om «oebr
0. =1,

for sufficiently large positive m and k, where the function w € C*(R") defines the equation of conic section 32y = S N
{t = 1} : (,()(X) = O, Va)|3_(2] ;é 0, and (,l)|_Q.1 > O, Q] =DnN {t = 1}

Putting
wn=¢(2 L) 150 (5.8)
(DT ’ o (p T ’ T ’ ’ B
due to (5.6) it is easy to see that
= dr
¢r € C*(Dr), ¢rlp, > 0, orlap, = — =0. (5.9)
av oDy
In the integral equality (5.3) for the test vector-function ¢ we choose ¢ = (lyor, Ler, ..., Ivor). For the chosen test

vector-function ¢, using notations

N

N N
v=> lu, F.=)Y Lk fo=) I (5.10)
i=1 i=1

i=1
the integral equality (5.3) takes the following form

/ UD(pTdth = — fo(u)(prdxdt +/ F*(pTdth. (5]1)
Dr Dr Dr
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From (5.1), (5.9) and (5.11) it follows that

/ vOprdxdt
Dr

v

f [c1|v|’8 —co]cprdxdt+/ F.ordxdt
Dt Dr

a [ vPerdxdt + x(T), (5.12)
Dr

where due to (5.2) and (5.9)

X(T) = / (F* — Co)(pTdth = / Fo(pTdth > 0. (513)
Dr Dr
In view of (5.2) there exists a number T; = T;(F) > 0 such that
G _
Fo(x, t) > 51' Y. t>T. (5.14)
By virtue of (5.8) and (5.14), after substitution of variables t = Tt’, x = Tx' in the integral (5.13), for T > 2T; we have

x(T) = "1 / Fo(TX, Tt (x', t")dx dt’
Dr=1

> 71 / Fo(TX, Tt " (X', t')dx'dt’
Drzlﬂ[%<ﬂ<1

C
> 71 / 2(Tt) " ° (¥, t)dx dt’
DT=]Q[%<[/<1} 2

c
= Z2Tmily / ()Y 77X, tYdxXdt' = csT"T7Y | T > 2Ty, (5.15)
2 DT:]Q{%<N<]}

where due to ¢°|p,_, > 0
c
=2 (t) 77X, t')dx'dt’ = const > 0. (5.16)
2 DT:1nH<t’<1}
Since according to the conditions of the Theorem 5.1 the constant y < n + 1, then from (5.15) and (5.16) it follows

lim infx(T) > cs. (5.17)
T—+oc0

Further, in view of (5.13) rewrite the inequality (5.12) in the following form
c1/ lv|Pprdxdt < / vOgrdxdt — x (T). (5.18)
Dr Dr

If in Young's inequality with the parameter ¢ > 0 : ab < (¢/B)a? + (B'e#~")~'bP, where B/ = B/(B — 1), we take
a = |ulgy?, b =|0¢r|/y/#, then taking into account equality 8//8 = B’ — 1, we have

j10¢r| _ e 1 |ogrl”
WOgr| = lolef —5 < —vlPer + ——— (5.19)
2 B pe Yr
In view of (5.19) from (5.18) we have
& 1 Opr|?
(q——) v/ prdxdt < — ,]/ | "’,ﬂl dxdt — x (T),
IB Dt 188'6_ Dr (p?_
whence for ¢ < ¢ we receive
Cor|?
/ lv|? prdxde < P ,1/ | “"f'l dxdt — —P x(T). (5.20)
Dr (1B —e)p'ef'~ Dr ¢Tﬁ* ap—e

Taking into account equalities 8’ = 8/(8 — 1), B = B’/(B’ — 1) and also equality
B 1

min — = —,
0<e<cip (1f —&)Bef 1 (P




S. Kharibegashvili, B. Midodashvili / ]. Math. Anal. Appl. 400 (2013) 345-362 361

which is reached for € = ¢4, then from (5.20) it follows that

1 Oer|f /
/ vl grdxde < — | f['l dxde — 2y (1. (521)
Dr c; Jbr @ Cq

By virtue of (5.6)-(5.8) after substitution of variables x = Tx’, t = Tt’ one may easily verify that

