DE GRUYTER DOI 10.1515/gmj-2014-0053 === Georgian Math. J. 2015; 22 (1):81-104

Research Article

Otar Jokhadze and Sergo Kharibegashvili
On the Cauchy and Cauchy-Darboux problems for
semilinear wave equations

Abstract: The Cauchy and Cauchy-Darboux problems for semilinear wave equations in the class of continu-
ous functions are investigated. The questions of existence, uniqueness and nonexistence of global solutions
of the problems are considered. The local solvability of the problems is also discussed.

Keywords: Cauchy and Cauchy-Darboux problems, semilinear wave equations, nonexistence, local and
globally solvability

MSC 2010: 35L15, 35L70

Otar Jokhadze, Sergo Kharibegashvili: A. Razmadze Mathematical Institute, I. Javakhishvili Thilisi State University,
6 Tamarashvili Str., Thilisi 0177, Georgia, e-mail: kharibegashvili@yahoo.com, ojokhadze@yahoo.com

1 Problems statement

In the plane of independent variables x and ¢ consider the semilinear wave equation
Lu:=0u+g(u) = f(x,1), (1.1

where g is a given nonlinear continuous on R := (—co, +00) function, while u is an unknown real function;
here
aZ aZ
Oi=— - —.
otz ox?
Let P, := Py(x,,t,) be an arbitrary point of the domain Q := {(x,#) : x € R, t > 0} and let

Dp ={(x,t) 1+ x5 — ty <x < —t+x +1o, t >0}
be the triangular domain bounded by the characteristic segments
Yip ¢ X=lt+xg—ty, 0<t<t,
Yop, i X=-t+xy+t, 0<t<t,
of equation (1.1), and by the segment yp : £ =0, x, — £, < x < X, + £
For equation (1.1), in the domain Dy, consider the Cauchy problem of finding a solution u(x, t) by the
initial conditions
u(x,0) = @(x), u(x,0) =y(x), x€vyp, (1.2)
where ¢ and y are given real functions on R.
Definition 1.1. Let
feCDp), geC), ¢eCly), veCly). (1.3)

We say that a function u is a strong generalized solution of problem (1.1), (1.2) of class C in the domain Dp,
if u € C(Dp,) and there exists a sequence of functions u, € C*(Dp,) such that u, — u and Lu, — f in the
space C(BPO), while u,(-,0) — ¢ and u,,(-,0) — y for n — oo in the spaces C! (ypo) and C(ypo), respectively.

Remark 1.1. It is obvious that the classical solution of problem (1.1), (1.2) of class CZ(BPO) is a strong gener-
alized solution of this problem of class C in the domain Dp, . Conversely, if a strong generalized solution of
problem (1.1), (1.2) of class C in the domain Dp, belongs to the space CZ(BPO), then it will also be a classical
solution of this problem.



82 —— 0.])okhadze and S. Kharibegashvili, On the Cauchy and Cauchy-Darboux problems DE GRUYTER

Definition 1.2. Let
feC@Q), geCR), ¢eC(R), yeCRR). (1.4)

We say that problem (1.1), (1.2) is globally solvable in the class C if for any point P, € Q this problem has
a strong generalized solution of class C in the domain D, in the sense of Definition 1.1.

Definition 1.3. Let condition (1.4) be fulfilled. We say that a function u € C(Q) is a global strong generalized
solution of problem (1.1), (1.2) of class C if for any point P, € Q it is a strong generalized solution of prob-
lem (1.1), (1.2) of class C in the domain Dy, in the sense of Definition 1.1.

Remark 1.2. Note that when the theorem of existence and uniqueness of a strong generalized solution of
problem (1.1), (1.2) of class C in the domain Dy, is valid for any P, € Q, then we obtain the existence of the
unique global strong generalized solution of problem (1.1), (1.2) of class C in the sense of Definition 1.3.

Note that the questions of existence, uniqueness and nonexistence of a global solutions of the Cauchy
problem posed for wave equations with nonlinear source term have been studied in numerous works (see
e.g. [3, 7, 14] and the references therein). In the present work, for the function g from sufficiently wide class
of nonlinear functions, the Cauchy problem will be studied by the methods of a priori estimates and test
functions [12] in the class of continuous functions.

For the nonlinear equation (1.1), together with the Cauchy problem (1.1), (1.2) we consider the Cauchy-
Darboux problem in the angular domains with non-characteristic boundary. Aiming at that, denote by

A={(xt) e R®:p,(t) <x <0, t>0}

the angular domain lying within the characteristic angle {(x,t) € R? : t > |x|}, and bounded by the straight
beam y, : x = 0, t > 0 and smooth non-characteristic curve y, : x = y,(¢), t > 0, i.e. |y£(t)| # 1,t > 0, which go
out from the origin O(0, 0). In these suppositions, it is obvious that

t<p{) <0, t>0, |p@®l<1, t=0, y,0)=0. (1.5)

Let Ap:= An{t < T}, T := const > 0and y; := y;N{t < T},i = 1,2.Itis obvious thatforT = coonehas A , = A
andy,, =y, fori=1,2.
Below we require that
ya(t) <0, t=>0. (1.6)

For the nonlinear equation (1.1), together with the Cauchy problem (1.1), (1.2) in the domain A consider
the Cauchy-Darboux problem in the following statement: find in the domain A . a solution u = u(x, t) of this
equation by the boundary conditions
=0, ul, =0. @7

Uy | Yar

Y1
Note that in the linear case, i.e. when in equation (1.1) the function g is linear, and the boundary condi-
tions (1.7) are replaced by the conditions

(auy + B, =0, i=12, u(0,0)=0, (1.8)

problem (1.1), (1.8) in the domain A ; was studied in [6, 10, 11, 16]. Note also that problem (1.1), (1.7) is equiva-
lent to problem (1.1), (1.8) when the direction («,, ) coincides with the tangent direction to the curve y, ; at
an arbitrary point. In the case of the nonlinear equation (1.1), when on y, and y, we have the homogeneous
Dirichlet conditions ulm = 0,1 = 1,2, and one of the curves y, and y, is characteristic, this problem is studied
in [1, 9], and when y,; : x =, 0 <t < T is the characteristic of equation (1.1), is studied in [8]. As shown
in [6, 16], such problems arise in the mathematical modeling of small harmonic oscillations of a wedge in
a supersonic stream, and also oscillations of a string in the cylinder filled with a viscous liquid.

Definition 1.4. Let f € C(A;). We call the function u a strong generalized solution of problem (1.1), (1.7) of
class C in the domain A  if u € C(A;) and there exists a sequence of functions

u, € C*(Ap, yp) = {v € C*(Ap) vy, =0, 0], =0}

Yar

such that u,, — uand Lu, — f in the space C(A;) forn — o, yr := y; 7 U p, 1
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Remark 1.3. It is obvious that a classical solution of problem (1.1), (1.7) from the space c? (A, yr) is a strong
generalized solution of the same problem of class C in the domain A ;. In turn, if a strong generalized solution
of problem (1.1), (1.7) of class C in the domain A  belongs to the space C*(A;), then it will also be a classical
solution of the same problem.

Definition 1.5. Let f € C(A,,). We say that problem (1.1), (1.7) is globally solvable in the class C if for any
finite T > 0 this problem has a strong generalized solution of class C in the domain A ;.

Definition 1.6. Let g € C(R) and f € C(A,,). We call a function u € C(A,,) a global strong generalized solu-
tion of problem (1.1), (1.7) of class C in the domain A ., if for any finite T > 0 the function u| A, is a strong
generalized solution of this problem of class C in the domain A; in the sense of Definition 1.4.

Definition 1.7. Let g € C(R) and f € C(A,,). We say that problem (1.1), (1.7) is locally solvable in the class C if
there exists a positive number T, = T, (f) such that for T < T, this problem has at least one strong generalized
solution of class C in the domain A ; in the sense of Definition 1.4.

Below we show that for certain conditions of a nonlinear function g, problem (1.1), (1.2) is locally solvable;
the global solvability conditions are obtained, the violation of which, generally speaking, may cause the
nonexistence of a solution at a finite moment of time.

