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1. STATEMENT OF THE PROBLEM

In the plane of independent variables x and t, let us consider the following wave equation with
nonlinear dissipative term [1, p. 57 (Russian transl.)], [2]

Lu := utt − uxx + g(x, t, u)ut = f(x, t), (1.1)

where f and g are given functions, and u is an unknown real function.

Let DT := {(x, t) : 0 < x < t, 0 < t < T} denote the triangular domain bounded by the character-
istic closed interval γ1,T : x = t, 0 ≤ t ≤ T , as well as by the closed intervals γ2,T : x = 0, 0 ≤ t ≤ T and
γ3,T : t = T , 0 ≤ x ≤ T . For Eq. (1.1), consider the Cauchy–Goursat problem of finding the solution
u(x, t) in the domain DT , subject to the conditions [3, p. 284]

ux|γ2,T
= 0, u|γ1,T

= 0. (1.2)

Note that, for hyperbolic-type nonlinear equations, the questions of the existence, uniqueness, and
blow-up of global solutions of initial, mixed, nonlocal, and other problems were studied in numerous
papers (see, for example, [4]–[18]). It is well known that, in the linear case, i.e., for g(x, t, u) = g(x, t),
problem (1.1), (1.2), is well posed and its global solvability was established in the corresponding function
spaces (see, for example, [1], [19]–[23]).

In what follows, it will be shown that, under certain conditions on the nonlinear function g(x, t, u),
problem (1.1), (1.2) is locally solvable; we shall also obtain conditions for the global solvability whose
violation, in general, may lead to the blow-up of the solution in finite time.

Definition 1.1. Let f ∈ C(DT ), and let g ∈ C(DT ×R), where R := (−∞,+∞). A function u is called
a strong generalized solution of Problem (1.1), (1.2) of class C1 in the domain DT if u ∈ C1(DT ) and
there exists a sequence of functions un ∈ C̊2(DT ,ΓT ) such that un → u and Lun → f as n → ∞ in the
spaces C1(DT ) and C(DT ), respectively, where

C̊2(DT ,ΓT ) := {v ∈ C2(DT ) : vx|γ2,T
= 0, v|γ1,T

= 0}, ΓT := γ1,T ∪ γ2,T .
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Remark 1.1. Obviously, the classical solution of problem (1.1), (1.2) from the space u ∈ C̊2(DT ,ΓT )
is a strong generalized solution of this problem of class C1 in the domain DT . In turn, if the strong
generalized solution of problem (1.1), (1.2) of class C1 in the domain DT belongs to the space C2(DT ),
then it will also be the classical solution of this problem.

Definition 1.2. Let f ∈ C(D∞), and let g ∈ C(D∞ × R). We say that problem (1.1), (1.2) is globally
solvable for the class C1 if, for any finite T > 0, this problem has a strong generalized solution of
class C1 in the domain DT .

2. A PRIORI ESTIMATES OF THE SOLUTION OF PROBLEM (1.1), (1.2)
FOR THE CLASSES C(DT ), C1(DT )

Lemma 2.1. Let f ∈ C(DT ), let g ∈ C(DT × R), and let

g(x, t, s) ≥ −MT , (x, t, s) ∈ DT × R, MT := const > 0. (2.1)

Then, in the domain DT , the strong generalized solution of problem (1.1), (1.2) of class C1

satisfies the a priori estimate

‖u‖C(DT ) ≤ c0‖f‖C(DT ), (2.2)

where c0 = c0(T,MT ) is a positive constant independent of u and f .

Proof. Let u be a strong generalized solution of problem (1.1), (1.2) of class C1 in the domain DT .
Then, in view of Definition 1.1, there exists a sequence of functions un ∈ C̊2(DT ,ΓT ) such that

lim
n→∞

‖un − u‖C1(DT ) = 0, lim
n→∞

‖Lun − f‖C(DT ) = 0, (2.3)

and, therefore, also

lim
n→∞

‖g(x, t, un)unt − g(x, t, u)ut‖C(DT ) = 0. (2.4)

Consider the function un ∈ C̊2(DT ,ΓT ) as the solution of the following problem:

Lun = fn, (2.5)

∂un

∂x

∣
∣
∣
∣
γ2,T

= 0, un|γ1,T
= 0. (2.6)

Here

fn := Lun. (2.7)

Multiplying both sides of relation (2.5) by ∂un/∂t and integrating the resulting equality over the
domain Dτ := {(x, t) ∈ DT : 0 < t < τ}, 0 < τ ≤ T , we obtain

1
2

ˆ
Dτ

∂

∂t

(
∂un

∂t

)2

dx dt −
ˆ

Dτ

∂2un

∂x2

∂un

∂t
dx dt +

ˆ
Dτ

g(x, t, un)
(

∂un

∂t

)2

dx dt

=
ˆ

Dτ

fn
∂un

∂t
dx dt.

Set Ωτ := D∞ ∩ {t = τ}, 0 < τ ≤ T . Then, in view of (2.6), applying Green’s formula to the left-
hand side of the last equality, we can writeˆ

Dτ

fn
∂un

∂t
dx dt =

ˆ
γ1,τ

1
2νt

[(
∂un

∂x
νt −

∂un

∂t
νx

)2

+
(

∂un

∂t

)2

(ν2
t − ν2

x)
]

ds

+
1
2

ˆ
Ωτ

[(
∂un

∂x

)2

+
(

∂un

∂t

)2]

dx +
ˆ

Dτ

g(x, t, un)
(

∂un

∂t

)2

dx dt, (2.8)
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THE CAUCHY–GOURSAT PROBLEM FOR WAVE EQUATIONS 915

where ν := (νx, νt) is the unit vector of the outer/exterior normal to ∂Dτ and γ1,τ := γ1,T ∩ {t ≤ τ}.
Since the operator νt (∂/∂x) − νx (∂/∂t) is the inner differential operator on γ1,T , in view of the second
condition from (2.6), it follows that

(
∂un

∂x
νt −

∂un

∂t
νx

)∣
∣
∣
∣
γ1,τ

= 0. (2.9)

Further, it is easy to see that

(ν2
t − ν2

x)|γ1,τ = 0. (2.10)

Therefore, from (2.8)–(2.10) we obtain

wn(τ) :=
ˆ

Ωτ

[(
∂un

∂x

)2

+
(

∂un

∂t

)2]

dx ≤ 2
ˆ

Dτ

fn
∂un

∂t
dx dt + 2MT

ˆ
Dτ

(
∂un

∂t

)2

dx dt. (2.11)

Taking into account the inequality

2fn
∂un

∂t
≤

(
∂un

∂t

)2

+ f2
n

and using (2.11), we obtain

wn(τ) ≤ (1 + 2MT )
ˆ

Dτ

(
∂un

∂t

)2

dx dt +
ˆ

Dτ

f2
n dx dt.