Doy |F , OO |F ,
/ 1D0r1™ e — 7128 / 15017 e — 1126 2y < 1o
Dr

(pf/_l D=1 (gpo)ﬂ/_l

Whence due to (5.9) from the inequality (5.21) we have

1 / !
0< / lv|Pprdxdt < Trﬂ“*zf‘ 2y — ﬁ—X(T). (5.22)
Dr o G
Since by supposition 8 < % thenn + 1 — 28’ < 0 and, therefore,
1 /
lim — T2, = 0. (5.23)

T—+00 C]

From (5.16), (5.17) and (5.23) it follows that there exists a positive number Tq = Ty (F) such that for T > T, the right side
of the inequality (5.22) will be a negative value, which is impossible. This means that if for the conditions of the Theorem 5.1
there exists a strong generalized solution of the problem (5.1),(5.2) of the class W21 inthe domain Dy, thenT < Ty necessarily,
which proves the Theorem 5.1. O

Remark 5.1. Let us consider one class of vector-functions f, satisfying the condition (5.1):

N
fitwr o) =) aglylf by, i=1.N, (5.24)

j=1
where a; = const > 0,b; = const,1 < B; = const < %; i,j = 1,...,N. In this case we can assume that [; =
I = ... = Iy = —1.Indeed, let us choose 8 = constinsuchawaythat1 < 8 < Bj; i,j = 1,..., N.Then it is easy to

verify that |s|%i > |s|# — 1Vs € (—o0, 4+00). Using the inequality [1]

N N o |P
Y wlf =Ny
i=1 i=1

we have

N
Zfi(ul, .o, UN)
i=1

Yy = (1,...,yn) € RY, B = const > 1,

%

N N N N
a0 > [l +> b= a0y (ulf =1+ b
i=1 i=1

i,j=1 i,j=1

N N N | N
= agN Z |uj|’S — aoN? + Zb,- > goN>~F Z u| + Zb,- — aoN?,
j=1 i=1 j=1 i=1
ap = mina; > 0.
ij
Whence the inequality (5.1) follows where
N
11212:"'211\]:—], C():CloNz—Zbi, C1:a0N2_’B>O.
i=1
Note that the vector-function f represented by the equalities (5.24) also satisfies the condition (5.1) forl; = I, = --- =
Iy = —1 for less restrictive conditions, when a; = const > 0, but aj, > 0, where kq, ..., ky represents an arbitrary fixed
permutation of the numbers 1,2,...,N; i,j=1,...,N.
WhenN = n = 2, fi = an|u|” + aplwl?, fo = anluil” + anlual?, 1 < ¥, B < 3, the restrictions a; > 0 can
be removed and changed by the condition det(a;) # 0. E.g., for fi = u3 — 2u3, f, = —2u? + uZ, the condition (5.1) for
li=L=1,B=2, cg=0andc; = 3 will be valid, since in this case l;f; (1) + Lfz(u) = —(Ju1]* + |u2|*) < —3|u; + up|?

and from the Theorem 5.1 we have that for F; + F, > =, t > 1, where ¢ = const > 0Oand y = const < 3, g = 0 the

considering boundary value problem is not globally solvable. More precisely, from (5.17) and (5.22) it follows that

1 /
0< / |U|ﬁ§DTdth < TTH+172ﬂ o — ﬂ—C3,
Dr C €1
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/ 1
which right hand side becomes negative forT > Ty = max([aeglﬁ’cf 71(,‘3] n+1-26" ' 1) and, therefore, for T > T, the problem
(1.1), (1.2) does not have a solution. But for this concrete example,n = 2, 8 = B’ = 2; &, is determined from (5.7). The
constants ¢y, ¢c; and c3 are determined from (5.1), (5.2) and (5.16), respectively, and, therefore, in this case ¢c; = % and

Ty = f—;’ Further, due to the Theorem 3.2 on the local solvability and the Theorem 4.1 on the uniqueness of the solution of
this problem there exist finite positive number T,, = T, (F) and unique vector-function u = (uq, uy) € W2],loc (Dr,), such that

u is a strong generalized solution of this problem of the class Wzl in the domain Dy for T < T,. From the aforesaid it follows
that for the life-span T, of this solution we have the upper estimate T, < Tp = max(f—}o, 1). The lower estimate for T, can

be received from considerations given in the proof of the Theorem 3.2 on the local solvability.

Remark 5.2. From the Theorem 5.1 it follows that when its conditions are fulfilled, then the problem (1.1), (1.2) cannot have
a global strong generalized solution of the class W2l in the domain D, in the sense of the Definition 2.4.
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