The paper is organized as follows. In Section 2, the condition is given on a nonlinear function g, which
allows us to prove the a priori estimate of a strong generalized solution of problem (1.1), (1.2) of class C in
the domain Dy. In Section 3, problem (1.1), (1.2) is equivalently reduced to the Volterra nonlinear integral
equation. In Section 4, we consider the question of the global solvability of problem (1.1), (1.2) in the class
of continuous functions C. In Section 5, we study the questions of smoothness, uniqueness and existence
of a global solution of the Cauchy problem in Q. In Section 6, we study the question of a local solvability.
In Section 7, we consider the case of the nonexistence of global solvability. In Section 8, we obtain an a priori
estimate for the solution of the Cauchy-Darboux problem (1.1), (1.7). In Section 9, the cases of global solvabi-
lity are studied, and in Section 10, the smoothness of solutions of this problem is investigated. Finally,
in Section 11, we consider the question of uniqueness, existence and nonexistence of global solutions, as
well as the local solvability of problem (1.1), (1.7).

2 Apriori estimate of a strong generalized solution of Cauchy
problem (1.1), (1.2) of class C in the domain Dy,

Denote
S

G(s) := jg(a)da, seR. (2.1)

0

Lemma 2.1. Let condition (1.4) be fulfilled and
G(s) = -M, —Mzsz, seR, M;:=const>0, i=1,2. (2.2)
Then, if uis a strong generalized solution of problem (1.1), (1.2) of class C in the domain Dy, , for any point P, € Q
the a priori estimate
e, ) < allfleg,) * I9leig,) + ||G(<p>||é(ypo) F9log,) + 6 23)
is valid with positive constants ¢, = ¢,(t,, M,) and ¢, = ¢,(t,, M,, M,) not depending on u and f, ¢, y.

Proof. Let u be a strong generalized solution of problem (1.1), (1.2) of class C in the domain Dy, and P, € Q.
Then due to Definition 1.1 there exists a consequence of functions u, € C* (EPD) such that
A, = vle,) =0 Jim M, = fllow,,) =0,

2.4)
Tim Ju,(+,0) = @l ) = 0, Jim fa(+0) = Yllegy, ) = 0,
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and therefore in view of g € C(R)
Jim g(,) = 9Wlle, ) = O- (2.5)

Consider a function u, € C* (EPO) as a solution of the Cauchy problem

Lu, = £, (2.6)
U, (x,0) = @,(x), 1y (x,0) =y, (x), x€yp. 2.7

Here
fn = Lun’ Pn = un( T 0)’ Yy = unt( " 0)' (28)

Multiplying both sides of (2.6) by 2u,, and integrating the obtained equality in the domain
Dp . ={(xt)€Dp :0<t <1}, 0<T<ty
due to (2.1) we have
J (), dxdt - 2 j w1 dxdt +2 J [Gu,)],dxdt = 2 j o, dxdt.

Pyt Dpy .z Dpyz Dpy

Letusset Qp . := BPD N {t = 7}, 0 < 7 < t,. Then in view of (2.7), integrating by parts the left-hand side of
the last equality we have

2

2 J [t dxdt = Z J vt'l[(unxvt - umvx)2 + uf,t(vt2 - vi) + 2G(un)vt2]ds
i=1

Dpye Yipy,t
Xo+ty
- J (97 (x) + ¥ (x) + 2G(g,)]dx + J [l + 12, +2G(u,)]dx, (2.9)
Xo—ty Qpy .«

where v := (v,, v,) is the unit vector of the outer normal to 0D, , and y,p, , = y;p N{t <7}, i =1,2.
Taking into account the fact that everywhere on the characteristics y; » , i = 1,2, of equation (1.1) we have
the relations

2 2 .
vf')’i,Pﬂ > 0’ (vt - Vx)l%',PD = 0, 1= 1,2,

using (2.2), from (2.9) we have

2
w,(1) <2 I [t dxdt + \/EZ J (M; + Mzufl)ds

DPo - =1 Yi,py.z

X0+t
‘2 J (M, + Myd)dx + J [02(x) + y2(x) + 2IG(g,)l]dx. (210)

Qpye Xo~to

Here
2
w, (1) = I (uflx + uit)dx + Z J v{l(unxvt —u,v,)ds. (2.11)
Qpy e i=1 Yi,py,r

Due to (2.7) it is easy to see that
t
u,(x,t) = ¢,(x) + J u,(x,0)do, (x,t) € BPU,T'
0
Squaring both sides of this equality and applying the Cauchy and Schwarz inequalities, we get

t
ul(x,t) < 297(x) + 2t I Uy, (x,0)do, (x,t) € Dp . 2.12)
0
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It follows from (2.12) that

Xo—to+T Xot+ty

i J uf,ds =2 j ufl(x,x + 1ty — xp)dx + V2 J uf,(x, —X +ty + Xo)dx
=1y Xo—to Xo+to—T
Xo—to+T Xo+to Xo—to+T x+tg—X,
<2V2 j (pf,(x)dx +2V2 j (pf,(x)dx +2V27 J dx J uflt(x, t)dt
Xo—to xo+to-T xo—to 0
Xo+to —X+ty+x,
+2V271 I dx J uflt(x, t)dt
xo+tg-T 0
x0+t0
<2V2 J (przl(x)dx +2V271 I uftt(x, t)dxdt. (2.13)
xo—to Dy
Analogously,
Xo+to—T T
J ufldx <2 J (pfl(x)dx + 21 I dx J uflt(x, t)dt
Qpy o Qpy .« Xg—to+T 0
Xo+tg
<2 J (pi(x)dx+ 27 J uflt(x, t)dxdt. (2.14)
Xo—to Dy

Taking into account the inequality

2 2
2 J fotdxdt < J u, dxdt + ||f,,||L2(DP0,T),

Dpy e Dpye

due to (2.13) and (2.14) from (2.10) it follows that

Xyt
w,(7) < (1 + 87M,) j wydxdt + 86M, + 1 L, )+ J [8M,92(x) + @l (x) + v (x) + 2|G(e,)|1dx.
Dpye Xo~to

Whence in view of (2.11) we have

T
2
w,(1) < o J w0)o + 1l o )+ B 0<TS I
0

where
Xottg
«:=1+8t,M,, P, :=8t,M, + J [8M,2(x) + @l (x) + y2(x) + 2|G(9,)|1dx.
Xo—to

From the last inequality, taking into account that the value || fnlli (D, ) asa function of r is nondecreasing, by
2 0T
the Gronwall Lemma we obtain

w,(7) < exp(ra) (I full o, ) + Bo)- (2.15)

It is easy to see that vt% - vxg is the inner differentiation operator along the direction of the unit tan-
gential vector to y; p . Therefore the integration along the segment y, p gives

u,(xg,ty) = @,(xy — ty) + J (Vi — Vi1t )ds.

Y1,py

Hence, squaring both sides of this equality and applying the Cauchy and Schwarz inequalities, we obtain

ufl(xo, ty) < 2(p,2,(x0 —ty) +2 J ds J (vau,, — vxunt)zds < 2(;),21(960 —ty) + 2\/§t0 J (Ve — vxum)zds.

Y1,p Y1,Ry Y1,py



86 —— 0.)okhadze and S. Kharibegashvili, On the Cauchy and Cauchy-Darboux problems DE GRUYTER

Whence, due to (2.11) and (2.15) we get
”i(xo’ ty) < Z‘Przl(xo - fy) + 4ty eXP(fo"‘)("fn"iz(DPD) + )
< 202 (x, — to) + 4tg exp(toa) (]l fn||é@0) mes D, + 8t,M, + 16t0M2||(pn||é(yP0) + 2t0||<p,;||é(ypo)
+ 261¥lcy, ) + 401G @) gy, )
= 29},(xy — to) + exp(to@) (465 [l 5, ) + 3206My + G4GMs 9,1y, + 815101120y,
+ 86Ynlcy,) + 1661G(@) ey, )):

n % n
2
( al.> gZIa,-I
i=1

i=1

Hence, using the well-known inequality

we obtain X
[, (x5 £0)] < ¢ (1l fnllc@o) +lpullcry,) + IIG(tpn)IIé(yPo) + IIWHIIc(yPo)) +6,

where
1:12 = max{4tg exp(toa), 2 + 641‘(2)M2 exp(toa), 16t§ exp(to)}, ¢ = 321,‘§M1 exp(to). (2.16)

Passing in the last inequality to the limit for n — oo, in view of (2.4) and (2.8) we have
1
(o to)l < &1 (1 f e,y + 190y + IG@NE,  + Wleg,) + & (217)

whence estimate (2.3) follows immediately. O

Remark 2.1. Let us consider some classes of the functions g = g(s), occurring in applications and satisfying
condition (2.2):

(1) g(s) = |s|* signs, where & > 0, « # 1. In this case G(s) = |s|*""/(a + 1), s € R, and condition (2.2) is fulfilled.
(2) g € C(R) and, if the inequality g(s) signs > 0, s € R, is fulfilled, then condition (2.2) will also be fulfilled.
(3) g(s) = €', s € R. In this case G(s) = ¢’ — 1, s € R, and therefore condition (2.2) is fulfilled.

