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ON THE SOLVABILITY OF A PROBLEM NONLOCAL IN TIME
FOR A SEMILINEAR MULTIDIMENSIONAL WAVE EQUATION

ITPO PO3B’SI3HICTh HEJIOKAJIBHOI 3A YACOM 3AJTAYI

JIJIS1 HAINIBJITHIMHOI'O BATATOBUMIPHOI'O XBUJIBOBOI'O PIBHSIHHS

We study a nonlocal (in time) problem for semilinear multidimensional wave equations. The theorems on existence and
uniqueness of solutions of this problem are proved.

BuBUa€ThCS HENOKalbHA 32 YacOM 3ajadya MUl HaNiBIiHIHHMX 0araToBUMipHHX XBHJIBOBHX PiBHAHb. J[OBEJEHO TEOpeMH
PO ICHYBaHHS Ta €AUHICTb POCB’SI3KIB i€l 3a/1a4i.

1. Introduction. In the space R"*! of variables z = (21, ...,,) and t, in the cylindrical domain
Dy = Q x (0,T), where Q is a Lipschitz domain in R™, consider a nonlocal problem of finding a
solution u(x, t) of the following equation:

Lyu = — Z o2 Y N tu) = Fa,t), (x,t) € Dr, (1.1)

satisfying the homogeneous boundary condition on the part of the boundary I' := 99 x (0,T") of the
cylinder Dy

u =0, (1.2)
the initial condition
u(z,0) = p(x), =€, (1.3)
and the nonlocal condition
Kyup = w(x,0) — pug(x, T) = ¢(x), =€, (1.4)

where f, F, ¢ and v are given functions; A and p are given nonzero constants and n > 2.

To the study of nonlocal problems for partial differential equations there are devoted many papers.
When a nonlocal problem is posed for abstract evolution equations and hyperbolic partial differential
equations we would suggest the reader refer to works [1—15] and the references therein.

Note that the problem (1.1)—(1.4) in the work [15] is studied in the class of continuous functions
for the case of one spatial variable, i.e., for n = 1. The method of investigation given in the work [15],
based on the integral representation of the solution of corresponding linear problem, is useless for
multidimensional case, i.e., for n > 1. In this work the problem (1.1)—(1.4) in the multidimensional
case is studied in the Sobolev space W3 (D7), basing on expansions of the functions from the space

0 -

WL(Q) in the basis, consisting of eigenfunctions of spectral problem Aw = Aw, w |po = 0 and
using embedding theorems in the Sobolev spaces. It must be noted also that if for n = 1 there is no
need of any restriction on the behavior of function f(x,t, u) with respect to variable v when u — oo,
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while in the case n > 1, we require of function f(x,¢,u) that for u — oo it must have a growth
not exceeding polynomial. Moreover, for using the embedding theorems in the Sobolev spaces we
additionally require that the order of polynomial growth must be less than a certain value, which
depends of the dimension of the space.

Below, on the function f = f(x,t,u) we impose the following requirements:

f S C(ﬁT X R)? |f($,t,U)| <M + M2|u|a7 (.%',t,’li) € ET X Rv (15)
where
1
0 < a = const < i (1.6)
n—1

Remark 1.1. The embedding operator I: W4 (D7) — Ly(Dr) represents a linear continuous

2(n+1)
1

n —
Ly(Dr) — Lo(Dr), acting by the formula Nu = f(z,t,u) due to (1.5) is continuous and bounded

2(n+1)
1

compact operator for 1 < g < ,whenn > 1[16]. Atthe same time the Nemitski operator NV :

if ¢ > 2« [17]. Thus, since due to (1.6) we have 2a <

2(n+1)
n—1

, then there exists the number ¢

such that 1 < ¢ < and g > 2a. Therefore, in this case the operator

0
No = NI: Wi(Dp,T) — Ly(Dr), (1.7)

0
where Wi(Dp,T) := {w € W} (Dr): w |r = 0}, will be continuous and compact. Besides, from

0 0
u € Wi(Dr,T) it follows that f(z,t,u) € La(D7) and, if u,, — u in the space W3(Dr,T), then
f(z,t,um) — f(x,t,u) in the space La(Dr).
Definition 1.1. Let function f satisfy the conditions (1.5) and (1.6), F' € Lyo(Dr), ¢ €

0
e WiQ) = {v € Wi(Q):v|ga = 0}, ¢ € La(2). We call a function u a generalized so-
0
lution of the problem (1.1)—(1.4), if u € W1(Dp,T) and there exists a sequence of functions
0, — —
um € C*(Dr,T) :={w e C*(Dr): w|r =0} such that

e e (1)
Jim o = gl =0 e~ i) = 0 (19)

It is obvious that a classical solution u € C?(Dr) of the problem (1.1)—(1.4) represents a general-
ized solution of this problem. It is easy to verify that a generalized solution of the problem (1.1)—(1.4)
is a solution of the problem (1.1) in the sense of the theory of distributions. Indeed, let F,,, := Lyup,,
Om = Um |t=0, Ym = K uUmt- Multiplying the both sides of the equality Lyu,, = F}, by test func-

