
ISSN 0012-2661, Differential Equations, 2015, Vol. 51, No. 10, pp. 1369–1386. c© Pleiades Publishing, Ltd., 2015.
Original Russian Text c© S.S. Kharibegashvili, O.M. Dzhokhadze, 2015, published in Differentsial’nye Uravneniya, 2015, Vol. 51, No. 10, pp. 1376–1392.

PARTIAL DIFFERENTIAL EQUATIONS

Time-Periodic Problem
for a Weakly Nonlinear Telegraph Equation

with Directional Derivative in the Boundary Condition

S. S. Kharibegashvili and O. M. Dzhokhadze
Andrea Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University,

Tbilisi, Georgia
I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: kharibegashvili@yahoo.com, ojokhadze@yahoo.com

Received May 20, 2014

Abstract—We study a time-periodic problem for the wave equation with a power-law non-
linearity and with a directional derivative in the boundary condition. We study the existence,
uniqueness, and absence of solutions of the problem.

DOI: 10.1134/S0012266115100122

1. STATEMENT OF THE PROBLEM

In the strip
Ω := {(x, t) ∈ R

2 : 0 < x < l, t ∈ R},
in the domain of the independent variables x and t, consider the problem of finding a solution
U(x, t) of the telegraph equation with a power-law nonlinearity of the form

LλU := Utt − Uxx + 2aUt + cU + λ|U |αU = F (x, t), (x, t) ∈ Ω, (1.1)

with the homogeneous Poincaré boundary condition

γ1Ux(0, t) + γ2Ut(0, t) + γ3U(0, t) = 0, t ∈ R, (1.2)

for x = 0, the homogeneous Dirichlet boundary condition

U(l, t) = 0, t ∈ R, (1.3)

for x = l, and the periodicity condition with respect to the variable t,

U(x, t + T ) = U(x, t), x ∈ [0, l], t ∈ R, (1.4)

with constant real coefficients a, c, and γi, i = 1, 2, 3, and a parameter λ �= 0; moreover, γ1γ2 �= 0.
Here T := const > 0, α := const > 0, and F and U are the given and unknown real functions
T -periodic in time.

Remark 1.1. Since, by assumption, γ1γ2 �= 0, it follows that the boundary condition (1.2) can
be represented in the form

γUx(0, t) + Ut(0, t) + kU(0, t) = 0, t ∈ R,

where γ := γ1γ
−1
2 �= 0 and k := γ3γ

−1
2 .
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1370 KHARIBEGASHVILI, DZHOKHADZE

Remark 1.2. Set ΩT := Ω∩{0 < t < T} and f := F |ΩT
. One can readily see that if U ∈ C2(Ω)

is a classical solution of problem (1.1)–(1.4), then, by virtue of Remark 1.1, the function u := U |ΩT

is a classical solution of the nonlocal problem

Lλu = f(x, t), (x, t) ∈ ΩT , (1.5)
γux(0, t) + ut(0, t) + ku(0, t) = 0, 0 ≤ t ≤ T (γ �= 0), (1.6)

u(l, t) = 0, 0 ≤ t ≤ T, (1.7)
(B0u)(x) = 0, (B0ut)(x) = 0, x ∈ [0, l], (1.8)

where (B0w)(x) := w(x, 0) − w(x, T ) and x ∈ [0, l], and conversely, if f ∈ C(ΩT ) and u ∈ C2(ΩT )
is a classical solution of problem (1.5)–(1.8), then the function U ∈ C2(Ω) that is the extension of
the function u T -periodic with respect to time from the domain ΩT into the strip Ω is a classical
solution of problem (1.1)–(1.4) provided that f(x, 0) = f(x, T ), x ∈ [0, l]. Thus, instead of problem
(1.1)–(1.4), we study problem (1.5)–(1.8).

Definition 1.1. Let f ∈ C(ΩT ) be a given function. Set

Γ1 : x = 0, 0 ≤ t ≤ T, Γ2 : x = l, 0 ≤ t ≤ T.