Hence, using the expression for the function wn(τ), we can write

wn(τ) ≤ mT

ˆ τ

0
wn(σ) dσ + ‖fn‖2

L2(Dτ ),

where mT := max(1 + 2MT , 1). Hence, since ‖fn‖2
L2(Dτ ) is a nondecreasing function of τ , by Gron-

wall’s lemma [24, p. 13 (Russian transl.)], we have

wn(τ) ≤ exp(mT τ)‖fn‖2
L2(Dτ ). (2.12)

If (x, t) ∈ DT , then, in view of the second condition from (2.6), the following equality holds:

un(x, t) = un(x, t) − un(t, t) =
ˆ x

t

∂un(σ, t)
∂x

dσ;

hence, in view of (2.12) we have

|un(x, t)|2 ≤
ˆ t

x
dσ

ˆ t

x

[
∂un(σ, t)

∂x

]2

dσ ≤ (t − x)
ˆ

Ωt

[
∂un(σ, t)

∂x

]2

dσ

≤ (t − x)wn(t) ≤ twn(t) ≤ T exp(mT T )‖fn‖2
C(DT )

mes DT

= 2−1T 3 exp(mT T )‖fn‖2
C(DT )

. (2.13)

Using (2.13), we obtain

‖un‖C(DT ) ≤ T

√

T

2
exp

(
mTT

2

)

‖fn‖C(DT ).

Passing to the limit as n → ∞ in this inequality and taking into account (2.3), (2.7), we can write

‖u‖C(DT ) ≤ T

√

T

2
exp

(
mT T

2

)

‖f‖C(DT ). (2.14)

Estimate (2.2) is proved.
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Remark 2.1. It follows from (2.14) that the constant c0 in estimate (2.2) can be taken to be

c0 := T

√

T

2
exp

(
mT T

2

)

. (2.15)

Below, using the classical method of characteristics and taking into account estimate (2.2), we obtain
an a priori estimate in the space C1(DT ) for the strong generalized solution of problem (1.1), (1.2) of
class C1 in the domain DT .

The following statement is valid.

Lemma 2.2. Under the assumptions of Lemma 2.1, the strong generalized solution of prob-
lem (1.1), (1.2) of class C1 satisfies the following a priori estimate in the domain DT :

‖u‖C1(DT ) ≤ c1 (2.16)

with positive constant c1 = c1(T, c0, ‖f‖C(DT )), where

‖u‖C1(DT ) := max{‖u‖C(DT ), ‖ux‖C(DT ), ‖ut‖C(DT )}.

Proof. Let u be a strong generalized solution of problem (1.1), (1.2) of class C1 in the domain DT . Then
we have the limit equalities (2.3), (2.4), where un can be regarded as the solution of problem (2.5), (2.6)
with the right-hand side of fn from (2.7). For a fixed natural number n, we introduce the following
functions:

un1 := unt − unx, un2 := unt + unx, un3 := un, (2.17)

which, in view of (2.2), for 0 ≤ t ≤ T , satisfy the boundary conditions

un1(0, t) = un2(0, t), un2(t, t) = 0, un3(t, t) = 0. (2.18)

In view of (1.1) and (2.17), the unknown functions un1, un2, un3 satisfy the following system of first-order
partial differential equations:

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂un1

∂t
+

∂un1

∂x
= fn(x, t) − 1

2
g(x, t, un3)(un1 + un2),

∂un2

∂t
− ∂un2

∂x
= fn(x, t) − 1

2
g(x, t, un3)(un1 + un2),

∂un3

∂t
− ∂un3

∂x
= un1.

(2.19)

Integrating the equations of system (2.19) along the corresponding characteristic curves and taking into
account the boundary conditions (2.18), we obtain

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

un1(x, t) − un1(0, t) =
ˆ t

t−x

[

fn(Pτ ) − 1
2

g(Pτ , un3(Pτ ))(un1(Pτ ) + un2(Pτ ))
]

dτ,

un2(x, t) =
ˆ t

(x+t)/2

[

fn(Qτ ) −
1
2

g(Qτ , un3(Qτ ))(un1(Qτ ) + un2(Qτ ))
]

dτ,

un3(x, t) =
ˆ t

(x+t)/2
un1(Qτ ) dτ,

where Pτ := (x − t + τ, τ) and Qτ := (x + t − τ, τ). Using the second equation of this system and the
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first equality from (2.18), as well as the notation Pτ0 := (t − τ, τ), we can rewrite this system as
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un1(x, t) = −1
2

ˆ t

t−x
[g(Pτ , un3(Pτ ))(un1(Pτ ) + un2(Pτ ))] dτ

− 1
2

ˆ t

t/2
[g(Pτ0 , un3(Pτ0))(un1(Pτ0) + un2(Pτ0)

)

] dτ + Fn1(x, t),

un2(x, t) = −1
2

ˆ t

(x+t)/2
g(Qτ , un3(Qτ ))(un1(Qτ ) + un2(Qτ )) dτ + Fn2(x, t),

un3(x, t) =
ˆ t

(x+t)/2
un1(Qτ ) dτ.