0
tionw € V := {v € Wi(Drp,T): v(z,T) — p(z,0) = 0, = € Q} and integrating in the domain
Dy, after simple transformations, connected with integration by parts and the equality w |p = 0, we
get

/[umt(x,T)w(:c,T) — Ut (z, 0)w(x, 0)]dx+
Q
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of

Dr

— U Wy + Zumzzwxl + Af(x, ty um)w ]dm dt = /me drdt YweV. (1.10)
i=1

Due to Kty = ¢ () and w(z, T) —pw(x,0) = 0, x € €, itis easy to see that wy, (x, T)w(x,T)—

— Ut (2, 0)w(z,0) = upy(z, T) (w(z, T) — pw(x,0)) — Y (z)w(x,0) = =, (z)w(x,0), z € Q.
Therefore, the equality (1.10) takes the form

/¢m w(z,0)dz+

o]

Dt

— Ut Wy —i—Zum%wzl + Af(z, b, um)w ]dmdt /meda:dt Yw € V. (1.11)
=1

In view of (1.5), (1.6) according to the Remark 1.1 we have f(z,t,u,,) — f(z,t,u) in the space

0
Lo(Dr), when u,, — u in the space W3(Dr,T'). Therefore, due to (1.8) and (1.9), passing to the
limit in the equality (1.11) for m — oo, we get

—/¢w(x,0)d1‘+/
Q

—upwy + Zumziwxi + )\f(ac,t,u)w] drdt = / Fwdxdt YweV.

i=1

DT DT
(1.12)
Since C§° (D7) C V, then from (1.12), integrating by parts, we have
/ [uDw + A f(z,t, w)w|dz dt = / Fwdxdt Yw e C§°(Dr), (1.13)

Dr Dy

where O := 0%/0t> — Z 9%/0x2, and C§°(Dr) is a space of finite infinitely differentiable
functions in Dr. The equahty (1 13), which is valid for any w € C5°(Dr), means that a generalized
solution u of the problem (1.1)—(1.4) is a solution of the equation (1.1) in the sense of the theory of

0
distributions, besides, since the trace operator u — u |—o is well defined in the space W3i(Dr,T),

and, particularly, is a continuous operator from the space V(I)/% (Dp,T) into the space L2 (Q2 x {t = 0}),
then due to (1.8) and (1.9) we receive that the initial condition (1.3) is fulfilled in the sense of the
trace theory, while the nonlocal condition (1.4) in the integral sense is taken into account in the
equality (1.12), which is valid for all w € V. Note also that if a generalized solution u belongs to
the class C?(Dz), then due to the standard reasoning, connected with the integral equality (1.12),
which is valid for any w € V [16], we have that « is a classical solution of the problem (1.1)—(1.4),
satisfying the equation (1.1), the boundary condition (1.2), the initial condition (1.3) and the nonlocal
condition (1.4) pointwisely.

Note that even in the linear case, i.e., for A = 0, the problem (1.1)—(1.4) is not always well-posed.
For example, when A = 0 and |u| = 1, the corresponding to (1.1)—(1.4) homogeneous problem may
have infinite number of linearly independent solutions (see the Remark 3.2).

The work is organized in the following way. In Section 2 we single out the class of semilinear
equations (1.1), when for |u| < 1 a priori estimate is valid for the generalized solution of the
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problem (1.1)—(1.4). In Section 3 on the basis of a priori estimate, received in the previous section,

the solvability of the problem (1.1)—(1.4) is proved. Finally, in Section 4 we give the conditions

imposed on the data of the problem, which provide the uniqueness of the solution of this problem.
2. A priori estimate of the solution of the problem (1.1)-(1.4). Let

g(z,t,u) = /f(x,t,s)ds, (x,t,u) € Dy x R. (2.1)
0

Consider the following conditions imposed on function g = g(x,t, u):
g(e,t,u) > —Ms, (z,t,u) € Dr xR, 22)

gt € C(ET X R)a gt($7t>u) < M4a (IL‘,t,U) € ET X Rv (23)

where M; = const > 0, 7 = 3, 4.

Let us consider some classes of functions f = f(x,t,u) frequently encountered in applications
and which satisfy the conditions (1.5), (2.2) and (2.3):

o _ . .
1. f(x,t,u) = fO(x7t)B(u)a where fO? afo € C(DT) and B € C(R)v |ﬁ(u)| < M; + M2|u|a7
M; = const > 0, o = const > 0. In this case gz, t,u) = fo(x,t)/ B(s)ds and when fy > 0,
0

%fo <0, / B(s)ds > —M, M = const > 0, the conditions (1.5), (2.2) and (2.3) will be fulfilled.
0

2. f(z,t,u) = fo(z,t)|u|*sign u, where fo, gtfo € C(Dr) and o > 1. In this case g(z,t,u) =

U a+1
= fO(SU, t)| |
fulfilled.

