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THE CAUCHY-GOURSAT MULTIDIMENSIONAL
PROBLEM FOR ONE CLASS OF NONLINEAR
HYPERBOLIC SYSTEMS OF SECOND ORDER

In the Euclidean space Rn+1 of independent variables x = (x1, . . . , xn)
and t we consider a semilinear hyperbolic system of the type

(Lu)i :
∂2ui

∂t2
− ∂2ui

∂x2
1

− ∂2ui

∂x2
2

+ fi(u1, . . . , uN ) = Fi(x1, x2, t), (1)

i = 1, . . . , N,

where f =(f1, . . . , fN), F =(F1, . . . , FN) are the given and u=(u1, . . . , uN)
is an unknown real vector-functions, N ≥ 2.

By D : t > |x|, x2 > 0 we denote a half of the light cone of the future
which is bounded by a part S0 : ∂D∩{x2 = 0} of the plane x2 = 0 and by a
half S : t = |x|, x2 ≥ 0 of the characteristic conoid C : t = |x| of the system
(1). Assume DT := {(x, t) ∈ D : t < T}, S0

T := {(x, t) ∈ S0 : t ≤ T},
ST := {(x, t) ∈ S : t ≤ T}, T > 0.

For a system of equations (1), we consider the problem of finding a solu-
tion u(x, t) of that system by the boundary conditions

∂u

∂x2

∣∣∣
S0

T

= 0, u
∣∣∣
ST

= 0. (2)

In the case if T = ∞, we have D∞ = D, S0
∞ = S0 and S∞ = S.

The problem (1), (2) is the Cauchy-Goursat multidimensional problem
when one part of the problem data is a characteristic manifold and the other
one is a time type manifold [1]. Note that in a scalar case, where N = 1,
this problem has been investigated in [2].

Below, to the nonlinear vector-function f from (1) we impose the follow-
ing restrictions:

f ∈ C(RN ), |f(u)| ≤ M1 + M2|u|α, α = const ≥ 0, u ∈ RN , (3)

where | · | is the norm in the space RN , Mi = const ≥ 0, i = 1, 2.
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Let
◦
C 2(DT , S0

T , ST ) := {u ∈ C2(DT ) : ∂u
∂x2

∣∣
S0

T

= 0, u
∣∣
ST

= 0}. Assume

that
◦

W 1
2(DT , ST ) := {u ∈ W 1

2 (DT ) : u
∣∣
ST

= 0}, where W k
2 (DT ) is the

known Sobolev’s space consisting of elements L2(DT ), having generalized
derivatives up to the kth order, inclusive, from L2(DT ), and the equality
u
∣∣
ST

= 0 is understood in a sense of the trace theory.

Definition 1. Let f = (f1, . . . , fN ) satisfy the condition (3), where
0 ≤ α < 3; F = (F1, . . . , FN ) ∈ L2(DT ). The vector-function u =
(u1, . . . , uN ) ∈ W 1

2 (DT ) is said to be a strict generalized solution of the
problem (1), (2) of the class W 1

2 in the domain DT , if there exists a se-

quence of vector-functions um ∈
◦
C 2(DT , S0

T , ST ) such that um → u in the

space
◦

W 1
2(DT , ST ), and Lum → F in the space L2(DT ).

It can be easily seen that the classical solution u ∈ C2(DT ) of the problem
(1), (2) is likewise a strong generalized solution of that problem of the class
W 1

2 in the domain DT in the sense of Definition 1.

Definition 2. Let f = (f1, . . . , fN ) satisfy the condition (3), where
0 ≤ α < 3; F = (F1, . . . , FN ) ∈ L2,loc(D∞) and F

∣∣
DT

∈ L2(DT ) for any
T > 0. We say that the problem (1), (2) is locally solvable in the class W 1

2 ,
if there exists a number T0 = T0(F ) > 0 such that for T < T0 this problem
has a strong generalized solution of the class W 1

2 in the domain DT in the
sense of Definition 1.

Definition 3. Let f = (f1, . . . , fN ) satisfy the condition (3), where
0 ≤ α < 3, F = (F1, . . . , FN ) ∈ L2,loc(D∞) and F

∣∣
DT

∈ L2(DT ) for any
T > 0. We say that the problem (1), (2) is globally solvable in the class
W 1

2 , if for T > 0 this problem has a strong generalized solution of the class
W 1

2 in the domain DT in the sense of Definition 1.

When investigating the problem (1), (2) in a sense of the above-given
definitions of local and global solvability, it turned out that for 0 ≤ α ≤ 1,
where α is the growth exponent of power nonlinearity in the condition (3),
the problem (1), (2) is globally solvable. In the case, where 1 < α < 3, for
the global solvability of the problem (1), (2) it is not enough to have only
one restriction (3) to the nonlinearity growth of the vector-function f . For
this problem to be globally solvable for 1 < α < 3, one needs additional,
of structural character, restrictions to the nonlinear vector-function f . Ac-
cording to what has been said, we have the following theorems.

Theorem 1. Let F ∈ L2,loc(D∞) and F ∈ L2(DT ) for any T > 0. Let
0 ≤ α ≤ 1 and the vector-function f satisfy the condition (3). Then the
problem (1), (2) is globally solvable in the class W 1

2 , i.e. for any T > 0, this
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problem has at least one strong generalized solution of the class W 1
2 in the

domain DT in the sense of Definition 1.

Theorem 2. Let F ∈ L2,loc(D∞) and F ∈ L2(DT ) for any T > 0. Let
the vector-function f satisfy the condition (3), where 1 < α < 3. Then
the problem (1), (2) is locally solvable in the class W 1

2 , i.e. there exists the
number T0 = T0(F ) > 0 such that for T < T0 this problem has at least one
strong generalized solution of the class W 1

2 in the domain DT in the sense
of Definition 1.

Theorem 3. Let f satisfy the condition (3), where 1 < α < 3 and
f = ∇G, i.e. fi(u) = ∂

∂ui
G(u), u ∈ RN , i = 1, . . . , N , where G =

G(u) ∈ C1(RN ) is the scalar function satisfying the conditions G(0) = 0 and
G(u) ≥ 0 ∀u ∈ RN . Let F ∈ L2,loc(D∞) and F

∣∣
DT

∈ L2(DT ) for any
T > 0. Then the problem (1), (2) is globally solvable in the class W 1

2 in the
sense of Definition 3.

Theorem 4. Let fi =
N∑

j=1

aij |uj |αj , i = 1, . . . , N ; aij = const,

det(aij)N
i,j=1 6= 0, 1 < αj = const < 3, i, j = 1, . . . , N . Then there ex-

ists the vector-function F ∈ L2,loc(D∞), F
∣∣
DT

∈ L2(DT ) ∀T > 0 such that
the problem (1), (2) is not globally solvable in the class W 1

2 , i.e. there exists
the number T1 = T1(F ) > 0 such that for T > T1 the problem (1), (2) has no
strong generalized solution of the class W 1

2 in the domain DT in the sense
of Definition 1.
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