3 Equivalent reduction of problem (1.1), (1.2) to a Volterra type
nonlinear integral equation

Let u € C*(Q) be a classical solution of problem (1.1), (1.2) and set
D, :={(x,t) ity +x—t<x; <~t;+x+tt >0} (x1) €.

Note that Dy, = D, for x = x, t = t,. Using the initial conditions (1.2) and integrating equation (1.1) we get
the equality (see e.g. [2])

u(x,t) + (0 [gw)])(x,t) = F(x,1), (x,t) € Dp. 3.1
Here
0?9
o0 T o
while
F(x,1) = (hp)(x, 1) + (Ly)(x, 1) + @ )(x, 1) 3.2

The continuous operators
L :Cyp) » C*Dyp),  k=0,1,2,

L : C'(yp) — C*'(Dy), k=0,1, (3.3)
o' C D) —» C'(Dp), k=01,
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act by the formulas
1
(Lip)(x, 1) == E[q)(x +1) +o(x —1)],

x+t

1
(y)(x0) = 5 j (O, "
@ ) t) = % j F(E D)dédr.
D

Xt

Remark 3.1. Equality (3.1) can be considered as a Volterra type nonlinear integral equation.

Lemma 3.1. Let condition (1.3) be fulfilled. A function u € C(BPO) is a strong generalized solution of prob-
lem (1.1), (1.2) of class C in the domain Dy, if and only if it is a continuous solution of the nonlinear integral
equation (3.1).

Proof. Indeed, letu € C(Dj, ) be asolution of equation (3.1). Since w, f € C(Dj, ) and the space C*(Dj, ) is dense
in C(BPO) (seee.g.[13, p. 37]), there exist sequences of functions w,, f,, € Cz(BPO) suchthatw, — uand f, — f
in the space C(Dj, ) for n — co.
Analogously, because ¢ € Cl(ypo) (resp. v € C(yp,)), there exists a sequence of functions ¢, € Cz(ypo)
(resp. y,, € C'(yp,)) such that ¢, — ¢ (resp. v, — ) in the space C'(yp,) (resp. C(ys,)) for n — oco.
Let
u, = -0 "'[gw,)] + Lo, + Ly, +0'f, n=12,....

Itis easy to verify that u, € C* (BPO ). Since g is a continuous function and I;, 0", in view of (3.3), (3.4) are linear
continuous operators in the corresponding spaces, and

Jim o, — s, ) =0 lim 1f, = flos,) =0 Jim Ig, — @i,y = 0 lim 1y, — ¥lg,) =0

we have -
u, » -0 '[gw] +Le+Ly+0 ' f inCDp),
un(‘ao) - (P in CI(YPD))
unt(')o) - w in C(YPO)a

for n — co. But from equalities (3.1) and (3.2) it follows that -0 [g(u)] + L, + Ly + 0" f = u. Thus we have
Jim fu, - MIIC@PO) =0.
On the other hand, we have ou,, = —g(w,) + f,, whence due to
Jim fut, — ules, ) =0, lim Jw, ~ e, , =0, Jim If, = flle,, = 0
we obtain
Lu, = Ou, + g(u,) = —gw,) + f, + gw,) = —[gw,) — gw)] + [g(u,) — gw)] + f, = f

taking into account (2.5) in the space C(BPD) for n — oo. The converse is obvious. O

4 Global solvability of problem (1.1), (1.2) in the class of
continuous functions

As mentioned above, the operator o' from (3.4) is a linear continuous one, acting due to (3.3) from the
space C(ﬁpo) into the space of continuously differentiable functions C* (BP0 ). Further, since the space C* (EPO)
is compactly embedded into the space C(BPO) (seee.g. [5, p. 135]), we easily obtain the validity of the following
statement.
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1

Lemma 4.1. The operatoro™ : C(BPO) — C(BPO) from (3.4) is a linear compact operator.

Rewrite equation (3.1) in the form
u=Au:= —Dfl[g(u)] +F, (4.)

where we observe that the operator A : C(BPO) — C(BPO) is continuous and compact because the nonlinear
operator N : C(DPO) - C(DPO), acting by the formula Nu := g(u), is bounded and continuous and the linear
operatoro ! : C(EPO) — C(BPO), due to Lemma 4.1, is compact. At the same time, according to Lemma 2.1 and
equalities (2.16), for any parameter 7 € [0, 1] and every solution u € C(BPO) of the equation u = 7Au the a priori
estimate (2.3) is valid with the same positive constants ¢, and ¢, from (2.3), not dependent on u, ¢, v, f and 7.
Therefore, according to the Leray-Schauder Theorem (see e.g. [15, p. 375]), equation (4.1) in the conditions of
Lemma 2.1 has at least one solution u € C(BPO ). So, due to Lemma 3.1, we have proved the following theorem.

Theorem 4.1. Let the conditions of Lemma 2.1 be fulfilled. Then problem (1.1), (1.2) is globally solvable in the
class C in the sense of Definition 1.2, i.e. for any point P, € Q this problem has a strong generalized solution of
class C in the domain Dy, .

5 Smoothness and uniqueness of a strong generalized solution of
problem (1.1), (1.2) of class C in the domain D,, . Existence of
a global solution in Q

The following lemma immediately follows from Lemma 3.1 and equalities (3.1)—(3.3).

Lemma5.1. Let f € C'(Q), g € C'(R), ¢ € C*(R) and v € C'(R). Then any strong generalized solution u of
problem (1.1), (1.2) of class C in the domain Dy, in the sense of Definition 1.1 is a classical one, i.e. belongs
to the class C*(Dy, ).

Consider the question of uniqueness of a strong generalized solution of problem (1.1), (1.2) of class C in the
domain Dy, .
Suppose that the function g satisfies the following conditions: for any |s|, [s;], [s,| < r

g <m(r), 1g(sy) — g(spl < c(r)ls, = s4l, (5.1)
where m(r) and c(r) are some continuous non-negative functions of its argument r > 0.

Theorem 5.1. Let conditions (1.4) and (5.1) be fulfilled. Then for any P, € Q, problem (1.1), (1.2) cannot have
more than one strong generalized solution of class C in the domain Dy, .

Proof. Indeed, suppose that problem (1.1), (1.2) has two possible different strong generalized solutions u!, 1/
of class C in the domain D, . According to Definition 1.1, there exists a sequence of functions u; e C? (EPO)
such that

Jim N, ~ u'llogs,, ) = 0 Jim 1Lu, = flegs, ) = 0 6
Tim s (+,0) = @llcr,y = 0, lim i, (+,0) = llegy, ) = 0 '
for any P, := Py(x,,t,) € Q.
Let w, := u, — uy,. It is easy to see that the function w, € C*(Dj, ) satisfies the identities
0w, + gy = for (5.3)
a)nlw0 =1, wnt'}'po =, (5.4)
where

G = g(ui) - g(u:l), fu= Luft - Lu,ll, T, = (ufl - u:,)lypo, v, = (ufl - ”;)t|ypo- (5.5)
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In view of the first equality of (5.2) there exists a number M := const > 0, not dependent on the indices i and n,
such that
i
”un”C(BPO) <M. (56)

Due to equalities (5.2) and (5.5) we have

Am 1zl ) =0, lim fv,lcq,) =0, lim "fn"c(ﬁpo) =0.
According to the second inequality of (5.1), inequality (5.6) and the first equality of (5.5) it is easy to see that
|9l < c(M)]w,|. (5.7)
Multiplying both sides of (5.3) by 2w,,, and integrating the resulting equality over the domain Dy, due
to (5.4), in the same way as when obtaining inequality (2.9) from (2.6), (2.7), we get