0
Lemma 2.1. Let A > 0, |u| < 1, F € La(D7), p € Wi(Q), ¥ € Lo(Q) and the conditions

(1.5), (2.2), (2.3) be fulfilled. Then for a generalized solution u of the problem (1.1)—(1.4) the
following a priori estimate

1 and when fo > 0, gtfo < 0, the conditions (1.5), (2.2) and (2.3) will be also
(6%

Jally,

atl
< a|F +c + cs|y ey > 4 2.4)
| (DrD) U Ly (Dr) 2||<PHV?/%(Q) Y122 IIsOIIV?/l(Q) 5

2

is valid with nonnegative constants c; = c;(\, p, Q, T, M1, Mo, M3, My) not depending on u, F, ¢,
1, and c; > 0 for i < 4, whereas in the linear case, i.e., when A = 0 the constants cy = c5 = 0 and
due to (2.4) in this case we have the uniqueness of the solution of the problem (1.1)-(1.4).

Proof. Let u be a generalized solution of the problem (1.1)—(1.4). In view of the Definition 1.1

0,
there exists a sequence of the functions u,,, € C'?(Dz,T") such that the limit equalities (1.8), (1.9)
are fulfilled.

Set
Lty = Fy, (z,t) € Dy, (2.5)
U |r =0, (2.6)
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um(xao) = Som(m)a T €, (2.7
Ky umt = Ym(x), x €8 (2.8)

Multiplying both sides of the equation (2.5) by 2u,,; and integrating in the domain D,
:=Drn{t<7},0<7<T, due to the (2.1), we obtain

/8t( ot d dt_Q/Z_: i dt+2A/dt(g(w,t,um(x,t))dxdt—

D- D,

—QA/gt(x,t,um(:c,t))dxdt—2/ 88 dx dt. (2.9
D, D,

Let wy == {(z,t) € Dyr:x € Q, t =7}, 0 <7 < T. Denote by v := (Vg Vayy -+, Vi, Vt)

the unit vector of the outer normal to dD. Since vy, |\ =0,7=1,....,n, vt | rnft<r) = 0,
L }w =1Ly ‘WO = —1, then, taking into account the equalities (2.6) and integrating by parts, we
have
0 /0u ou 2
/ 5 ( 8?) dr dt = / (a—;n) vids = /ufntdx - /ufntdg@ (2.10)
Dr 0D~ wr wo
0y, Ou
D, D,
_ 2 2 .
_/umxldx_/ Uma; dx Z—l,...,n, (211)
Wr wo
d
2 @(Q(l‘at,um(x,t))dxdt =2\ 9(2, t, (2, 1)) vyds =
Dr oD,
= 2)\/g(ﬂs,t,um(ac,t))dx — 2)\/g(ac,t, Um(z,t))dx. (2.12)
Wr wo
In view of (2.10), (2.11), (2.12) from (2.9) we get
n n
/ g+ Z“gnz] dr = / Up + Zu%nx] dx — 2/\/9(56, ty U (2, t))do+
wr =1 o i=1 o
+2A/g($’ b um (@, t))dz + 22 / 9e(, bt (2, 1)) da dt + 2 / Ftmed dt. (2.13)
wo D, D,
Let
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W (T) ::/

wWr

n
ubi Y ufm,] d. (2.14)
=1

Since 2Fum: < € 1EF2 + eu?,, for any € = const > 0, then due to the (2.2), (2.3) and (2.14)
from (2.13) it follows that

Wi (T) < Wi, (0) + 2AM3 mes 2 + 2)\/ lg(x, t, wum (z,t))|dz+

wo

+2 My mes ) + € / ul dedt + et / F2dx dt. (2.15)

Taking into account that

T T

/ufntda:dt:/ /ufntdaz ds §/
0

D- 0 Ws

from (2.15) we obtain

T

wm(7) < e/wm(s)ds + Wi (0) + 2X (M3 + My7) mes Q4
0

+2)\/\g(x,t, um(x,t))ydx+e—1/F,%dxdt, 0<7<T. (2.16)

wo D,

Because of D, C Dp, 0 < 7 < T then according to the Gronwall’s lemma [18] from (2.16) it
follows that

Wi (7) < [wm(O) + 2A\(M3 + M4T) mes Q+

+2)\/ lg(z,t, um (z,1))|dx + e / F2da dt] e, 0<7<T. (2.17)
wo

Dr
Using obvious inequality
la +b]* =a? + %+ 2ab < a® + b + e1a® + €7 ' = (1 +e1)a® + (1 + e, )b
which is valid for any ¢; > 0, from (2.8) we have
e (2, 0)* = |t (2, T) + P (2)* < [P (1 + e)ui (2, T) + (1 + e Dib(2). (2.18)
From (2.18) we obtain
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/u?ntdx —/\umt(x,O)\Qd:U <
Q

wo

< (1 + ) / oy, T)dz + (14 6) / U2 () dz =
Q Q

= [P+ ) / Wdydz + (14 )|l - (2.19)

wr

In view of (2.7), (2.14) from (2.17) we get

/u?ntd:v < wp (T /Z‘me dx + / u?,,dx + Ms | eT, (2.20)
wT wo T
where
M5 = 2\(M3 + M4T) mes§) + 2)\/ lg(z,t, um (z,1))|dx + e / F2 dz dt. (2.21)
wo DT

From (2.19) and (2.20) it follows that

[t <) | [S s / o+ My T4 (L )y 222

wo wo

Because |u| < 1, then positive constants € and €; can be chosen so small that
= |u)?(1 +e)eT < 1. (2.23)