A function u is called a strong generalized solution of problem (1.5)–(1.8) of the class C if it belongs
to C(ΩT ) and there exists a sequence of functions

un ∈ C̊2(ΩT ,Γ1,Γ2; k) := {w ∈ C2(ΩT ) : (γwx + wt + kw)|Γ1 = 0, w|Γ2 = 0},

such that un → u and Lλun → f in the space C(ΩT ) and B0un → 0 and B0unt → 0 in the spaces
C1([0, l]) and C([0, l]), respectively, as n → ∞.

Remark 1.3. Obviously, a classical solution of problem (1.5)–(1.8) in the class C2(ΩT ) is
a strong generalized solution of this problem in the class C.

Note that a wide set of publications (e.g., see [1–16] and the bibliography therein) deal with
a periodic problem for nonlinear hyperbolic equations with boundary conditions of the Dirichlet
or Robin type. In the present paper, we study the time-periodic problem (1.5)–(1.8) in which
the direction of the derivative in the boundary condition does not coincide with the direction
of the normal. Here the periodic problem is reduced to one time-nonlocal problem, and an a priori
estimate (see Section 2) is proved for its solution. In the proof of the existence theorem, we use
representations of solutions of the Cauchy, Goursat, and Darboux problems in various parts of
the considered domain (see Section 3). In Section 4, we prove the uniqueness of the solution
of problem (1.5)–(1.8), and in Section 5 we study the absence of a solution of that problem in the
class of nonnegative functions.

2. A PRIORI ESTIMATE FOR A SOLUTION OF PROBLEM (1.5)–(1.8)

For the new unknown function

v := �(ε, t)u, �(ε, t) := exp(εt), (x, t) ∈ ΩT , (2.1)

we rewrite problem (1.5)–(1.8) in the form

Φλ(ε)v := vtt − vxx + 2(a − ε)vt + (c + ε2 − 2εa)v + λ�(−αε, t)|v|αv

= �(ε, t)f(x, t), (x, t) ∈ ΩT , (2.2)
γvx(0, t) + vt(0, t) + (k − ε)v(0, t) = 0, 0 ≤ t ≤ T (γ �= 0), (2.3)
v(l, t) = 0, 0 ≤ t ≤ T, (2.4)
(Bεv)(x) = 0, (Bεvt)(x) = 0, x ∈ [0, l], (2.5)
(Bεw)(x) := w(x, 0) − �(−ε, T )w(x, T ), x ∈ [0, l], (2.6)

where ε = ε(a, c, k) is a sufficiently small positive number, which will be specified below.
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TIME-PERIODIC PROBLEM FOR A WEAKLY NONLINEAR TELEGRAPH EQUATION 1371

Note that the function u is a strong generalized solution of problem (1.5)–(1.8) in the class
C in the sense of Definition 1.1 if and only if the function v is a strong generalized solution of
problem (2.2)–(2.5) in the class C; i.e., the function v belongs to C(ΩT ), and there exists a sequence
of functions vn ∈ C̊2(ΩT ,Γ1,Γ2; k − ε) such that

lim
n→∞

‖vn − v‖C(ΩT ) = 0, lim
n→∞

‖Φλ(ε)vn − �(ε, ·)f‖C(ΩT ) = 0, (2.7)

lim
n→∞

‖Bεvn‖C1([0,l]) = 0, lim
n→∞

‖Bεvnt‖C([0,l]) = 0. (2.8)

We introduce the condition

a > 0, c > 0; γ < 0, k > 0. (2.9)

Lemma 2.1. Let λ > 0, and let conditions (2.9) be satisfied. Then a strong generalized solution
u of problem (1.5)–(1.8) in the class C satisfies the a priori estimate

‖u‖C(ΩT ) ≤ c1‖f‖C(ΩT ) (2.10)

with a positive constant c1 = c1(a, c, k, l, T ) independent of the functions u and f .