(2.20)

Here

Fn1(x, t) :=
ˆ t

t−x
fn(Pτ ) dτ +

ˆ t

t/2
fn(Pτ0) dτ, Fn2(x, t) :=

ˆ t

(x+t)/2
fn(Qτ ) dτ. (2.21)

Passing in relations (2.20), (2.21) to the limit as n → ∞ in the space C(DT ) and taking into account
relations (2.3), (2.4), (2.7), and (2.17), we obtain

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(x, t) = −1
2

ˆ t

t−x
[g(Pτ , u3(Pτ ))(u1(Pτ ) + u2(Pτ ))] dτ

− 1
2

ˆ t

t/2
[g(Pτ0 , u3(Pτ0))(u1(Pτ0) + u2(Pτ0))] dτ + F1(x, t),

u2(x, t) = −1
2

ˆ t

(x+t)/2
g(Qτ , u3(Qτ ))(u1(Qτ ) + u2(Qτ )) dτ + F2(x, t),

u3(x, t) =
ˆ t

(x+t)/2
u1(Qτ ) dτ,

(2.22)

where ui := limn→∞ uni (in the norm of the space C(DT )) i = 1, 2, 3, and

F1(x, t) :=
ˆ t

t−x
f(Pτ ) dτ +

ˆ t

t/2
f(Pτ0) dτ, F2(x, t) :=

ˆ t

(x+t)/2
f(Qτ ) dτ. (2.23)

Obviously, u3 = u is a strong generalized solution of problem (1.1), (1.2) of class C1 in the domain DT .
Further,

u1 := ut − ux, u2 := ut + ux. (2.24)

Let GT := {(x, t, s) ∈ R
3 : (x, t) ∈ DT , |s| ≤ c0‖f‖C(DT )}, and let

K := sup
(x,t,s)∈GT

|g(x, t, s)| < +∞, (2.25)

where K = K(T, c0, ‖f‖C(DT )). Then in view of the a priori estimate (2.2), the strong generalized

solution u3 = u of problem (1.1), (1.2) of class C1 in the domain DT satisfies the estimate

|g(x, t, u3(x, t))| ≤ K, (x, t) ∈ DT . (2.26)

Let

vi(t) := sup
(ξ,τ)∈Dt

|ui(ξ, τ)|, i = 1, 2, 3, F (t) := sup
(ξ,τ)∈Dt

|f(ξ, τ)|. (2.27)

In view of (2.23), (2.26), and (2.27), relations (2.22) imply

|u1(x, t)| ≤ K

ˆ t

0
(v1(τ) + v2(τ)) dτ + 2tF (t),
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918 KHARIBEGASHVILI, JOKHADZE

|u2(x, t)| ≤ K

2

ˆ t

0
(v1(τ) + v2(τ)) dτ + tF (t),

|u3(x, t)| ≤
ˆ t

0
v1(τ) dτ.

Hence, for (ξ, τ) ∈ Dt, we have

|u1(ξ, τ)| ≤ K

ˆ τ

0
(v1(τ1) + v2(τ1)) dτ1 + 2τF (τ),

|u2(ξ, τ)| ≤ K

2

ˆ τ

0
(v1(τ1) + v2(τ1)) dτ1 + τF (τ),

|u3(ξ, τ)| ≤
ˆ τ

0
v1(τ1) dτ1

and, therefore, in view of (2.27) and the fact that tF (t) is a nondecreasing function, we can write

v1(t) ≤ K

ˆ t

0
(v1(τ) + v2(τ)) dτ + 2tF (t),

v2(t) ≤
K

2

ˆ t

0
(v1(τ) + v2(τ)) dτ + tF (t),

v3(t) ≤
ˆ t

0
v1(τ) dτ.

Setting v(t) := max1≤i≤3 vi(t), from the above inequalities we obtain

v(t) ≤ 2K
ˆ t

0
v(τ) dτ + 2tF (t),

whence, applying Gronwall’s lemma, we have

v(t) ≤ 2tF (t) exp(2tK) ≤ 2T exp(2TK)‖f‖C(DT ), 0 ≤ t ≤ T.

Now it readily follows from (2.24) that

‖u‖C1(DT ) ≤ ‖v‖C[0,T ] ≤ 2T exp(2TK)‖f‖C(DT ).

Lemma 2.2 is proved and

c1 := 2T exp(2TK)‖f‖C(DT ), (2.28)

where K is given by (2.25).

3. EQUIVALENCE OF PROBLEM (1.1), (1.2) TO A SYSTEM OF VOLTERRA-TYPE
NONLINEAR INTEGRAL EQUATIONS AND ITS LOCAL SOLVABILITY

First, let us show that problem (2.5), (2.6) is equivalent to problem (2.19), (2.18) in the classical
sense. Indeed, if un ∈ C2 is a solution of problem (2.5), (2.6), then the system of functions un1, un2,
and un3 will, obviously, be a solution of problem (2.19), (2.18). Conversely, let un1, un2, un3 ∈ C1 be
solutions of problem (2.19), (2.18). Let us show that un := un3 ∈ C2 is a solution of problem (2.5), (2.6)
and satisfies relations (2.17). If we show that un2 = unt + unx, then, obviously, we have the equalities

unt =
un2 + un1

2
and unx =

un2 − un1

2
,

whence it immediately follows that un ∈ C2 is a solution of problem (2.5), (2.6) in the classical sense.
Indeed, it follows from the first and second equations of system (2.19) that

∂un1

∂t
+

∂un1

∂x
=

∂un2

∂t
− ∂un2

∂x
. (3.1)
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Further, because un1 ∈ C1, it follows from the third equation of system (2.19) that

∂

∂t

(
∂

∂t
− ∂

∂x

)

un3 ∈ C and
∂

∂x

(
∂

∂t
− ∂

∂x

)

un3 ∈ C.

Hence, taking into account the fact that the first-order differential operators with constant coefficients
are interchangeable, we obtain

∂

∂t

(
∂

∂t
− ∂

∂x

)

un3 =
(

∂

∂t
− ∂

∂x

)
∂

∂t
un3 ∈ C,

∂

∂x

(
∂

∂t
− ∂

∂x

)

un3 =
(

∂

∂t
− ∂

∂x

)
∂

∂x
un3 ∈ C.