2
v,(1) = J (wflx + wit)dx + z j vt_l(wnxvt - wmvx)zds

Qpyr i=1 Yipy,e
12 2
=2 J (fo = Gt + 12 )+ Il . (5.8)
Dpy e

In view of the Cauchy inequality and estimate (5.7) we have

2 J( £ = g )ydxdt <2 J WP dxdt + J Fdxdt + J Fdxdt

Dpy e Py, Dpye Dpy e
<2 j W dxdt + ISl o, )+ () I WAdxdt. (59)
Dp, .« Dpyc

Further, setting

wnt(‘x’ t)) (X, t) € BP T
v(x, t) = 7
0, (xa t) ¢ DPU,T’

and taking into account that ¢ < 7 for (x,t) € Bpo,w by a reasoning analogous to (2.12), we obtain

Xotty T T
j w’(x, t)dxdt < zr||r,,||§z(ypo) +21 j dx I(J P(x, a)da)dt
Dpy« Xo—to 0 0
Xotty T
2 2 2
=21l g, + 27 | dx [V
xo—to 0
A j @2, (x, £)dxdt. (5.10)
DPO,'r

From (5.8)—(5.10) it follows that
T
v,(r) < 2[1+(M)7*] j 00 + 1l 0y ) + 1Tl L) + IVl ) + 27 ADITIE g, -
0

Therefore, due to the Gronwall Lemma for 0 < 7 < t, we get
2 2 2 2 2
v,(7) < Cg(llntILz(DPO) + IITnIILZ(yPO) + IIVnIILZ(yPO) +27c (M)IITnIILZ(yPO)),

where ¢, := exp[2t,(1 + ¢>(M)t;]. Whence, taking into account (5.8), we have

2 2 12 2 2 2
J (v — W v,)ds < \/E(‘Q(IlntILZ(DPO) + "T"”Lz(ypo) + "Vn"LZ(VPO) +21¢ (M)”T""Lz(ypo))’ 0<1<t,

Yi.p,
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Analogously to (2.17), and taking into account the explicit inequalities
2 2 2 2 2 2
"f""Lz(DPO) < IIntIC(BPO) mes Dp = tollfnllc(gpo), IIT,,IILZ(,,PO) < 2fo||Tn||C(yP0),
we obtain
W (X0 tg) < 272 (%9 — to) + 4oy (bl ful 2 s o + 20TeM20, )+ 2[VallZy,. y + 4T (M))IT M0, ), O < T <t
W\ Xo>Lo) S 2T, (X — 1L 0Q2\Loll Jn C(Dp,) nllC(yg,) nllClyp,) nll(Cyg,) ) < 1.

Whence lim,,_, o, @2 (xo, to) = 0, i.e. t*(x, tg) = u' (g, £y)-
Analogously, we obtain u’(x, t) = u'(x, t) for every point (x, ) € Dj. O

Theorem 5.2. Let the conditions of Lemma 5.1 and (2.3) be fulfilled. Then in the half-plane Q, problem (1.1), (1.2)
has a unique global classical solution u € C*(Q).

Proof. In the conditions of Theorem 5.2 according to Theorems 4.1, 5.1 and Lemma 5.1, in the domain Dy 4
for t, = n there exists a unique classical solution u,, € C* (on,n) of problem (1.1), (1.2). Since u,,,, is also a clas-
sical solution of problem (1.1), (1.2) in the domain D, ,,, due to Theorem 5.1 we have u,,| D, = Une Therefore
the function u, constructed in the domain Q by the rule u(x, t) = u,(x,t) for n = [t] + 1, where [¢] is the entire
part of the number ¢, and the point (x, t) € Q, will be a unique classical solution of problem (1.1), (1.2) in the
domain Q of class C*(Q). O

6 The local solvability of problem (1.1), (1.2)

Theorem 6.1. Let conditions (1.3) be fulfilled. Then for any fixed x, € R there exists a positive number T :=
T(xp; f> 9> ¢, y) such that for t, < T problem (1.1), (1.2) will have at least one strong generalized solution u
of class C in the domain Dp, .

Proof. In Sections 3 and 4, problem (1.1), (1.2) in the space C(EPO) has been equivalently reduced to the
functional equation (4.1), where the operator A : C(Dp,) — C(Dp,) is continuous and compact. Therefore
for proving the solvability of equation (4.1), according to the Schauder Theorem it suffices to show that the
operator A maps the ball

Bp:={ve C(BPO) : "””C@,,) <R}

with radius R > 0, which is a closed and convex set in the Banach space C(ﬁpo), into itself. Let us show that
this happens for sufficiently small #,.
Let us fix a number T, > 0 and set

M, := sup |f(x,t)l, my:= sup  |o(x)|, m, = sup  |y(x)l, go:=suplg(s), R>0.

5()(010) [x9=Ty>xo+T,] [x9=To>x9+T,] Is|<R

Whence for ¢, < T,, according to (3.2), (3.4), it follows that
-1 -1,2 -1 2
1o @, )—c@,) <2t IFlem,) < my+myty + 2 Mt
and therefore, due to equality (4.1), we have
-1
"Au”C(BPO) <o ||C(BP0)_>C(5P0)||g(14)||c(5p0) + "F”C(BPO)
<my + (27 goTy + my + 27 MyTy)t,. (6.1)

Now setting
R=2m,, T =min{Ty,md "'},
where
d:=2""g,Ty +m, + 27 M,T,,

fort, < T from (6.1) we get
||A”||C(BP0) <m, +m; =2m, =R. O
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7 Case of the nonexistence of a global solution of
problem (1.1), (1.2)

Remark 7.1. Note that the violation of condition (2.2) may, generally speaking, cause the nonexistence of
a global solution of problem (1.1), (1.2) in the sense of Definition 1.2, i.e. when for some point P, € Q the
problem does not have a strong generalized solution of class C in the domain Dy, . For certain conditions on the
data of problem (1.1), (1.2) we will prove that for any fixed point x, € R, there exists a number T° = T%(x,) > 0
such that for t, < T° problem (1.1), (1.2) has a strong generalized solution of class C in the domain Dy, but
for t, > T° it does not have such a solution in Dp,.

Suppose that
g(s)=—Is|"s, a>0, seR. (7.1)

In this case, as it is easy to verify that condition (2.2) is violated.

Lemma 7.1. Let conditions (1.4), (7.1) be fulfilled and let u be a strong generalized solution of problem (1.1), (1.2)
of class C in the domain Dy, in the sense of Definition 1.1. Then the integral equality

Xo+tty

J udydxdt = J [ul“uydxdt + J Sfxdxdt + J [w(x)x(x, 0) — (x)x,(x,0)]dx (7.2)
Dp, Dp, Dp, Xo~to
is valid for any function x such that
Xx€C'Dp) by, =0, i=12 (7.3)

Proof. By the definition of a strong generalized solution u of problem (1.1), (1.2) of class C in the domain Dp,,
the function u € C(BPO) and there exists a sequence of functions u, € CZ(BPO) such that (2.4) and (2.5) are
valid for the functions g defined by (7.1).

Let f, := Lu,. Multiply both sides of Lu,, = f,, by the function y and integrate the obtained equality in the
domain Dp, . As a result of integration by parts of the left-hand side of this equality, taking into account .7
and (7.3), we obtain

Xyt
J u,Oydxdt = J Iunlaunxdxdt + J faxdxdt + J (v, (x) x(x,0) — @, (x) x; (x, 0)]dx.
P Dp, Dp, Xo~to
Passing to the limit in this equality as n — oo, due to (2.4), (2.5), we get (7.2). O

Lemma 7.2. Let conditions (1.4) be fulfilled, let « > 0 and let the function u € C(BPO) be a strong generalized
solution of problem (1.1), (1.2) of class C inthe domain Dy, . If f 2 0,¢ > 0andy > 0, thenu > 0in the domain Dp, .