Due to (2.23) from (2.22) we obtain

e < =) fPase) | [ S e+ My | T 4 (1 ) oy | <

wo wozl

< @) R (loull, 35 ) €T+ 04l @29
2

From (2.7), (2.14) and (2.24) it follows that

mt T Z(pmx ]d(E < ”QDTHHQ )+
i=1

w =) WP ) (el #3229
2
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In view of (2.21), (2.25) from (2.17) we get

wan(7) < qlomll’y A+ (1= p1) 7" x
W3(Q)

2

X |,u|2(1+61) Hgom\|20 + 2\(M3 + M4T) mes ) +
W3(Q)

2

+ 2/\/g(x,t,um(x,t))|dx—|—€1/F31dxdt eET—l-(l—l-el_l)meH%Q(Q +

wo DT

+ 2X\(M3 + M4T) mes Q + 2/\/ \g(z, t, um (z,t))|d2 4+ e * / Fldedt p et =
wo DT

= lFuly o) +Sellonly, |+ FllomlEe + i / 9.t (@, )|z + 5. (226)
2

wo
Here
=€ teT (1= ) 1+ e)e” +1],
Fo = eT[1+ (1 —pr) Hul (L +a)l,
F3 = (1 — puy) M (1 + e e, (2.27)

1= 2M[(1 = p1) T ulP (1 + 1) + e,
s = 2A (M3 + MyT) mes Q[(1 — pu1) " Hul|?>(1 4 €)eT + 1]eT.

0
Since for fixed 7 the function u,,(z,7) € W3(€), then due to the Friedrichs inequality [16] we

have

wWr

n n
ul +ul, + Z uf,m] dzx < cown (1) = ¢ / ul, + Z ugn%] dz, (2.28)
1=1

=1

wWr

where positive constant cg = ¢y(€2) does not depend on .
From (2.26) and (2.28) it follows

T n
o <u3n+ugn+zugm>d$ ir <

W3(Dr,T) 5 i=1

wr
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2

T
< [ @n (s < PRIl o) + cTollonlly, |+ el ot
0

+00Tfy~4/ ‘g(m,O,um(:U,O))|dx + coTAs. (2.29)
Q

Due to (2.1), (1.5) we have
l9(,0, )] < Mg + My|s|**, (2.30)

where Mg and M7 are some nonnegative constants. Taking into account (2.30) from (2.29) we get

2 < ~ 2 ~ 2 ~ 2
||Um||v(l)/%( ) COT%HFmHLQ(DT) + COT’YQHSDmH‘g/%(Q) + COT’YS||¢m”L2(Q)+
+coT 4 Mg mes Q + coT4 My / |t (,0)|*T 2 4 ¢T3, (2.31)
Q

Reasoning from the Remark 1.1, concerning the space W (2), in view of the equality dim Q =
= dim Dy — 1 = n show that the embedding operator 1: W () — L,(f2) is a linear continuous

2
compact operator for 1 < ¢ < 7712, when n > 2 and for any ¢ > 1 when n = 2 [16]. At the same
’,’L —_—

time the Nemitski operator Ny : Ly(2) — L2(€2), acting by the formula N u = |u|aTJrl is continuous

1 2
and bounded if ¢ > 2% = a+1[17. Thus, ifa+1< ——— ie a < % which is
n— n—
1 2
fulfilled due to (1.6) since nt < nt 3 then there exists number ¢ such that 1 < g < and
q > a + 1. Therefore, in this case the operator
Ny = NiT: W3 (Q) — La(Q)
will be continuous and compact. Thus due to (1.9), (2.7) it follows that
lim / |t (2,0)[* T da = / lo(x)| T d, (2.32)
m—0o0
Q Q
and also [16]
[let@)ids < el 233)
J W)

0
with positive constant C, not dependent on o € W1(€Q).
In view of (1.8), (1.9), (2.5)—(2.8), (2.32) and (2.33), passing in (2.31) to the limit for m — oo
we obtain
2 ~ 2 ~ 2 « 2
[ull% < T Fl1,pp + COTWH@H‘%%Q) + T3 Y[ 7,0+

W%( T, 2
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+coTyaM-Cy ||go||‘g+11( | + coT (V5 + 72 Mg mes Q). (2.34)
w5 (Q

2

Taking the square root from the both sides of the inequality (2.34) and using the obvious inequality

kooo5\1/2 k
(Zz‘:1 C%) < Zi:l |a;| we finally get

atl
ull < e F| + callp + cs3l|¥ll L) +ealloll 2+ os. (2.35)
1 1 < 1P o) + il el +estell
Here
1 = (coTH1)Y?, ¢y = (coTH2)Y?, c3 = (coTH3)"?,
(2.36)

Cq4 = (CoT’~)/4M701)1/2, Cy = [CoT(’Yg, + ’74M6 mes Q)]I/Q,

where ;, 1 < ¢ < 5, are defined in (2.27). In the linear case, i.e., for A = 0, due to (2.27) the
constants 74 = 75 = 0 and from (2.36) it follows that in the estimate (2.4) the constants c4 = ¢5 = 0.
Whence it follows the uniqueness of the solution of the problem (1.1)—(1.4) in the linear case.
Lemma 2.1 is proved.
3. The existence of the solution of the problem (1.1)—-(1.4). For the existence of the solution
of the problem (1.1)—(1.4) in the case |u| < 1 we will use well known facts about the solvability of
the following linear mixed problem [16]:

9%u " 5%

TU_NTU pat), (at) € Dr, 3.1
D)
ot2 pat ox;

Lou :=

“‘r =0, u(z,0) = ¢(x), u(z,0) = 1;(35), x € Q, (3.2)

where F, ¢ and ) are given functions.