In view of these equalities, (3.1), and the third equality of system (2.19), we can write
(

∂

∂t
− ∂

∂x

)

(un2 − unt − unx)

=
(

∂

∂t
− ∂

∂x

)

un2 −
∂

∂t

(
∂

∂t
− ∂

∂x

)

un − ∂

∂x

(
∂

∂t
− ∂

∂x

)

un

=
∂un2

∂t
− ∂un2

∂x
− ∂un1

∂t
− ∂un1

∂x
= 0.

Therefore, in view of the second and the third equality from (2.18), we find that un2 = unt + unx. This
establishes the equivalence of problems (2.5), (2.6) and (2.19), (2.18) in the classical sense.

Above we have reduced problem (1.1), (1.2) to the system of Volterra-type nonlinear integral
equations (2.22). Before considering the local solvability of problem (1.1), (1.2), let us make the following
remark immediately following from the arguments given in Sec. 2.

Remark 3.1. Let u be a strong generalized solution of problem (1.1), (1.2) of class C1 in the domain DT ;
then u1 := ut − ux, u2 := ut + ux, u3 := u is a continuous solution of the system of Volterra-type
nonlinear integral equations (2.22). Conversely, if u1, u2, u3 is a continuous solution of system (2.22),
then u := u3 is a strong generalized solution of problem (1.1), (1.2) of class C1 in the domain DT , and
the relations u1 := ut − ux, u2 := ut + ux hold.

Now let us turn our attention to the proof of the local solvability of the system of Volterra-type
nonlinear integral equations (2.22).

Let

f ∈ C(D∞), f∞ := sup
(x,t)∈D∞

|f(x, t)| < +∞, g ∈ C(D∞ × R) (3.2)

and, for (x, t) ∈ D∞ and s, s1, s2 such that |s|, |s1|, |s2| ≤ R, we have

|g(x, t, s)| ≤ M(R), |g(x, t, s2) − g(x, t, s1)| ≤ c(R)|s2 − s1|, (3.3)

where M(R) and c(R) are nonnegative continuous functions of the argument R ≥ 0.

Theorem 3.1. Let the functions f and g satisfy conditions (3.2), (3.3). Then there exists a
positive number T∗ := T∗(f, g) such that, for T ≤ T∗, problem (1.1), (1.2) has at least one strong
generalized solution u of class C1 in the domain DT .

Proof. By Remark 3.1, problem (1.1), (1.2) in the space C1(DT ) is equivalent to the system of
Volterra-type nonlinear integral equations (2.22) for the class C(DT ). To prove the unique solvability of
system (2.22), we use the contraction mapping principle [26, p. 390].
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Set U := (u1, u2, u3). Let us introduce the vector operator Φ := (Φ1,Φ2,Φ3), by the formula
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Φ1U)(x, t) = −1
2

ˆ t

t−x
g(Pτ , u3(Pτ ))(u1(Pτ ) + u2(Pτ )) dτ

+
1
2

ˆ t

t/2
g(Pτ0 , u3(Pτ0))(u1(Pτ0) + u2(Pτ0)) dτ + F1(x, t),

(Φ2U)(x, t) = −1
2

ˆ t

(x+t)/2
g(Qτ , u3(Qτ ))(u1(Qτ ) + u2(Qτ )) dτ + F2(x, t),

(Φ3U)(x, t) =
ˆ t

(x+t)/2
u1(Qτ ) dτ.

(3.4)

Then system (2.22) can be rewritten in vector form:

U = ΦU. (3.5)

Let

‖U‖XT
:= max

1≤i≤3
{‖ui‖C(DT )}, U ∈ XT := C(DT ; R3),

where C(DT ; R3) is the set of continuous vector functions U : DT → R
3. Let

BR := {U ∈ XT : ‖U‖XT
≤ R}

denote the closed ball of radius R > 0 in the Banach space XT centered at the zero element.
Below we shall prove that

(1) Φ maps the ball BR into itself;

(2) Φ is a contraction mapping on BR.

Indeed, in view of the first inequality (3.3) from (3.4), for U such that ‖U‖XT
≤ R, we have

|(Φ1U)(x, t)| ≤ 2T (RM(R) + ‖f‖C(DT )),

|(Φ2U)(x, t)| ≤ T (RM(R) + ‖f‖C(DT )), |(Φ3U)(x, t)| ≤ TR.

It follows from these estimates that

‖ΦU‖XT
≤ 2T (RM(R) + R + ‖f‖C(DT )) ≤ 2T (RM(R) + R + f∞),

where f∞ is defined in (3.2).
For a fixed R > 0, let the number T be small so that

2T (RM(R) + R + f∞) ≤ R, (3.6)

i.e., ΦU ∈ BR, and thus condition (1) holds.
Further, in view of (3.3) from (3.4), for U i such that ‖U i‖XT

≤ R, i = 1, 2, we have

|(Φ1U
2 − Φ1U

1)(x, t)|

≤ 1
2

ˆ t

t−x

(

|g(Pτ , u2
3(Pτ )) − g(Pτ , u1

3(Pτ ))||u2
1(Pτ ) + u2

2(Pτ )|

+ |g(Pτ , u1
3(Pτ ))||u2

1(Pτ ) − u1
1(Pτ ) + u2

2(Pτ ) − u1
2(Pτ )|

)

dτ

+
1
2

ˆ t

t/2

(

|g(Pτ0 , u
2
3(Pτ0)) − g(Pτ0 , u

1
3(Pτ0))||u2

1(Pτ0) + u2
2(Pτ0)|

+ |g(Pτ0 , u
1
3(Pτ0))||u2

1(Pτ0) − u1
1(Pτ0) + u2

2(Pτ0) − u1
2(Pτ0)|

)

dτ

≤ 2T [Rc(R) + M(R)]‖U2 − U1‖XT
.
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Similarly,

|(Φ2U
2 − Φ2U

1)(x, t)|

≤ 1
2

ˆ t

(x+t)/2

(

|g(Qτ , u2
3(Qτ )) − g(Qτ , u1

3(Qτ ))||u2
1(Qτ ) + u2

2(Qτ )|

+ |g(Qτ , u1
3(Qτ ))||u2

1(Qτ ) − u1
1(Qτ ) + u2

2(Qτ ) − u1
2(Qτ )|

)

dτ

≤ T [Rc(R) + M(R)]‖U2 − U1‖XT
,

|(Φ3U
2 − Φ3U

1)(x, t)| ≤
ˆ t

(x+t)/2
|u2

1(Qτ ) − u1
1(Qτ )| dτ ≤ T‖U2 − U1‖XT

.