Proof. According to Lemma 3.1 and equality (4.1), the function u is a solution of the Volterra type integral
equation

u(x, t) = I k(x, ;& 1)u(€, t)dédt + F(x,t), (x,t) € 5P0> (7.4)

Dx,t
where k := %Iul"‘ > 0 and the function F is defined by (3.2) and (3.4). In the conditions of Lemma 7.2 we have
F>0. (7.5)

Assuming that the function k is given, consider the Volterra type linear integral equation

v(x, t) = I k(x,t; &, 1) v(&, 1)dédT + F(x,t), (x,t) € BPO, (7.6)

D

x5t
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in the class C(EPO) with respect to an unknown function v. As is known (see e.g. [2]), equation (7.6) has
a unique continuous solution v(x, t) in the class C(Dp,), which for (x,t) € Dy, can be obtained by the method
of approximation:
1,=0, v, = J kv, dédt+F, n=0,1,....
D

Whence in view of (7.5) we have v,(x,t) = 0 in EPO foralln=0,1,.... On the other hand, we have v, — v in
the class C(EPO) for n — co. Therefore the limiting function v > 0 in the domain D, . In view of equality (7.4),
the function u is also a solution of equation (7.6), and therefore, by the uniqueness of the solution of this
equation, we finally receive u = v > 0 in the domain Dy, O
In the conditions of Lemma 7.2, equality (7.2) can be rewritten in the form

Xotty

J- luloydxdt = J [ul? xdxdt + J’ Sfxdxdt + J’ [w(x)x(x,0) — @(x)x,(x,0)]dx, p:=a+]1. 77

Dp, Dp, Dp, Xo~tg

Let us use the method of test functions ([12, pp. 10-12]). Consider the function x° := x°(x, t) such that

X €CDon): K'lpg, >0 x'ly,, =0 i=12 (7.8)
and ’
0p
O 1
Koy = j Adxdt <400, p=1+-. (7.9)
b |X0|P -1 o
(0,1)

It is easy to verify that the function °, satisfying conditions (7.8) and (7.9), can be chosen by
X =y Get) = [(1-1)7 = %", (x,1) € Dy, (710)

for a sufficiently large natural number #n. Supposing that

of X—Xg t )
X,t = <—) - b
Xp, (%, 8) = X Lok
in view of (7.8), it is easy to see that
Xp, €C'Dp). xplp, >0 Xply, =0 i=12 (711)

Assuming that the functions f, ¢, v and the number x, are fixed, consider the function of one variable ¢, > 0

Xot+ty

a 5
Xp, (%, 0) ] (712)

{ty) = j Fraydcdt + J [y/(x)xpo(x,O)—(p(x)T dx

Dp, Xo—to
The following theorem on the nonexistence of global solvability of problem (1.1), (1.2) is valid.

Theorem 7.1. Let the conditions of Lemma 7.2 be fulfilled and let the functionu € C(BPO) be a strong generalized
solution of problem (1.1), (1.2) of class C in the domain Dy, . In that case, if

liminf {(#,) > 0, (713)

ty—+00

then there exists a positive number T, := T,(x,) such that for t, > T, problem (1.1), (1.2) cannot have a strong
generalized solution of class C in the domain D, .

Proof. Suppose that in the conditions of this theorem there exists a strong generalized solution u of problem
(1.1), (1.2) of class C in the domain Dy, Then in view of Lemmas 7.1 and 7.2 we have equality (7.7), in which,
due to (7.11), for the function y the function y = Xp, Can be chosen, i.e.

I IuIPXPdedt = J [uloyp, dxdt — {(ty). (7.14)

Dy, Dp,
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If in the Young inequality with parameter ¢ > 0, i.e.

abs}%a”+%b1”, a,b>0, %+§:1, p=a+l>1,
per
we take
1 IOxp,|
a= IuIXI‘,; and b= Xf" ,
Xp,
then we obtain ,
L1oxe,| e » 1 1oyl
luoxp,| = lulxp —— < —|ul"xp, + —— = —
» p b P
Xp, Xp,
By (7.14) and the last inequality, we have
€ 1 |E|Xp0|p ’
(1 - —) J jul? g et < ——— I T dxdt — {(t,),
P Dy, pe Dy, AR,
whence for ¢ < p we get
» p IoXe, 1” p
[ul? yp dxdt < : Y dxdt - (L) (7.15)
AP, (p—e)pef-! p-1 p-¢ 0
By, p-e&p 5, An,
Since
min #, =1,
O<e<p (p — g)p’gP -1
which is reached for € = 1, from (7.15) it follows that
o, |
J |ul? xp, dxdt < J )g,’“_ —dxdt - p'{(ty). (716)
DPO DPD XP()

Due to (7.9), after the substitution of variables x = tx' + x,, t = t,t' it is easy to verify that

/ ’
[Oxp | (' oy° [P o(p'—
J P,‘il dxdt = toz(p Y J o |7 dx'dt’ = 17" Vi, < +o0.

DP0 XP0
Whence in view of (7.11), from inequality (7.16) we obtain

0= J jul? xp,dxdt < 6,7 iy — pT(ty). (717)

Dp,

Because p' > 1 and due to (7.9), we have

. -2(p'-1)

tol_lgloo to Ky = 0.

Therefore, in view of (7.13), there exists a positive number T, := T, (x,) such that for t, > T, the right-hand side
of inequality (7.17) will be negative, while the left-hand side of this inequality is non-negative. This means that
if there exists a strong generalized solution u of problem (1.1), (1.2) of class C in the domain Dy, thent, < T,

necessarily, which proves Theorem 7.1. O

Remark 7.2. Inaccordance with Remark 7.1, let us denote by T° := T°(x,) the upper bound of those t,, > 0, for
which problem (1.1), (1.2) is solvable in the domain Dy, . According to Theorems 6.1and 7.1, we have 0 < T° < T,;
moreover, problem (1.1), (1.2) is solvable in the domain Dy, for £, < T° and does not have a solution for £, > T°.
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Remark 7.3. It is easy to verify that if f,y € C(Q), f,y > 0, ¢ = 0 and additionally one of the conditions

O flx,t)=ct™, xeR, t>1, 0<m:=const<2, y=0,
2 y(x) >, x € R, (7.18)
B) flxt)=c (x,1) € Q,

is fulfilled, where c := const > 0, then condition (7.13) will be fulfilled, and therefore in this case problem (1.1),
(1.2) for sufficiently large ¢, will not have a strong generalized solution u of class C in the domain Dy, .

Indeed, in case (1) of (7.18) applying in (7.12) the transformation of independent variables x and ¢ by the
formulas x = & + x,, t = t,7, after some simple transformations we have

{(ty) =t J Fto€ + x0t7) X" (&, 7)dEdT
D,y

>ty j "y (E 1) dEdT + t] J f(to€ + x4, 7)x° (& T)dEdT

Dy, Nr=t;'} Do, N{r<ty'}
in supposition that ¢, > 1.
Let now T, > 1 be an arbitrary fixed number. Then from the last inequality for the function { we have
{(ty) = ctéim J (& 1)dédr > chzfm J (&, 1)dEdT (7.19)
Do,y Nr=t,'} Dy, yN{r=T7"}

ifty > T, > 1 and m < 2. From (7.19) in view of (7.8) the validity of inequality (7.13) immediately follows.
Further, in case (2) of (7.18) considering in the first integral of (7.12) the transformation of the independent
variable x according to the formula x = x + t,7, after some transformations we have (y* is defined by (7.10))

Xotty

1
()= | w00 =t [y, + 1y (5,00
A1

Xg~1o

1 1
> ct, J(1 - 7%)'dt = 2t I(1 - 1)"dr = ct,BQ ', n+1) > 0, (7.20)
-1 0

where B(a, b) is the well-known Euler integral of the first kind. From (7.20) the validity of inequality (7.13)
immediately follows.
Case (3) of (7.18) can be considered analogously.

8 A priori estimate of a strong generalized solution of the
Cauchy-Darboux problem (1.1), (1.7) of class C in the domain A

Lemma8.1. Letg € C(R), f € C(Ay) and let conditions (1.5), (1.6), (2.2) be fulfilled. Then for any strong gener-
alized solution u = u(x, t) of problem (1.1), (1.7) of class C in the domain A ; the a priori estimate

"u”(;(KT) <q "f"(;(KT) t6 (8.1)
is valid with non-negative constants ; := ¢;(g,T), i = 1,2, not dependent on u and f, and ¢; > 0.

