S. Kharibegashvili

THE CAUCHY-GOURSAT MULTIDIMENSIONAL PROBLEM FOR ONE CLASS OF NONLINEAR HYPERBOLIC SYSTEMS OF SECOND ORDER

In the Euclidean space \mathbb{R}^{n+1} of independent variables $x=\left(x_{1}, \ldots, x_{n}\right)$ and t we consider a semilinear hyperbolic system of the type

$$
\begin{align*}
(L u)_{i}: \frac{\partial^{2} u_{i}}{\partial t^{2}}-\frac{\partial^{2} u_{i}}{\partial x_{1}^{2}}-\frac{\partial^{2} u_{i}}{\partial x_{2}^{2}}+f_{i}\left(u_{1}, \ldots, u_{N}\right) & =F_{i}\left(x_{1}, x_{2}, t\right) \tag{1}\\
i & =1, \ldots, N
\end{align*}
$$

where $f=\left(f_{1}, \ldots, f_{N}\right), F=\left(F_{1}, \ldots, F_{N}\right)$ are the given and $u=\left(u_{1}, \ldots, u_{N}\right)$ is an unknown real vector-functions, $N \geq 2$.

By $D: t>|x|, x_{2}>0$ we denote a half of the light cone of the future which is bounded by a part $S^{0}: \partial D \cap\left\{x_{2}=0\right\}$ of the plane $x_{2}=0$ and by a half $S: t=|x|, x_{2} \geq 0$ of the characteristic conoid $C: t=|x|$ of the system (1). Assume $D_{T}:=\{(x, t) \in D: t<T\}, S_{T}^{0}:=\left\{(x, t) \in S^{0}: t \leq T\right\}$, $S_{T}:=\{(x, t) \in S: t \leq T\}, T>0$.

For a system of equations (1), we consider the problem of finding a solution $u(x, t)$ of that system by the boundary conditions

$$
\begin{equation*}
\left.\frac{\partial u}{\partial x_{2}}\right|_{S_{T}^{0}}=0,\left.\quad u\right|_{S_{T}}=0 \tag{2}
\end{equation*}
$$

In the case if $T=\infty$, we have $D_{\infty}=D, S_{\infty}^{0}=S^{0}$ and $S_{\infty}=S$.
The problem (1), (2) is the Cauchy-Goursat multidimensional problem when one part of the problem data is a characteristic manifold and the other one is a time type manifold [1]. Note that in a scalar case, where $N=1$, this problem has been investigated in [2].

Below, to the nonlinear vector-function f from (1) we impose the following restrictions:

$$
\begin{equation*}
f \in C\left(\mathbb{R}^{N}\right), \quad|f(u)| \leq M_{1}+M_{2}|u|^{\alpha}, \quad \alpha=\text { const } \geq 0, \quad u \in \mathbb{R}^{N} \tag{3}
\end{equation*}
$$

where $|\cdot|$ is the norm in the space $\mathbb{R}^{N}, M_{i}=$ const $\geq 0, i=1,2$.

[^0]Let $\stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}^{0}, S_{T}\right):=\left\{u \in C^{2}\left(\bar{D}_{T}\right):\left.\frac{\partial u}{\partial x_{2}}\right|_{S_{T}^{0}}=0,\left.u\right|_{S_{T}}=0\right\}$. Assume that $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right):=\left\{u \in W_{2}^{1}\left(D_{T}\right):\left.u\right|_{S_{T}}=0\right\}$, where $W_{2}^{k}\left(D_{T}\right)$ is the known Sobolev's space consisting of elements $L_{2}\left(D_{T}\right)$, having generalized derivatives up to the k th order, inclusive, from $L_{2}\left(D_{T}\right)$, and the equality $\left.u\right|_{S_{T}}=0$ is understood in a sense of the trace theory.

Definition 1. Let $f=\left(f_{1}, \ldots, f_{N}\right)$ satisfy the condition (3), where $0 \leq \alpha<3 ; F=\left(F_{1}, \ldots, F_{N}\right) \in L_{2}\left(D_{T}\right)$. The vector-function $u=$ $\left(u_{1}, \ldots, u_{N}\right) \in W_{2}^{1}\left(D_{T}\right)$ is said to be a strict generalized solution of the problem (1), (2) of the class W_{2}^{1} in the domain D_{T}, if there exists a sequence of vector-functions $u^{m} \in \stackrel{\circ}{C}^{2}\left(\bar{D}_{T}, S_{T}^{0}, S_{T}\right)$ such that $u^{m} \rightarrow u$ in the space $\stackrel{\circ}{W}_{2}^{1}\left(D_{T}, S_{T}\right)$, and $L u^{m} \rightarrow F$ in the space $L_{2}\left(D_{T}\right)$.