For a fixed R > 0, let the number T be small so that

max{T, 2T (Rc(R) + M(R))} ≤ 1
2

< 1, (3.7)

and thus

‖ΦU2 − ΦU1‖XT
≤ 1

2
‖U2 − U1‖XT

.

Thus, the operator Φ is a contraction mapping on the set BR, i.e., condition (2) holds.
In turn, it follows from (3.6) and (3.7) that if 0 < T ≤ T∗, where

T∗ := min
{

R

2(RM(R) + R + f∞)
,
1
2

,
1

4(Rc(R) + M(R))

}

, (3.8)

then

‖ΦU‖XT
≤ R and ‖ΦU2 − ΦU1‖XT

≤ 1
2
‖U2 − U1‖XT

for U,U1, U2 ∈ BR.

Therefore, in view of the contraction mapping principle, there exists a solution U of Eq. (3.5) in the
space C(DT ; R3). Theorem 3.1 is proved.

4. THE CASE OF THE GLOBAL SOLVABILITY OF PROBLEM (1.1), (1.2)

The following statement is valid.

Theorem 4.1. Let conditions (2.1), (3.2), and (3.3) hold. Then, for any T > 0, problem (1.1), (1.2)
has a strong generalized solution of class C1 in the domain DT .

Proof. As was noted in Remark 3.1, problem (1.1), (1.2) for the class C1(DT ) is equivalent to the
system of nonlinear integral equations (2.22) for the class C(DT ). In view of (3.2), (3.3), the validity
of this theorem for sufficiently small T , namely, for T ≤ T∗, where T∗ is given by equality (3.8), follows
from Theorem 3.1. Now suppose that T > T∗ and UT∗ := (uT∗

1 , uT∗
2 , uT∗

3 ) is a solution of the system of
nonlinear integral equations (2.22) or, equivalently, of the vector equation (3.5) in the domain DT∗ of
class C(DT∗) by Theorem 3.1. For t > Δt1 := T∗, system (2.22) can be rewritten as

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(x, t) = −1
2

ˆ t

α1(x,t,Δt1)
g(Pτ , u3(Pτ ))(u1(Pτ ) + u2(Pτ )) dτ

+
1
2

ˆ t

α2(x,t,Δt1)
g(Pτ0 , u3(Pτ0))(u1(Pτ0) + u2(Pτ0)) dτ + F1,Δt1(x, t),

u2(x, t) = −1
2

ˆ t

α3(x,t,Δt1)
g(Qτ , u3(Qτ ))(u1(Qτ ) + u2(Qτ )) dτ + F2,Δt1(x, t),

u3(x, t) =
ˆ t

α3(x,t,Δt1)
u1(Qτ ) dτ + F3,Δt1(x, t),

(4.1)
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where

α1(x, t,Δt1) := max(Δt1, t − x), α2(x, t,Δt1) := max
(

Δt1,
t

2

)

,

α3(x, t,Δt1) := max
(

Δt1,
x + t

2

)

;

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1,Δt1(x, t) := −1
2

ˆ α1(x,t,Δt1)

t−x
g(Pτ , uT∗

3 (Pτ ))(uT∗
1 (Pτ ) + uT∗

2 (Pτ )) dτ

+
1
2

ˆ α2(x,t,Δt1)

t/2
g(Pτ0 , u

T∗
3 (Pτ0))(u

T∗
1 (Pτ0) + uT∗

2 (Pτ0)) dτ + F1(x, t),

F2,Δt1(x, t) := −1
2

ˆ α3(x,t,Δt1)

(x+t)/2
g(Qτ , uT∗

3 (Qτ ))(uT∗
1 (Qτ ) + uT∗

2 (Qτ )) dτ + F2(x, t),

F3,Δt1(x, t) :=
ˆ α3(x,t,Δt1)

(x+t)/2
uT∗

1 (Qτ ) dτ.

(4.2)

Since the assumptions of Lemma 2.2 hold, it follows that, for any positive τ ≤ T , the solution of the
vector equation (3.5) in the domain Dτ of class C(Dτ ) satisfies the a priori estimate

‖U‖C(Dτ ) ≤ RT (‖f‖C(Dτ )), (4.3)

where RT = RT (s) is a nondecreasing continuous function of the argument s ≥ 0. Set

R∗ := RT (‖f‖C(DT )).

In the second step with respect to t, for Δt2 we take

Δt2 := min
{

1
4M(R1)R1

,
1

4c(R1)R1

}

, (4.4)

where

R1 := 1 + 2TM(R∗)R∗ + ‖F‖C(DT ), F := (F1, F2, F3). (4.5)

For t ∈ [T∗, T∗ + Δt2], the system of equations (4.1) can be rewritten as the single vector equation

U = ΨU, (4.6)

where the operator Ψ := (Ψ1,Ψ2,Ψ3) acts by the formula
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Ψ1U)(x, t) = −1
2

ˆ t

α1(x,t,Δt1)
g(Pτ , u3(Pτ ))(u1(Pτ ) + u2(Pτ )) dτ

+
1
2

ˆ t

α2(x,t,Δt1)
g(Pτ0 , u3(Pτ0))(u1(Pτ0)) + u2(Pτ0)) dτ + F1,Δt1(x, t),

(Ψ2U)(x, t) = −1
2

ˆ t

α3(x,t,Δt1)
g(Qτ , u3(Qτ ))(u1(Qτ ) + u2(Qτ )) dτ + F2,Δt1(x, t),

(Ψ3U)(x, t) =
ˆ t

α3(x,t,Δt1)
u1(Qτ )dτ + F3,Δt1(x, t).