Proof. Letu be astrong generalized solution of problem (1.1), (1.7) of class C in the domain A ;.. We know that,
by Definition 1.4, there is a sequence of functions u, € C*(Ay, y;) such that

Jim o, —ullog,y =0, lim |ILu, - flog,) = 0. (8.2)
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Consider the function u,, € c? (Ag»yr), as a solution of the problem

Lu, = f,, (8.3)
”nx|y1,T =0, unly” =0. (8.4)

Here
fn = Lu,. (8.5)

Multiplying both sides of equality (8.3) by u,, and integrating over the domain
A, ={(x,t)eAp:t<Tt}, 0<7<T,
by (2.1) we get

J(uﬁt)tdxdt - J Uy Uy + j (G(u,)],dxdt = J [t dxdt.
A A A

N | =

T T T T

Let Q, := A, N {t = 7}, 0 < 7 < T. Integrating the left-hand side of the last equality by parts and taking
into account (8.4), we have

1
2 j Ftygddxdt = J (it 418,07 VD) + J(uit f1 )dx +2 J Gu)dx.  (86)
A, Yor ! Q, Q,
Since vt% - Vx% is the differentiation operator along the direction tangent to y, r, i.e. the inner differential

operator on y, 1, by view of the second equality from (8.4) we have
(unxvt - untvx)lyu =0. (87)

Due to (1.5) and (1.6), it is easy to verify that on y,; ¢ 0A ; the unit vector v := (v,, v,) of the outer normal
to 0A 7 satisfies the conditions

!
t
E10) <0, 0<t<T, (v} -V)|, <o. (8.8)

1
NriVe=——T——=x0, V= —= Yar
V1+[p®]? 1+ [y(0)]?

From (8.7) and (8.8) it follows that

1
J ;[(unxvt - untvx)2 + uflt(vt2 - vfc)]ds > 0.
t

Yaor

Using the last inequality, (2.2) and the inequality mes Q; < T, from (8.6) we have

w,(7) = j(ufﬁ +1 )dx < 2M,T + 2M, j Wdx +2 j £, dxdt. (8.9)

Q Q A

T T T

Since Q, : y,(r) <x <0, t =7,and p, 7 : t = ;' (x), y,(T) < x < 0, where ;" is a function and the inverse of y,
is uniquely defined by (1.6), in view of (8.4) and the Newton-Leibniz formula we have

T
u,(x,7) = J Uy (x,t)dt, (1) <x<0, (x,71)€Q,.
¥, ()

Using the Schwarz inequality, for (x,7) € Q, we get

T T T
|, (x, T)I” < j 1%dt J [t (x, )dE < T J [t (2, £)]7dit.
%' (x) 73 (x) ¥4 (x)
Integrating both parts of the last inequality with respect to x on the segment [y, (r), 0] we have
0 T

J wdx <T J [ I [14,e (2, t)lz]dx =T J [t (x, £)[*dxdt < T J [ (2, £)*dxdt, (8.10)
Q. P, (1) yz’l(x) A N{x<0} A,
whence it follows that
j Wldxd = jda j Wdx <T j da[ J ufudxdt] <72 j 2 dxd. (8.11)
A 0 Q 0 A A

o T



96 —— 0.Jokhadze and S. Kharibegashvili, On the Cauchy and Cauchy-Darboux problems DE GRUYTER

Using the inequality 2 f,u,, < 7 +u’, and (8.9)-(8.11) we get

w,(1) < M3 + M, J(ufn + 1, )dxdt + j frdxdt. (8.12)
A‘r AT
Here
M, :=2M,T, M, :=2M,T +1. (8.13)
Due to

T
J(”it + 1l )dxdt = an(a)do
A 0

T

and that mes A ; < T2, from (8.12) we have

T
w,(t) < M, j w,(0)do + M, + T fnllé@), 0<7<T.
0
Whence, according to the Gronwall Lemma, it follows that
w, (1) < (M, + T7| fn||é@)) exp(M,7), 0<7t<T. (8.14)

Further, in view of the second equality from (8.4), for any (x,t) € A; \ O we have

X

1,6 ) = 1 (30 1) — Uy (p(0), ) = j e (&, 1)E,
y2(t)

whence it follows that
X

(e, )2 < T j lu, (& OPdE,  (x,1) € Dy \ O.
P2(t)

Whence, due to (8.14), for (x,t) € D; \ O we have

lu,(x, 0 < T j Udx < Tw,(t) < T(M; + T £, ., ,) exp(Mh).

Q

Taking into account the obvious inequality

Mz

¢

””n”c(XT) <q "fn"C(XT) + 6, (8.15)

3 m
2
a; ) < Z |ai|a
1

i1

I
—_

we now get

where . )
q:=T2 exp(EM4T>, G = (TM,;)? exp(5M4T>, (8.16)

and the constants M, and M, are defined by (8.13). By (8.2) and (8.5), passing in (8.15) to the limit as n — oo,
we get the a priori estimate (8.1). O

Remark 8.1. In the linear case, i.e. when g = 0 in equation (1.1), in an analogous manner we can introduce
the notion of a strong generalized solution of problem (1.1), (1.7). Then, due to (2.1) the function G = 0 and for
M; =0,i=1,2, condition (2.2) is valid for it. Moreover, when conditions (1.5) and (1.6) are fulfilled, then the
a priori estimate (8.1) is also fulfilled and due to (8.13), estimate (8.15) takes the form

3 T
Il < % exp( 5 )1 leqe,
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9 Cases of the global solvability of problem (1.1), (1.7) in the class C

Introducing new independent variables & =t + x, # = t — x the domain A is transformed into the curved
triangular domain G; with the vertices at the points O(0,0), Q,(T,T), Q,(T + y,(T), T — y,(T)) of the plane of
variables &, #, while problem (1.1), (1.7) is transformed into the problem

Li = i1, + g@) = f(&n),  (&n) € Gy, (9.1
(ﬁi - ﬁr;”ﬁ; =0, ﬁl?z,r =0 (9.2)
with respect to the new unknown function

S gy o

&, n) = u(

Here . | e ;
~ 7 st
g0 Fen=7(>512") @neor
and y, ; and p, ;- are the images of the curves y, ; and y,; during this transformation, outgoing from the
common point O(0, 0) with end points O, and O,.
Analogously to Definition 1.4, we introduce the notion of a strong generalized solution # of problem
(9.1), (9.2) of class C in the domain Gj.
Due to (1.5) and (1.6), the smooth curves ¥, - and ¥, ;- are representable in the form

nr: n=5¢ 0<&<é,

— (9.3)
P &=, 0<n<mny,
where &) :=T <5, :=T - y,(T) and
) >0, 0<y<ny, 70)=0, )<y, 0<ny<n (9.4)
Gr = {(&n) € (0,§) x (0,10) : & <1, (1) <&, §+ 1 < T} (9.5)

Remark 9.1. Itis obvious thatu = u(x, t) is a strong generalized solution of problem (1.1), (1.7) of class C in the
domain A ; if and only if # is a strong generalized solution of problem (9.1), (9.2) of class C in the domain Gy,
i.e. when there exists a sequence of functions @i, € {v € C*(Gy) : (v = vl5,, =0, vl =0} such that

A 2, - g, = 0. lim IL#, = flle,) = 0
moreover, if the conditions of Lemma 8.1 are fulfilled, for # the a priori estimate of type (8.1)
”ﬁ"C(ET) <q ”f”C(ET) +6 (96)
holds with the same constants ¢, and c,.

Below we will consider the linear case of problem (9.1), (9.2) when in equation (9.1) the function g = 0:

Bit = g, = f&n),  (&n) €Gr, (9.7)
(it — ,)lg,, =0, 1l =0. (9.8)

Remark 9.2. By Remarks 8.1 and 9.1, for a strong generalized solution # of the linear problem (9.7), (9.8) of
class C in the domain G; the estimate

_ 3 T\, =
I, < T° exp( 5 )1 le, 99)
is valid.