It can be easily seen that the classical solution $u \in C^{2}\left(\bar{D}_{T}\right)$ of the problem (1), (2) is likewise a strong generalized solution of that problem of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.

Definition 2. Let $f=\left(f_{1}, \ldots, f_{N}\right)$ satisfy the condition (3), where $0 \leq \alpha<3 ; F=\left(F_{1}, \ldots, F_{N}\right) \in L_{2, \operatorname{loc}}\left(D_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right)$ for any $T>0$. We say that the problem (1), (2) is locally solvable in the class W_{2}^{1}, if there exists a number $T_{0}=T_{0}(F)>0$ such that for $T<T_{0}$ this problem has a strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.

Definition 3. Let $f=\left(f_{1}, \ldots, f_{N}\right)$ satisfy the condition (3), where $0 \leq \alpha<3, F=\left(F_{1}, \ldots, F_{N}\right) \in L_{2, \text { loc }}\left(D_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right)$ for any $T>0$. We say that the problem (1), (2) is globally solvable in the class W_{2}^{1}, if for $T>0$ this problem has a strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.

When investigating the problem (1), (2) in a sense of the above-given definitions of local and global solvability, it turned out that for $0 \leq \alpha \leq 1$, where α is the growth exponent of power nonlinearity in the condition (3), the problem (1), (2) is globally solvable. In the case, where $1<\alpha<3$, for the global solvability of the problem (1), (2) it is not enough to have only one restriction (3) to the nonlinearity growth of the vector-function f. For this problem to be globally solvable for $1<\alpha<3$, one needs additional, of structural character, restrictions to the nonlinear vector-function f. According to what has been said, we have the following theorems.

Theorem 1. Let $F \in L_{2, \text { loc }}\left(D_{\infty}\right)$ and $F \in L_{2}\left(D_{T}\right)$ for any $T>0$. Let $0 \leq \alpha \leq 1$ and the vector-function f satisfy the condition (3). Then the problem (1), (2) is globally solvable in the class W_{2}^{1}, i.e. for any $T>0$, this
problem has at least one strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.

Theorem 2. Let $F \in L_{2, \text { loc }}\left(D_{\infty}\right)$ and $F \in L_{2}\left(D_{T}\right)$ for any $T>0$. Let the vector-function f satisfy the condition (3), where $1<\alpha<3$. Then the problem (1), (2) is locally solvable in the class W_{2}^{1}, i.e. there exists the number $T_{0}=T_{0}(F)>0$ such that for $T<T_{0}$ this problem has at least one strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.

Theorem 3. Let f satisfy the condition (3), where $1<\alpha<3$ and $f=\nabla G$, i.e. $f_{i}(u)=\frac{\partial}{\partial u_{i}} G(u), u \in \mathbb{R}^{N}, i=1, \ldots, N$, where $G=$ $G(u) \in C^{1}\left(\mathbb{R}^{N}\right)$ is the scalar function satisfying the conditions $G(0)=0$ and $G(u) \geq 0 \forall u \in \mathbb{R}^{N}$. Let $F \in L_{2, \operatorname{loc}}\left(D_{\infty}\right)$ and $\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right)$ for any $T>0$. Then the problem (1), (2) is globally solvable in the class W_{2}^{1} in the sense of Definition 3.

Theorem 4. Let $f_{i}=\sum_{j=1}^{N} a_{i j}\left|u_{j}\right|^{\alpha_{j}}, i=1, \ldots, N ; a_{i j}=$ const, $\operatorname{det}\left(a_{i j}\right)_{i, j=1}^{N} \neq 0,1<\alpha_{j}=\mathrm{const}<3, i, j=1, \ldots, N$. Then there exists the vector-function $F \in L_{2, \operatorname{loc}}\left(D_{\infty}\right),\left.F\right|_{D_{T}} \in L_{2}\left(D_{T}\right) \forall T>0$ such that the problem (1), (2) is not globally solvable in the class W_{2}^{1}, i.e. there exists the number $T_{1}=T_{1}(F)>0$ such that for $T>T_{1}$ the problem (1), (2) has no strong generalized solution of the class W_{2}^{1} in the domain D_{T} in the sense of Definition 1.

References

1. A. V. Bitsadze, Some Classes of Partial Differential Equations. (Russian) Nauka, Moscow, 1981.
2. S. Kharibegashvili, On the solvability of one multidimensional version of the first Darboux problem for some nonlinear wave equations. Nonlinear Anal. 68 (2008), No. 4, 912-924.

Author's address:
A. Razmadze Mathematical Institute
I. Javakhishvili Tbilisi State University

6, Tamarashvili St., Tbilisi 0177, Georgia

[^0]: 2010 Mathematics Subject Classification. 35L51, 35L71.
 Key words and phrases. The Cauchy-Goursat multidimensional problem, nonlinear hyperbolic systems, local and global solutions.