(4.7)

First, let us show that the operator Ψ takes the ball

B([T1, T2];R1) := {U ∈ C(DT1,T2) : ‖U‖C(DT1,T2
) ≤ R1}

into itself, where

T1 = T∗, T2 = T∗ + Δt2, DT1,T2 := D ∩ {T1 ≤ t ≤ T2}.
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Indeed, in view of (3.3), (4.2)–(4.5), and (4.7) we can write

‖Ψ1U‖C(DT1,T2
) ≤ 2M(R1)R1Δt2 + 2M(R∗)R∗Δt1 + ‖F1‖C(DT )

≤ 2−1 + 2TM(R∗)R∗ + ‖F‖C(DT ) ≤ R1.

Similarly,

‖ΨiU‖C(DT1,T2
) ≤ R1, i = 2, 3,

and thus, finally, we have

‖ΨU‖C(DT1,T2
) ≤ R1.

Let us now show that the operator Ψ is a contraction mapping in this ball. Indeed, for (x, t) ∈ DT1,T2 ,
using (3.3), (4.4), and (4.7), we obtain

|(Ψ1U
2 − Ψ1U

1)(x, t)|

≤ 1
2

ˆ t

α1(x,t,Δt1)

(

|g(Pτ , u2
3(Pτ )) − g(Pτ , u1

3(Pτ ))||u2
1(Pτ ) + u2

2(Pτ )|

+ |g(Pτ , u1
3(Pτ ))||u2

1(Pτ ) − u1
1(Pτ ) + u2

2(Pτ ) − u1
2(Pτ )|

)

dτ

+
1
2

ˆ t

α1(x,t,Δt1)

(

|g(Pτ0 , u
2
3(Pτ0)) − g(Pτ0 , u

1
3(Pτ0))||u2

1(Pτ0) + u2
2(Pτ0)|

+ |g(Pτ0 , u
1
3(Pτ0))||u2

1(Pτ0) − u1
1(Pτ0) + u2

2(Pτ0) − u1
2(Pτ0)|

)

dτ

≤ 2c(R1)R1Δt2‖u2
3 − u1

3‖C(DT1,T2
) + 2M(R1)Δt2‖U2 − U1‖C(DT1,T2

)

≤ 1
2
‖u2

3 − u1
3‖C(DT1,T2

) +
1

2R1
‖U2 − U1‖C(DT1,T2

)

≤
(

1
2

+
1

2R1

)

‖U2 − U1‖C(DT1,T2
) = q1‖U2 − U1‖C(DT1,T2

),

where q1 := (1/2)(1 + 1/R1) < 1, because R1 > 1 in view of (4.5). Similarly, we find that

|(ΨiU
2 − ΨiU

1)(x, t)| ≤ qi‖U2 − U1‖C(DT1,T2
), 0 < qi := const < 1, i = 2, 3.

Hence, in view of the contraction mapping theorem, we establish the solvability of system (4.6) for the
class C(DT1,T2). Continuing this process step by step and taking into account the fact that, in view of
the global a priori estimate (4.3), the length of each step Δti is independent of its number i, we establish
the global solvability of system (3.5), and hence also that of problem (1.1), (1.2) itself in the domain DT

for any T > 0.

5. UNIQUENESS OF THE SOLUTION OF PROBLEM (1.1), (1.2)

Lemma 5.1. Let conditions (3.2), (3.3) hold. Then, for any T > 0, problem (1.1), (1.2) cannot have
more than one strong generalized solution of class C1 in the domain DT .

Proof. Indeed, suppose that problem (1.1), (1.2) has two possible different strong generalized solu-
tions u1 and u2 of class C1 in the domain DT . By definition 1.1, there exists a sequence of functions
ui

n ∈ C̊2(DT ,ΓT ) such that

lim
n→∞

‖ui
n − ui||C1(DT ) = 0, lim

n→∞
‖Lui

n − f‖C(DT ) = 0, i = 1, 2, (5.1)

lim
n→∞

‖g(x, t, ui
n)ui

nt − g(x, t, ui)ui
t‖C(DT ) = 0, i = 1, 2. (5.2)
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Let us use the well-known notation � := ∂2/∂t2 − ∂2/∂x2 and set ωnm := u2
n − u1

m. It is easy to see
that the function ωnm ∈ C̊2(DT ,ΓT ) satisfies the following equalities:

�ωnm + gnm = fnm, (5.3)

∂ωnm

∂x

∣
∣
∣
∣
γ2,T

= 0, ωnm|γ1,T
= 0, (5.4)

where

gnm := g(x, t, u2
n)u2

nt − g(x, t, u1
m)u1

mt, fnm := Lu2
n − Lu1

m. (5.5)

By the first equality from (5.1), there exists a number A := const > 0 independent of the indices i and n
such that

‖ui
n‖C1(DT ) ≤ A. (5.6)

By the second equalities from (5.1) and (5.5), we have

lim
n,m→∞

‖fnm‖C(DT ) = 0. (5.7)

In view of (3.2), (3.3), (5.6) and the first equality from (5.5), it is easy to see that

g2
nm =

(

g(x, t, u2
n)

∂ωnm

∂t
+ (g(x, t, u2

n) − g(x, t, u1
m))u1

mt

)2

≤ 2M2(A)
(

∂ωnm

∂t

)2

+ 2A2c2(A)ω2
nm. (5.8)

Multiplying both sides of relation (5.3) by ∂ωnm/∂t, integrating the resulting equality over the
domain Dτ , and using (5.4), just as in the derivation of inequality (2.11), from (2.5), (2.6), we obtain

wnm(τ) :=
ˆ

Ωτ

[(
∂ωnm

∂x

)2

+
(

∂ωnm

∂t

)2]

dx = 2
ˆ

Dτ

(fnm − gnm)
∂ωnm

∂t
dx dt. (5.9)