In particular, the classical solution # € C*(G;) of this problem satisfies estimate (9.9). This estimate implies
the uniqueness of both a generalized and a classical solution of problem (9.7), (9.8).
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Let
a®) =-1'¢), 0<&<E, (9.10)
In view of (1.6) and that ,
, 1 +1,(0)
7(0) = 110
and also using (9.10), we have
la(0)| = I7'(0)] < 1. (911)

Let Gyr = {(&,17) € R*: 0 < & < &, 0 < 17 < 1} be the characteristic rectangle in the plane of variables &
and 7, corresponding to equation (9.7). Due to (9.5) we have G c G, ;. For f € C(Gy) we extend this function
continuously to the closed domain GO,T, retaining the same notations, for example, letting f &n) = f &8
for0<n<& 0<E<& and f(&n) = f(z(n),n) for 0 < & < 7(y), 0 < i < n,. Since the space C'(G, ;) is dense
in C(@O,T) (see [13, p. 37]), there exists a sequence of functions fn such that

fa€C'Gop),  Jim I, = flie,,) = O (9.12)

Consider the function i, € C* (EO,T), which is a solution of the Goursat problem

o, = f,&n), (&n) € Gor, (913)
i1,(5,0) = 9,8, 0<&<&, ©,0.n)=y,n), 0<n<ny (9.14)

where ¢, € C*(Jo0, & andy, € c3([o, 1o]) are the functions satisfying the compatibility conditions
$,(0) = v,,(0) = 0. (9.15)

As is known, the unique solution of problem (9.13), (9.14) is representable in the form (see [2, p. 246])

g n
() = 9u® + v, + [ | T, &) € G (916)
0 0
Let us find the functions ¢, € C*([0,£,]) and v, € C*([0,#,]) such that the function # = 7, defined by
equality (9.16) would satisfy the boundary conditions (9.2). Differentiating the second equality from (9.2) along
the direction tangent to ¥, 1, in view of (9.3) we get

T (iig(r(n), ) + i, (x(n), ) =0, 0 <7y <7 (917)

It is obvious that equality (9.17) together with the condition (0, 0) = 0 is equivalent to the second condition
in (9.2). Substituting the expression for # = #, from (9.16) into (9.17) and the first condition in (9.2), and
using (9.3), for the functions ¢, and v, we obtain the following system of functional equations:

Pn©) = v, (§) = w0, (6), 0<E<E, (9.18)
T (L) +vi(n) = (), 0 <1y <1, (919)
Here
& 13
@ (©) = | 798 - [ et 0<E<E, (9.20)
0 , 0 T(rl)
c%@:qwﬂﬁmmwwhjﬁwWﬁﬁomsw 0.21)
0 0

Eliminating the function y/, in system (9.18), (9.19), for ¢, := ¢, we obtain the functional equation

©0n(§) — a(§)@y,(1(§)) = w,(§), 0<E&<E,. (9.22)
Here the function a(£), 0 < & < &, is defined by expression (9.10) as

wn(s) = w]n(f) + wz,;({): 0 < E < EO' (9'23)
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Since a € C([0, &,]) when condition (9.11) is fulfilled, there exists a positive number ¢ such that
la(®)] < g:=const<1 for0<&<e. (9.24)

Due to (9.4), if 7,(&) := 1(5;_, (§)), 7,(§) == 7(§), 0 < & < &, then the sequence of functions {r;(£)};2, on the
segment [0, &,] uniformly converges to zero, i.e. for any ¢ > 0 there exists a natural number n, = n,(¢) such
that

(&) <e 0<E<E), k=n,. (9.25)

Denote by A : C([0,&,]) — C([0,&,]) the linear continuous operator, acting by the formula
(Aw,)(§) = aQ)w,(z(§)), 0<E<§,. (9.26)

It is obvious that

(A @,)(&) = a(§)a(r(§)) - - - a(ti_, (E)w, (1. (§)), k=2, (9.27)

and for k = 1 and k = 0 we assume that
A'=A and A":=1, (9.28)

where I is the unit operator.
Due to (9.4), (9.24)—(9.28) the estimate

(A w,) @) < [a@©)a(z(©)) - - - a(ti_1 (E)]la(z, () - - - a(ri_1 (§)]w,(7(§)) < IIaIIZ‘}[O,EDqk*”" lwnlleo,gn
for 0 < & < &, and k > n, is valid, whence we get
1A oo n—caogy < Mod"s k> no, (9.29)

where
My = (@ allogog,))™

From (9.29), where g < 1, it follows that when condition (9.11) is fulfilled, the Neumann series
I-n7"=) AF
k=0

of the operator A converges in the space C([0,&,]) and the unique solution ¢, € C([0,&,]) of equation (9.22),
in view of (9.24), is representable in the form

Pon(8) = [Z A"wn](f), 0<§<§,. (9.30)
k=0

Remark 9.3. It is easy to verify that if we additionally assume that the curve y, belongs to the class C?, i.e.

2 € C*([0, 1)), (9.31)

then 7 € C([0, 10])- Therefore, due to (9.10), (9.12), (9.20), (9.21) and (9.23) the functions a and w, belong
to C'([0,,]), then the solution ¢,, of equation (9.22), representable in the form of the convergent series (9.30)
in C([0,¢,]), will also belong to the space c(o, &]). Indeed, differentiating formally equation (9.22) with
respect to y,, := ¢, we get the functional equation

Xn(8) — a1 @) (7)) = @,,(§), 0<& <&, (9.32)

where a; () := a(§)7'(£) and @,,,(£) = w], (&) + a' (E)@,,(t(§)) for 0 < & < &. In view of (9.11) we have |a,(0)| < 1
and the solution y,, of equation (9.32), analogously to (9.30), is representable in the form

Xo= Y M@y, (9.33)
k=0
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where (A @,,,)(&) = a,(§)@,,,(1(§)), 0 < & < &,. Assuming that

&
Fon(®) = jxn(s’)ds’ £ oo (0), 0<E<E,

0
and integrating equation (9.32), we find that

4 13
Pon(8) — 9,(0) - j a(&)d@y, (1)) = j a' (& )pou(t(E)dE + @, () - @,(0), 0<E<E,.
0

0
Integrating the third summand on the left-hand side of the last equality we have

13
Bon©) = @6, (0) — a(E)Py,(T(E)) + a(0) Py, (1(0)) + j a' (€ )@o,(r(E))dE’

0
¢

- j 0 (€ )po(tENAE + w,(E) — w,(0), 0<E<E,.

0

Subtracting equality (9.22) from the last equality, for v, := @, — ¢,, we get the following Volterra type
homogeneous integro-functional equation:

14
Von(&) — a(©) Yo, (T(E)) + ju’(f’mn(r(&’))dz’ =0, 0<&<é,

0
Applying the standard approximation method [10] to this equation we get y,,, = 0,i.e. @, = ¢,, and, therefore,

13
Gon(E) = Jx,,(f’)df' Foo(0), 0<E<E,

0

whence it follows that ¢,, € C*([0,£,]). Therefore, taking into account that due to (9.19)

v, (1) = @, () = T (o, (x()), 0 <7 <10, (934)

where w,, = w,,(#) is defined from (9.21), and by (9.15)

13 n
ou(E) = j%n(e’)de’ e CH(0,5]), v, () = jw;(n’)dn’ e C([0, 7)), (9.35)
0 0

in view of (9.20), (9.21), (9.23), (9.26)—(9.28) and (9.30), (9.32), (9.33), equality (9.16) can be rewritten as

ﬁn(E> ’1) = (Kﬁ,)(f, 71)’ (E) 1’]) € GO,T)
where the linear operator K : C'(Gy ) — C*(G, ) is continuous.

Remark 9.4. Retaining the same notations for the restrictions of the functions #,, f, on the sub-domain G
of the domain G, -, due to the construction, the function &, € C*(Gy) will be a classical solution of the linear
problem (9.7), (9.8) for f = f, and, by Remark 9.2 and estimate (9.9), we have

o 3 T\, ~ =
I, - o, < T exp(E)H Fo- Flog, (9.36)

From (9.36) and (9.12) it follows that the sequence of functions #, € Cc? (ET) is fundamental in the complete
space C(GT) and therefore there exists a function # € C(GT) such that

lim |, - i, = 0. (937)
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Due to (9.12) and (9.37), the function # constructed in such a way will be a strong generalized solution of the
linear problem (9.7), (9.8) of class C in the domain G;, the uniqueness of which follows from estimate (9.9).
Denoting this solution & by L' f, i.e.

a=L;f, (9.38)

the linear operator Zgl : C(Gy) — C(Gy) is continuous and for its norm due to (9.9) we have the estimate

- 3 T
1T o~ < T exp(5 ). (9.39)

Moreover, from (9.20), (9.21), (9.23), (9.26)—(9.28) and (9.30), (9.32), (9.33) it follows that the operator Tfol
from (9.38) in fact transforms the function f € C(G;) to the function # € C'(G;) and the linear operator
L' : C(G;) — C(Gy) is also continuous.

Remark 9.5. Since the space C'(G;) is compactly embedded into C(G) (see [5, p. 135]), due to Remark 9.4 the
linear operator L' : C(Gy) — C(Gy) is also compact and for its norm the estimate (9.39) is valid.