0 -
For F € Lo(Dr), o € Wi(), 9 € Lo() the unique generalized solution u of the problem (3.1),
(3.2) (in the sense of the equality (1.12) where f = 0, and the number p = 0 in the definition of the
space V') from the class Es 1 (D7) with the norm [16]

n
u? +u? + Zui] dx
i=1

2
v = sup
|| HEz,l(DT) 0<7-<T/

wr
is given by formula [16]
- t
. 1 .
U= Z aj, cos gt + by sin ppt + — /Fk(T) sin pug (t — 7)d7 | i), (3.3)
—1 Hok s
- . . 0
where A\, = —p3, 0 < g < po < ..., limg_yeo . = 00 are the eigenvalues, while ¢ € W1(9Q)

are the corresponding eigenfunctions of the spectral problem Aw = Aw, w lo = 0 in the domain
2

0
Q (A = E n ) W)’ simultaneously forming orthonormal basis in L2(€2) and orthogonal basis in
i= T
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0 n
WL(Q) in th f scal duct = 2 We, dx [16], i.e.,
5(92) in the sense of scalar produc (v,w)v([)/%(m /Zi:1v Jwg, dz [16], i.e
Q

1, 1=k,
— 5l = .0 ot = 3.4
(k01 12(0) = Ok (Sﬂkmﬁz)%m) k0% k 0 12k (3.4)
Here
ak = (PR Lo On =1 (o) e, k=12, (3.5)
F(z,t) = ZFk(t)@k(ﬂ«")’ Fi.(t) = (F, 0k) 1o () wr = DrN{t=r}, (3.6)
k=1

besides, for the solution w from (3.3) it is valid the following estimate [16, 19]:

lull sy ey < YUFNpaory +lello  + 18ll1,(0) (3.7
W3(9)

with positive constant y,not dependent on F), o and ).
Let us consider the linear problem corresponding to (1.1)—(1.4), i.e., the case when A = 0:

9% " 5%

“- - —5 =F(x,t), (a,t)€Dr, (3-8)
2 2 Y )
ot — 0

Lou :=

U’|F =0, U,(CC,O) = cp(x), Kuut = w(x)v r € Q. (39)

0
Let us show that when |u| < 1 for any F' € Lo(D7), ¢ € Wi(Q) and ¢ € Lo(f) there
exists a unique generalized solution of the problem (3.8), (3.9) in the sense of the Definition 1.1 for

0
A = 0. Indeed, for ¢ € W3(Q) and ¢ € Ly(Q) there are valid the expansions ¢ = Z

o0

a
k=1 kPk

oo 0
and 1) = Zk_l dipy, in the spaces W5(Q2) and Ly(9), respectively, where ai, = (¢, k) 1,() and
di = (1, sok)LQ(Q) [16]. Therefore, setting

m m
Om =Y ek, Pm =Y drpr, (3.10)
k=1 k=1
we have
lim lom —ollo =0, im ||t — 9| Ly) = 0. (3.11)
m—00 W2(Q) m—00

Since the space of finite infinitely differentiable functions C5°(D7) is dense in the space La(Dr),
then for F' € Ly(Dr) and any natural number m there exists a function F),, € C§°(Dr) such that

1
1 Fm — Fll1y(pp) < oo (3.12)
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On the other hand, for function F}, in the space Lo(Dr) there is valid the following expansion [16]:
oo
F(2,t) =Y FrpWee(@),  Fuilt) = (Fn00) 1a()- (3.13)
k=1
Therefore, there exists a natural number [,,, such that lim,,, ., [,,, = oo and for

lm

Fn(z,t) = Fri(t)er(z) (3.14)
k=1
the inequality
. 1
1w = Enll o7y < (3.15)

is valid. From (3.12) and (3.15) it follows

Jim || = Fllry g = 0. (3.16)

- lm  ~ -
The solution © = u,, of the problem (3.1), (3.2) for ¢ = ¢y, ¥ = Zk_l dppr and F' = F,,

where ;  and F,, are defined in (3.10) and (3.14), is given by formula (3.3) which, due to (3.4)—
(3.6), takes the form

~ t

lm

d 1
Uy = Z aj cos uxt + ”—Z sin pgt + E / Fop () sin g (t — 7)d7 | (). (3.17)

For determination of the coefficients dj;, let us substitute the right-hand side of the expression (3.17)
into the equality K, um: = 1y, (), where ¢y, is defined in (3.10). Consequently, taking into account
that the system of functions {yy(x)} represents a basis in Lo(2) and 1 — g cos T # 0 for |u| < 1,
we obtain the following formulas:

7 1
go— L B _
g 1 — pcos uiT (Pl PE) Lo(Q) — Qrppir sin T +
T
+“/Fm”“(7>c°s”k<T—T>dT  E=T1 . (3.18)
0

Below we assume that the Lipschitz domain €2 is such that eigenfunctions ¢, € C2(Q), k > 1. For
example, this will take place if 9Q € C1"/2+3 [19]. This fact will also take place in the case of a piece-
wisely smooth Lipschitz domain, e.g., for the parallelepiped 2 = {2 € R": |z;| < a;, i =1,...,n}
the correspondent eigenfunctions oy, € C(2) [20]. Therefore, since F,, € C§°(Dr), then due
to (3.13) the function F,, x € C?([0,T)), and consequently the function u,, from (3.17) belongs to

the space C2(Dr). Further, since pi|sn = 0, then due to (3.17) we have u,, |r = 0, and thereby
0. —
um € C3(D7,T),m=1,2,....
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According to the construction the function u,, from (3.17) satisfies the following equalities:
U [P =0, Lot = Fo, Um(2,0) = ¢y, (), Kyume =y, (x), €, (3.19)
and thereby
(m —u)lr =0, Lo(um —up) = Fyp = Fry  (tm — u)(w,0) = (1, — o1,) (),

K, (ume — ure) = (1, — ) (x), =€

Therefore, from a priori estimate (2.4), where for A = 0 the coefficients ¢4 = ¢5 = 0, we obtain

- <c|Fy - F - - + - . (320
[t uk”v?/l(D F)_ClH m = FillL,(pr) + c2llon, %HV?/%(Q) esl| Y, — il Lo ) (3:20)

2 T,

0.
In view of (3.11) and (3.16) from (3.20) it follows that the sequence u,, € C?%(Dr,T) is

fundamental in the complete space I/%/%(DT, I'). Therefore, there exists a function u € I/?/%(DT, I)
such that due to (3.11), (3.16) and (3.19) there are valid the limit equalities (1.8), (1.9) for A = 0. The
last means that the function « is a generalized solution of the problem (3.8), (3.9). The uniqueness
of this solution follows from a priori estimate (2.4) where the constants ¢4 = ¢5 = 0 for A = 0.
Therefore, for the solution v of the problem (3.8), (3.9) we have u = L Y(F, ,1), where Ly L

0 0
Lo(Dr) x W3(Q) x La(2) — Wi(Dr,T), which norm due to (2.4) can be estimated as follows:

||Lal|| < Yo = max(cl, CQ,C:}). (321)

Lo (DT) X V?/% (Q) X Lo (Q)*}V?/% (DT,F)

0 0
Due to the linearity of the operator Ly ' : Lo(Dr) x Wi(Q) x La(Q) — Wi(Dr,T) we have a

representation
L' (F, ) = Ly ' (F,0,0) + Ly (0,0,0) + Lg ' (0,0,9) = Loy’ (F) + Lgy (9) + Lag (¥),
(3.22)

0 0 0 0
where Ly : Lo(Dr) — W(Dp,T), Loy : WA(Q) — Wi(Dr,T) and Ly; : Lo(Q) — Wi(Dr,T)
are linear continuous operators, besides, according to (3.21)

Ly} <, Lo <70,
I Zox HLQ(DTHI%;(DT,F) =0 1o ”VOV%(Q)%V?/é(DT:F) =7
(3.23)
I1Zgs | = -

0
La(Q)=W5(Dr.I)

0
Remark 3.1. Note, that for F' € Ly(D7), ¢ € Wi(2), ¥ € La(), due to (1.5), (1.6), (3.21) -

0
(3.23) and the Remark 1.1 the function v € Wi(Dr,T') is a generalized solution of the problem
(1.1)—(1.4) if and only if, when u is a solution of the following functional equation

u = Lo (=Af(@,t,u)) + Lot (F) + Loy () + Log () (3.24)
0
in the space W3(Dr,T).

ISSN 1027-3190.  Vxp. mam. ocypu., 2015, m. 67, Ne 1



ON THE SOLVABILITY OF A PROBLEM NONLOCAL IN TIME FOR A SEMILINEAR MULTIDIMENSIONAL 101

Rewrite the equation (3.24) in the form

u = Agu := —ALg (Nou) + Lo (F) + Loy (9) + Los (¥), (3.25)

0
where the operator Ny : W3(Dp,T') — Lo(Dr) from (1.7), according to the Remark 1.1 is continuous

and compact operator. Therefore, due to (3.23) the operator Ag: V?/%(DT, r) — I/(I)/%(DT, I') from
(3.25) is also continuous and compact. At the same time, according to the Lemma 2.1 and (2.36) for
any parameter 7 € [0, 1] and for any solution u of the equation u = 7 Agu with the parameter 7 it is
valid the same a priori estimate (2.4) with nonnegative constants ¢;, not dependent on u, F), ¢, v and
7. Therefore, due to the Schaefer’s fixed point theorem [21], the equation (3.25), and therefore, due

0
to the Remark 3.1 the problem (1.1)—(1.4) has at least one solution u € W3(Dr,T'). Thus, we have
proved the following theorem.