By estimate (5.8) and Cauchy’s inequality, we have

2
ˆ

Dτ

(fnm − gnm)
∂ωnm

∂t
dx dt

≤
ˆ

Dτ

(fnm − gnm)2 dx dt +
ˆ

Dτ

(
∂ωnm

∂t

)2

dx dt

≤ 2
ˆ

Dτ

f2
nm dx dt + 2

ˆ
Dτ

g2
nm dx dt +

ˆ
Dτ

(
∂ωnm

∂t

)2

dx dt

≤ 2
ˆ

Dτ

f2
nm dx dt + 4A2c2(A)

ˆ
Dτ

ω2
nm dx dt + (1 + 4M2(A))

ˆ
Dτ

(
∂ωnm

∂t

)2

dx dt. (5.10)

Further, in view of the equality

ωnm(x, t) =
ˆ t

x

∂ωnm(x, τ)
∂t

dτ, (x, t) ∈ DT ,

which follows from the second equality in (5.4), using standard arguments, we obtain the inequality [25,
p. 63]

ˆ
Dτ

ω2
nm dx dt ≤ τ2

ˆ
Dτ

(
∂ωnm

∂t

)2

dx dt. (5.11)

It follows from (5.9)–(5.11) that

wnm(τ) ≤ (1 + 4M2(A) + 4τ2A2c2(A))
ˆ

Dτ

(
∂ωnm

∂t

)2

dx dt + 2
ˆ

Dτ

f2
nm dx dt
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≤ (1 + 4M2(A) + 4T 2c2(A))
ˆ τ

0
wnm(σ) dσ + 2

ˆ
DT

f2
nm dx dt.

Therefore, by Gronwall’s lemma [24, p. 13 (Russian transl.)], we can write

wnm(τ) ≤ c2‖fnm‖2
L2(DT ), 0 < τ ≤ T, (5.12)

where

c2 := 2 exp(1 + 4M2(A) + 4T 2A2c2(A))T .

Arguing in the same way as in the derivation of estimate (2.13), taking into account the obvious
inequality

‖fnm‖2
L2(DT ) ≤ ‖fnm‖2

C(DT )
mes DT ,

and using (5.12), for (x, t) ∈ DT , we can write

|ωnm(x, t)|2 ≤ twnm(t) ≤ Tc2 mes DT ‖fnm‖2
C(DT )

=
c2T

3

2
‖fnm‖2

C(DT )
.

This yields

‖ωnm‖C(DT ) ≤ T

√

c2T

2
‖fnm‖C(DT ). (5.13)

By the definition of the function ωnm and, in view of the first equality, it is easy to see that

lim
n,m→∞

‖ωnm‖C1(DT ) = ‖u2 − u1‖C1(DT )

and, particularly,

lim
n,m→∞

‖ωnm‖C(DT ) = ‖u2 − u1‖C(DT ).

Therefore, in inequality (5.13), passing to the limit as n,m → ∞ and using (5.7), we obtain

‖u2 − u1‖C(DT ) = 0, i.e., u1 = u2.

Lemma 5.1 is proved.

6. THE CASE OF THE BLOW-UP OF THE GLOBAL SOLUTION
OF PROBLEM (1.1), (1.2)

In this section, we show that the violation of condition (2.1) can lead to the blow-up of the global
solution of problem (1.1), (1.2) in the sense of Definition 1.2. Indeed, let g(x, t, s) = −|s|αs, s ∈ R, and
let α > −1 (nonlinearity exponent).

Lemma 6.1. Let u be a strong generalized solution of problem (1.1), (1.2) of class C1 in the
domain DT in the sense of Definition 1.1. Then the following integral equality holds:ˆ

DT

u�ϕdx dt =
ˆ

DT

|u|αuutϕdx dt +
ˆ

DT

fϕdx dt (6.1)

for any function ϕ such that

ϕ ∈ C2(DT ), ϕ|t=T = 0, ϕt|t=T = 0, ϕx|γ2,T
= 0. (6.2)
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Proof. By the definition of a strong generalized solution u of problem (1.1), (1.2) of class C1 in the do-
main DT , the function u belongs to C1(DT ) and there exists a sequence of functions un ∈ C̊2(DT ,ΓT )
such that relations (2.5) and (2.6) hold for g = −|s|αs. Set fn := Lun. Let us multiply both sides
of the equality Lun = fn by the function ϕ, and integrate the resulting equality over the domain DT .
Integrating by parts the left-hand side of this equality, using (6.2) and conditions (1.2), we see thatˆ

DT

un�ϕdx dt =
ˆ

DT

|un|αununtϕdx dt +
ˆ

DT

fnϕdx dt.

In this equality, passing to the limit as n → ∞ and using (2.5) and (2.6), we obtain (6.1). This lemma 6.1
is proved.

Consider a function ϕ0 := ϕ0(x, t) such that

ϕ0 ∈ C2(D∞), ϕ0 + ϕ0
t ≤ 0, ϕ0|DT=1

> 0,

ϕ0
x|γ2,∞ = 0, ϕ0|t≥1 = 0

(6.3)

and also the number

κ0 :=
ˆ

DT=1

|�ϕ0|p′

|ϕ0|p′−1
dx dt < +∞, p′ =

α + 2
α + 1

. (6.4)

It is easy to verify that, for sufficiently large positive constants n and m, the function ϕ0 satisfying
conditions (6.3) and (6.4) can be taken as the function

ϕ0(x, t) =

{

xn(1 − t)m, (x, t) ∈ DT=1,

0, t ≥ 1.

Set ϕT (x, t) := ϕ0(x/T, t/T ), T > 0. In view of (6.3), it is easy to see that

ϕT ∈ C2(DT ), ϕT + T
∂ϕT

∂t
≤ 0, ϕT |DT

> 0,

∂ϕT

∂x

∣
∣
∣
∣
γ2,T

= 0, ϕT |t=T = 0,
∂ϕT

∂t

∣
∣
∣
∣
t=T

= 0.
(6.5)

For a given f , consider the function

ζ(T ) :=
ˆ

DT

fϕT dx dt, T > 0. (6.6)

The following theorem on the blow-up of the global solution of problem (1.1), (1.2) is valid.