Proof. Let v be a strong generalized solution of problem (2.2)–(2.5) in the class C; i.e., v belongs
to C(ΩT ), and there exists a sequence of functions

vn ∈ C̊2(ΩT ,Γ1,Γ2; k − ε)

such that the limit relations (2.7) and (2.8) hold.
Let us treat the function vn as a solution of the problem

Φλ(ε)vn = �(ε, t)fn(x, t), (x, t) ∈ ΩT , (2.11)
γvnx(0, t) + vnt(0, t) + (k − ε)vn(0, t) = 0, 0 ≤ t ≤ T (γ �= 0), (2.12)
vn(l, t) = 0, 0 ≤ t ≤ T, (2.13)
(Bεvn)(x) = ϕn(x), (Bεvnt)(x) = ψn(x), x ∈ [0, l], (2.14)

where
fn := �(−ε, t)Φλ(ε)vn, ϕn := Bεvn, ψn := Bεvnt. (2.15)

By multiplying both sides of relation (2.11) by 2vnt and by integrating the resulting relation
over the domain Ωτ := {(x, t) ∈ ΩT : 0 < t < τ}, 0 < τ ≤ T , we obtain

∫

Ωτ

(v2
nt)t dx dt − 2

∫

Ωτ

vnxxvnt dx dt + 4(a − ε)
∫

Ωτ

v2
nt dx dt + (c + ε2 − 2εa)

∫

Ωτ

(v2
n)t dx dt

+
2λ

α + 2

∫

Ωτ

�(−αε, t)(|vn|α+2)t dx dt = 2
∫

Ωτ

�(ε, t)fnvnt dx dt. (2.16)

Set ωτ : 0 ≤ x ≤ l, t = τ ; Γ1,τ : x = 0, 0 ≤ t ≤ τ , and Γ2,τ : x = l, 0 ≤ t ≤ τ ; 0 ≤ τ ≤ T . Let
ν := (νx, νt) be the unit outward normal to ∂Ωτ . Since

νx|ω0∪ωτ
= 0, νx|Γ1 = −1, νx|Γ2 = 1, νt|Γ1∪Γ2 = 0, νt|ω0 = −1, νt|ωτ

= 1,

it follows that, by using relations (2.12) and (2.13), by taking into account the relations vnx(0, t) =
−γ−1[vnt(0, t) + (k − ε)vn(0, t)], 0 ≤ t ≤ T , and vnt(l, t) = 0, 0 ≤ t ≤ T , and by performing
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integration by parts on the left-hand side in relation (2.16), we obtain∫

Ωτ

(v2
nt)t dx dt =

∫

∂Ωτ

v2
ntνt ds =

∫

ωτ

v2
nt dx −

∫

ω0

v2
nt dx,

− 2
∫

Ωτ

vnxxvnt dx dt =
∫

Ωτ

[(v2
nx)t − 2(vnxvnt)x] dx dt

=
∫

ωτ

v2
nx dx −

∫

ω0

v2
nx dx − 2

∫

Γ1,τ∪Γ2,τ

vnxvntνx dt

=
∫

ωτ

v2
nx dx −

∫

ω0

v2
nx dx − 2γ−1

∫

Γ1,τ

[vnt + (k − ε)vn]vnt dt

=
∫

ωτ

v2
nx dx −

∫

ω0

v2
nx dx − 2γ−1

∫

Γ1,τ

v2
nt dt − γ−1(k − ε)

∫

Γ1,τ

(v2
n)t dt

=
∫

ωτ

v2
nx dx −

∫

ω0

v2
nx dx − 2γ−1

∫

Γ1,τ

v2
nt dt − γ−1(k − ε)[v2

n(0, τ) − v2
n(0, 0)],

∫

Ωτ

(v2
n)t dx dt =

∫

∂Ωτ

v2
nνt ds =

∫

ωτ

v2
n dx −

∫

ω0

v2
n dx,

∫

Ωτ

�(−αε, t)(|vn|α+2)t dx dt =
∫

∂Ωτ

�(−αε, t)|vn|α+2νt ds + αε

∫

Ωτ

�(−αε, t)|vn|α+2 dx dt

= �(−αε, τ)
∫

ωτ

|vn|α+2 dx −
∫

ω0

|vn|α+2 dx + αε

∫

Ωτ

�(−αε, t)|vn|α+2 dx dt.