Theorem 3.1. Let A > 0, |u| < 1, F € La(Dr), ¢ € V?/%(Q), W € Lo(Q); the conditions (1.5),
(1.6), (2.2), (2.3) be fulfilled. Then the problem (1.1)—(1.4) has at least one generalized solution.
Remark 3.2. Note that for |u| = 1, even in the linear case, i.e., for f = 0, the homogeneous
problem corresponding to (1.1)—(1.4) may have finite or even infinite number of linearly independent
solutions. Indeed, in the case 1 = 1 denote by A(1) the set of points py from (3.3), for which
T

T
the ratio MZL is a natural number, i.e., A(1) = {Mk- o € N ;. If we search for a solution
T T

of the problem (3.8), (3.9) in the form of representation (3.3), then for determination of unknown
coefficients by,contained in it, let us substitute the right-hand side of this representation into the
equality K,u; = ¢(x). As a result we have

T

(1 — pcos e T)bg = (¥, 1) Ly (Q) — kit sin g T + /Fk(T) cos py (T — 7)dr. (3.26)
0
It is obvious, that when A(1) # @ and py, € A(1), u = 1 we have 1 — cos T = 0 and for F' = 0,
¢ = ¢ = 0 and thereby for a;, = 0, Fj(7) = 0 the equality (3.26) will be satisfied by any number
bi. Therefore, in accordance with (3.3) the function uy(z,t) = C'sin ugteg(z), C = const # 0,
satisfies the homogeneous problem corresponding to (3.8), (3.9). Analogously, in the case p = —1
T
denote by A(—1) the set of points py from (3.3) for which the ratio il is odd integer number. In

this case 1 — pcos pupT" = 0 for py, € A(—1), p = —1 and the functiog ug(z,t) = Csin ppter(z),
C = const # 0, is a nontrivial solution of the homogeneous problem corresponding to (3.8), (3.9).
For example, when n = 2, = (0,1) x (0, 1) the eigenvalues and eigenfunctions of the Laplace
operator A are [20]

A = —7r2(k:% + k%), or(z1,T2) = sinkymxy sinkemzo, k= (k1,k2),

i.e., up = m\/k? + k3. For k1 = p? —¢?, ka = 2pq, where p and q are any integer numbers we obtain
. T T T .
wi = 7(p? +¢?) [22]. In this case for — € N we have ’L;L = (p*+ q2)§ € N and according to the
T

said above, when 1 = 1 the homogeneous problem corresponding to (3.8), (3.9) has infinite number
of linearly independent solutions

Up.q(z,t) = sin 7(p* + ¢Ptsinw(p® — ¢*)zy sin 2wpgzy  Vp,q € N. (3.27)
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Analogously, when pn = —1 the solutions of the homogeneous problem corresponding to (3.8), (3.9)
in the case when p is an even number, while ¢ and 7" odd numbers, are the functions from (3.27).

4. The uniqueness of the solution of the problem (1.1)-(1.4). On the function f in the
equation (1.1) let us impose the following additional requirements:

f,f. € C(Dr x R), \fi(z,t,u)| < a+blul”, (x,t,u) € Dy xR, 4.1

where a, b,y = const > 0.

2
It is obvious that from (4.1) we have the condition (1.5) for & = v + 1 and when v < ] we
n

1
have a = v+ 1< nt and, therefore, the condition (1.6) is fulfilled.
n—

0
Theorem 4.1. Let |u| < 1, F € Ly(D7), o € W3(Q), ¥ € Lo(Q) and the condition (4.1) be

Sulfilled for v <
n —
Ao = MNo(F, f,p,0, 1w, D) such that for 0 < A\ < Ao the problem (1.1)—(1.4) can not have more
than one generalized solution.
Proof. Indeed, suppose that the problem (1.1)—(1.4) has two different generalized solutions u;

R and also hold the conditions (2.2), (2.3). Then there exists a positive number

0,
and up. According to Definition 1.1 there exist sequences of functions u;, € C 2(Dp,T), 5 =1,2,
such that

klinc}o | — Uwal(D o 0, klgglo | Lawjk — Fllpo(p) = 0, 4.2)
Jim gl — SDHV%%(Q) =0, lim Kk =Yl =0, j=12 (4.3)
Let
w = uy — Ui, Wy, 1= Uk — Uik, Fy, := Lyugy, — Lyuqg, 4.4)
gk ‘= )\(f($,t,U1k) - f(l',t,UQk))- (45)

In view of (4.2), (4.3) and (4.4) it is easy to see that

li - = lim || F = 4.6
Jm Jwg wHVoV;(DTI) 0, lim [Ellr,py) =0, (4.6)
Jim Hwk!t:OHVQ/%(Q) =0, lim [|Kywpellr, @) = 0. 4.7)