Theorem 6.1. Let

g(x, t, s) = −|s|αs, s ∈ R, α > −1,

let f ∈ C(D∞), and suppose that f ≥ 0 in the domain D∞. Then if

lim inf
T→+∞

ζ(T ) > 0, (6.7)

then there exists a positive number T ∗ := T ∗(f) such that, for T > T ∗, problem (1.1), (1.2) cannot
have a strong generalized solution u of class C1 in the domain DT .

Proof. Suppose that, under the assumptions of this theorem, there exists a strong generalized solu-
tion u of problem (1.1), (1.2) of class C1 in the domain DT . Then, by Lemma 6.1, equality (6.1) holds; in
view of (6.5), ϕ in this equality can be taken as the function ϕ = ϕT i.e.,ˆ

DT

u�ϕT dx dt =
ˆ

DT

|u|αuutϕT dx dt +
ˆ

DT

fϕT dx dt. (6.8)
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By (1.2) and (6.5), we haveˆ
DT

|u|αuutϕT dx dt =
1

α + 2

ˆ
DT

ϕT
∂

∂t
|u|α+2 dx dt

= − 1
α + 2

ˆ
DT

|u|α+2 ∂ϕT

∂t
dx dt ≥ 1

(α + 2)T

ˆ
DT

|u|α+2ϕT dx dt.

Hence, using (6.6), from (6.8) we obtain

1
pT

ˆ
DT

|u|pϕT dx dt ≤
ˆ

DT

u�ϕT dx dt − ζ(T ), p := α + 2 > 1. (6.9)

If, in Young’s inequality with parameter ε > 0,

ab ≤ ε

p
ap +

1
p′εp′−1

bp′ , a, b ≥ 0,
1
p

+
1
p′

= 1, p > 1,

we put

a = |u|ϕ1/p
T , b =

|�ϕT |
ϕ

1/p
T

,

then, using the equality p′/p = p′ − 1, we obtain

|u�ϕT | = |u|ϕ1/p
T

|�ϕT |
ϕ

1/p
T

≤ 1
pT

|u|pϕT +
T p′−1

p′
|�ϕT |p

′

ϕp′−1
T

.

In view of (6.9) and the last inequality, we can write

1 − ε

p

ˆ
DT

ϕT dx dt ≤ 1
p′εp′−1

ˆ
DT

|�ϕT |p
′

ϕp′−1
T

dx dt − ζ(T ),

whence we have ˆ
DT

|u|pϕT dx dt ≤ p

(1 − ε)p′εp′−1

ˆ
DT

|�ϕT |p
′

ϕp′−1
T

dx dt − p

1 − ε
ζ(T ).

Taking into account the equalities p′ = p/(p − 1), p = p′/(p − 1), and

min
0<ε<1

p

(1 − ε)p′εp′−1
= pp′ ,

where the minimum is realized at ε = 1/p, from the last inequality we obtain
ˆ

DT

|u|pϕT dx dt ≤ pp′
ˆ

DT

|�ϕT |p
′

ϕp′−1
T

dx dt − p

1 − ε
ζ(T ). (6.10)

Since ϕT (x, t) := ϕ0(x/T, t/T ), using (6.3), (6.4) and making the change of variables x = Tx1, t =
Tt1, we can easily verify the relations

ˆ
DT

|�ϕT |p
′

ϕp′−1
T

dx dt = T−2(p′−1)

ˆ
DT=1

|�ϕ0|p′

|ϕ0|p′−1
dx1 dt1 = T−2(p′−1)κ0.

Hence, using (6.5), from (6.10) we obtain

0 ≤ κ0

p′T p′−1
− ζ(T ). (6.11)

Since p′ = p/(p − 1) > 1, it follows that −2(p′ − 1) < 0 and, in view of (6.4), we will have

lim
T→+∞

κ0

p′T p′−1
= 0.
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Therefore, in view of (6.7), there exists a positive number T ∗ := T ∗(f) such that, for T > T ∗, the right-
hand side of inequality (6.11) is negative, while the left-hand side of this inequality is nonnegative. This
implies that if u is a strong generalized solution of problem (1.1), (1.2) of class C1 in the domain DT ,
then necessarily T ≤ T ∗, which proves Theorem 6.1.

Remark 6.1. It is easy to verify that if

f ∈ C(D∞), f ≥ 0, f(x, t) ≥ ct−m for t ≥ 1,

where c = const > 0 and 0 ≤ m = const ≤ 2, then condition (6.7) will hold, and thus, for g = −|s|αs,
s ∈ R, α > −1, problem (1.1), (1.2) does not have a strong generalized solution u of class C1 in the
domain DT for sufficiently large T . Indeed, in (6.6), introducing the transformation of the independent
variables x and t by the formulas x = Tx1, t = Tt1 and assuming that T > 1, after a few manipulations,
we obtain

ζ(T ) = T 2

ˆ
DT=1

f(Tx1, T t1)ϕ0(x1, t1) dx1 dt1

≥ cT 2−m

ˆ
DT=1∩{t1≥T−1}

t−m
1 ϕ0(x1, t1) dx1 dt1

+ T 2

ˆ
DT=1∩{t1<T−1}

f(Tx1, T t1)ϕ0(x1, t1) dx1 dt1.

Further, let T1 > 1 be an arbitrary fixed number. Then, using the last inequality for the function ζ , we
obtain

ζ(T ) ≥ cT 2−m

ˆ
DT=1∩{t1≥T−1}

t−m
1 ϕ0(x1, t1) dx1 dt1 ≥ c

ˆ
DT=1∩{t1≥T−1

1 }
t−m
1 ϕ0(x1, t1) dx1 dt1,

if T ≥ T1 > 1. The last inequality immediately yields condition (6.7).
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