Remark 9.6. In view of Remarks 9.1, 9.4 and equality (9.38), the function u = u(x, t) is a strong generalized
solution of problem (1.1), (1.7) of class C in the domain A, if and only if @ is a solution of the functional
equation

ii = Kyii := L' (-g(@) + f) (9.40)
in the class C(@T), where the operator K|, : C(@T) - C(@T) is continuous and compact since the nonlinear
operator N : C(G;) — C(Gy), acting by the formula Ni#i = —§(i1) + f for g € C(R) and f € C(Gy) is bounded
and continuous, and the linear operator fgl : C(@T) — C(@T) due to Remark 9.5 is compact. At the same
time, due to estimate (9.6) and equalities (8.16), for any parameter t € [0, 1] and any solution # € C(GT) of
the equation # = 7K,ui the same a priori estimate (9.6) is valid with the same constants ¢, and ¢,. Therefore,
according to the Leray-Schauder Theorem [15, p. 375, equation (9.40) has at least one solution & € C(Gy).

In view of Remarks 9.1 and 9.6 we have proved the following theorem.

Theorem 9.1. Let g € C(R), f € C(Ay) and let conditions (1.5), (1.6), (2.2), (9.31) be fulfilled. Then problem (1.1),
(1.7) has at least one strong generalized solution u of class C in the domain A ; in the sense of Definition 1.4.

Remark 9.7. It is easy to see that if the conditions of Theorem 9.1 are fulfilled for T = +o00, then problem (1.1),
(1.7) is globally solvable in the class C in the sense of Definition 1.5.

10 Smoothness of the solution of problem (1.1), (1.7)

First, let us consider the question of the smoothness of a strong generalized solution of the linear prob-
lem (9.7), (9.8) depending on the smoothness of the problem data. Aiming at this, when the conditions of
Theorem 9.1 are fulfilled, taking into account Remark 9.1, let us follow the scheme of construction of a strong
generalized solution # of the linear problem (9.7), (9.8) of class C in the domain G; and show that in fact this
solution belongs to the class CI(GT) and the boundary conditions (9.8) are fulfilled pointwise. Indeed, due
t0 (9.20), (9.21) and (9.23), the right-hand side w, of equation (9.22) is representable in the form

4 & 14 7(§)
w® == | F&rdn + | 7€ 0d8 +7® [ Fa@an + [ @0, 0si<k o
0 0 0 0
Due to (9.12), from (10.1) we have
nanc}o lw, - “’"C(ET) =0, (10.2)
where
4 4 & 7(§)

W (&) = —j FE 7y + j FE,£)dE + 7' @) j Fa@®. )iy + j FEode, 0<Es<k, (103)

0 0 0 0
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In turn, from (9.26)—(9.30), (10.1)—(10.3) it follows that

Jim g, = @ollcog,) = 0 (10.4)
where
@ = [Z Akw] € C([0,&,]). (10.5)
k=0

Since the derivative y; of the function v, from representation (9.16) is given by equality (9.34), due to (9.12),
(9.21) and (10.4) we have

Jim 1y, = Yollcgos,)) = 0, (10.6)
where
vy € CU0 D), Yol) = @y(m) = Ay (), 0 <17 < 1o, (10.7)
with
1 (1)
w,(1) = —r’(n)jf(rm), n)dn' — j fE e, 0<n<y, (10.8)
0 0

Finally, using Remark 9.4, the limit equalities (9.12), (9.37), (10.4), (10.6), and also (9.35), using the notation

3 n
@) = J%(E')df', 0<E<&, yly:= j%(’l’)dﬂ,’ 0<n<n (10.9)
0 0

and passing in equality (9.16) to the limit, for a strong generalized solution # of the linear problem (9.7), (9.8)
of class C in the domain G; we get the representation

3 n
oE ) = (&) + yl) + jdf’ j F& )y, (&n) Gy (10.10)
0 0

If f € C(Gy), then, due to (10.5) and (10.7), from representation (10.10) it follows that
vE CI(GT).
Further, in view of (10.2), (10.4) and (9.22) the function ¢, satisfies the functional equation

$o(&) —a®)gy(r(§) = w(§), 0<E<E,. (10.11)

Remark 10.1. If f € C'(G;), then since due to (9.11) the curves 17 and y, r do not have a common tangent
line at the point O, as is known [4, p. 595], this function, retaining the same notations, can be extended to the
rectangle G, - in such a way that f € C'(Gy ).

From (10.3) it follows that when condition (9.31) is fulfilled, if we additionally require that f € C'(Gy), then
the right-hand side w of equation (10.11) will belong to the class C' ([0, &,]). Whence, by Remark 9.4 it follows
that the solution ¢, of equation (10.11) belongs to the space C'([0,&,]) and, due to (10.7) and (10.8), the
function y, € c'(1o0, 10])- Therefore, due to the assumptions made above and taking into account (10.9) we get
that the function # from (10.10) will belong to the space C*(G;). Thus we have proved the following theorem.

Theorem 10.1. If conditions (1.5), (1.6) and (9.31) are fulfilled, then the strong generalized solution i of the linear
problem (9.7), (9.8) of class C in the domain G belongs to the space C'(Gy), i.e. in accordance with (9.38)

=L, feC(Gy),
and if we additionally require that f € C'(Gy), then
i=L;'f e CGy)

Moreover, in both cases the boundary conditions (9.8) are fulfilled pointwise.
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The corollary of Remarks 9.1 and 9.6, equality (9.38) and Theorem 10.1 is the following theorem.

Theorem 10.2. If the conditions of Theorem 9.1 are fulfilled, then the strong generalized solution u of problem
(1.1), (1.7) of class C in the domain A ; belongs to the space C'(A;), and for the additional requirement that
g € C'(R) and f € C'(A;) this solution also belongs to the space C*(Ay), i.e. is classical. Moreover, in both
cases the boundary conditions (1.7) are fulfilled pointwise.

11 Uniqueness, existence and nonexistence of a global solution.
Local solvability

Reasonings analogous to that used in proving the theorems on the uniqueness, existence and nonexistence
of a global solution, and also on the local solvability of the Cauchy problem (1.1), (1.2) enable us to prove the
following propositions.

Theorem 11.1. Let the function g satisfy condition (5.1) and let f € C(Ay). Then problem (1.1), (1.7) can have at
most one strong generalized solution of class C in the domain A ; in the sense of Definition 1.4.

Theorem 11.2. Let g € C'(R), f € C'(A;) and let conditions (1.5), (1.6), (2.2), (9.31) be fulfilled. Then problem
(1.1), (1.7) has in the domain A 1, 0 < T < oo, a unique classical solution u € C*(A;).

Before formulating the theorem on the nonexistence of a global solution of problem (1.1), (1.7), we impose the
condition

a+l

gs) < -Als|™, seR, A a=const>0, (11.1)

on the nonlinear function g, and for y, : x = —kt, 0 < k = const < 1, consider the function (see [12])

. {[x(x+kt)(1—t)]m, (1) € Agey,
@ (x,t) =
0, t>1,

where m is a sufficiently large positive number.

Let
t

pros) = ¢"(3. ) 41 = jf(pdedt, Tso0.

Ar
Theorem 11.3. Let the function g € C(R) satisfy condition (11.1), f € C(A,,), f = 0 in the domain A ., and
li%n inf {(T) > 0. (11.2)

Then there exists a positive number T, := T,(f) such that for T > T, problem (1.1), (1.7) cannot have a strong
generalized solution of class C in the domain A ; in the sense of Definition 1.4.

Remark 11.1. It is easy to verify that if f € C(KOO), f=0and f(x,t) > ct™™" fort > 1, where ¢ = const > 0 and
0 < m = const < 2, then condition (11.2) will be fulfilled and, according to Theorem 11.3, problem (1.1), (1.7)
cannot have a strong generalized solution of class C in the domain A ; for sufficiently large T

Corollary 11.1. When the conditions of Theorem 11.3 are fulfilled, problem (1.1), (1.7) is not globally solvable in
the class C in the sense of Definition 1.5, and it does not have a global solution of class C in the domain A , in
the sense of Definition 1.6.

Note that when condition (2.2) (which guarantees the global solvability of problem (1.1), (1.7)) is violated, the
local solvability of this problem remains in force. Indeed, the following theorem on the local solvability of
problem (1.1), (1.7) is valid.

Theorem 11.4. Let g € C(R), f € C(A,,) and let conditions (1.5), (1.6) be fulfilled. Then problem (1.1), (1.7) is
locally solvable in the class C in the sense of Definition 1.7, i.e. there exists a positive number T, := T,(f) such
that for T < T, this problem has at least one strong generalized solution u of class C in the domain A ;.
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