0.
In view of (4.4), (4.5) the function wy, € C 2(Dr,T') satisfies the following equalities:

92
3t2 Z wk = (Fx + g&)(x,t), (x,t) € Dr, (4.8)
wi [r =0, (4.9)
wi(z,0) = (z), z€Q, (4.10)
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K,uwkt = wkt(fL’,O) _,uwk:t(va) = ¢k($)¢ r €4, (4.11)

where @y (x) := ugg(x,0) — uig(z,0), @k(x) = Kyuope — Kpuipg.
First let us estimate the function g; from (4.5). Taking into account the obvious inequality
|d1 + da|” < 2V max(|d1]7,|d2|") < 27(|d1]” + |d2|Y) for v > 0, due to (4.1) we have

1

|f(z,t,uok) — f(o,t, k)| = |(uok — u1k)/f;($,t,ulk + 7 (ugk — uig))dr| <
0

1
< Jusk — unl /(a Fb(1 = 7)uk + Tuge])dr < alusk — wi|+
0

+27b\u2k — ulk](|u1k\7 + |U2k‘7) = a]wk| + 2Wb]wk\(]u1k\7 + IU/QM’Y). (4.12)
In view of (4.5) from (4.12) we obtain
1980l Lo (Dp) < Aallwill gy + A270]] Jwie] (k] + [uze )| Lo (pry <

< AallwilLy(pry + A2kl L, (D) (e + |2k )2, (01)- (4.13)

Here we used the Holder’s inequality [23]
vivall (D) < V1l (o) 10202y (D1

1 1 1 . .
where — + — = — and in the capacity of p, ¢ and r we take
P q r

n+1
n—1’

p=2 qg=n-+1, r=2. (4.14)

Since dim D1 = n + 1, then according to the Sobolev embedding theorem [17] for 1 < p <

< 2(n+1)

we get
n—1 &

lollz,or) < Collvlwg gy Yo € Wa (Dr) (4.15)

with positive constant C,, not dependent on v € Wy (Dr).

2 2 1
Due to the condition of the theorem v < 1 and, therefore, v(n + 1) < M Thus, due
n— n—
to (4.14) from (4.15) we have
2(n+1)
lwrllz,ory < Collwrllwiry,  p=——77 k=1, (4.16)

I(uael” + fuar )z, (0r) < Wkl zyor) + Huzk! Ly or) =

vy Y Y Y Y
Vussl} ooy T 1bllh s oy < Oy Ny + 1026y o) @17
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In view of the first equality of (4.2) there exists a natural number kg such that for £ > kg we
obtain

HulkH (D) S HungVQI(DT) +1, 1=1,2, k>ko. (4.18)
Further, in view of (4.16), (4.17) and (4.18) from (4.13) we get

1981l La(pr) < AallwllLo(pry +A20CCl gy (lunllyy p,y +

+Hu2||gv21(DT) + 2)lwkllwy oy < AMsllwellw o), (4.19)
where we have used the inequality ||wil|1,(py) < [lwkllwy(pr),

2n+1
n—1

Ms = a+27bC,C 1) (Hulel ppy +lu2lli p + 2) p= (4.20)

Since a priori estimate (2.4) is valid for A = 0, then due to (2.27) and (2.36) in this estimate
¢4 = ¢5 = 0, and thereby for the solution wy, of the problem (4.8)—(4.11) the following estimate:

w < I F, + + @ + Al 421
[ kHVole - U Fk + gkl LoDy z\lwkllvovl(m sl VKl Lo (o) (4.21)

2( Tv) 2

is valid, where the constants ¢, ¢3, ¢J do not depend on \.

Because of ||wy|| $10mD) = |lwkllwy () and due to (4.19) from (4.21) we have
2 T,
< | F + Aef M; + )@ + 3|9 . (422
||wk:HV([>/é( N )_C1|| kllLo(Dr) + Act 8”wk||vt‘1/é(DT,F) CQH%HV?@(Q) csllrllia ). (4.22)

Note that since for u; and uy it is valid a priori estimate (2.4), then the constant Mg from (4.20)
will depend on A, F), f, v, ¥, Dp, besides, due to (2.27) and (2.36) the value of Mg continuously
depends on A for A > 0 and

0< lim Mg = MY < +oc. (4.23)
A—0+

Due to (4.23) there exists a positive number Ao = A\o(F,, f, @, 1, u, D) such that for
0<A< Ao (4.24)

we obtain AcY Mg < 1. Indeed, let us fix arbitrarily a positive number ;. Then, due to (4.23), there
exists a positive number A;, such that 0 < Mg < Mg O+ e for 0 < X\ < Ap. It is obvious that
for A9 = min (A1, (<)(MJ + e1))™!) the condition AcY Mg < 1 will be fulfilled. Therefore, in the
case (4.24) from (4.22) we get

11— R +9||@ + A3l . k> ko
Hwk||W1(DT,F) ( aMs)™ |l Fxll Ly(or) CzH@kHIg/%(Q) sl o) > ko
(4.25)
From (4.2) and (4.4) it follows that limy_, ||wk]| o = |Jug — u1l] o . On the other
WL(Dp.T) Wi(Dr,T)
hand due to (4.6), (4.7) and (4.10), (4.11) from (4.25) we have limg_, ||wi]| o » = 0. Thus
W2 T,
|lug — u1l| o =0, i.e., uz = uq, which leads to contradiction.
Q(DT7 )

Theorem 4.1 is proved.
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