Next, by virtue of these relations, from (2.16), we have
∫

ωτ

[
(c + ε2 − 2εa)v2

n + v2
nx + v2

nt +
2λ

α + 2
�(−αε, τ)|vn|α+2

]
dx − γ−1(k − ε)v2

n(0, τ)

+ 4(a − ε)
∫

Ωτ

v2
nt dx dt +

2λαε

α + 2

∫

Ωτ

�(−αε, t)|vn|α+2 dx dt − 2γ−1

∫

Γ1,τ

v2
nt dt

=
∫

ω0

[
(c + ε2 − 2εa)v2

n + v2
nx + v2

nt +
2λ

α + 2
|vn|α+2

]
dx − γ−1(k − ε)v2

n(0, 0)

+ 2
∫

Ωτ

�(ε, t)fnvnt dx dt. (2.17)

By virtue of conditions (2.9), we choose a number ε = ε(a, c, k) > 0 small enough to ensure that

c + ε2 − 2εa ≥ 0, k − ε ≥ 0, a − ε ≥ 0, (2.18)

for example, ε = min(c/(2a), a/2, k/2).
By setting

wn,λ(τ) :=
∫

ωτ

[
(c + ε2 − 2εa)v2

n + v2
nx + v2

nt +
2λ

α + 2
�(−αε, τ)|vn|α+2

]
dx

− γ−1(k − ε)v2
n(0, τ), 0 ≤ τ ≤ T, (2.19)
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and by using inequalities (2.18) and λ > 0, from relation (2.17), we obtain

wn,λ(τ) ≤ wn,λ(0) + 2
∫

Ωτ

�(ε, t)fnvnt dx dt. (2.20)

Since the inequality

2�(ε, t)fnvnt ≤
�(2ε, T )

ε1

f 2
n + ε1v

2
nt (2.21)

holds for any ε1 = const > 0, it follows from (2.20) that

wn,λ(τ) ≤ wn,λ(0) +
�(2ε, T )

ε1

∫

Ωτ

f 2
n dx dt + ε1

∫

Ωτ

v2
nt dx dt. (2.22)

By virtue of condition (2.18), notation (2.19), and the inequalities γ < 0 and λ > 0, we obtain
the relation ∫

Ωτ

v2
nt dx dt =

τ∫

0

[ ∫

ωt

v2
nt dx

]
dt ≤

τ∫

0

wn,λ(t) dt,

which, together with inequality (2.22), implies that

wn,λ(τ) ≤ ε1

τ∫

0

wn,λ(t) dt + wn,λ(0) +
�(2ε, T )

ε1

∫

Ωτ

f 2
n dx dt, 0 ≤ τ ≤ T.

The last inequality, together with the Gronwall lemma and the relation Ωτ ⊂ ΩT , implies that

wn,λ(τ) ≤ [wn,λ(0) + lT ε−1
1 �(2ε, T )‖fn‖2

C(ΩT )
]�(ε1, τ); (2.23)

here we have used the obvious inequality

‖fn‖2
L2(ΩT ) ≤ lT‖fn‖2

C(ΩT )
.

Below we use the well-known inequalities (e.g., see [17, p. 67])

|a1 + a2|2 = a2
1 + a2

2 + 2a1a2 ≤ a2
1 + a2

2 + ε2a
2
1 + ε−1

2 a2
2 = (1 + ε2)a2

1 + (1 + ε−1
2 )a2

2,

|a1 + a2|α+2 ≤ (1 + ε2)|a1|α+2 + C(α, ε2)|a2|α+2,
(2.24)

which hold for any ε2 > 0 and for arbitrary a1 and a2, where C(α, ε2) is a positive constant.
By using notation (2.1), (2.6), and (2.19), condition (2.14), and inequalities (2.24), we obtain

wn,λ(0) =
∫

ω0

[
(c + ε2 − 2εa)v2

n + v2
nx + v2

nt +
2λ

α + 2
|vn|α+2

]
dx − γ−1(k − ε)v2

n(0, 0)

=
∫

ωT

[
(c + ε2 − 2εa)[�(−ε, T )vn + ϕn]2 + [�(−ε, T )vnx + ϕnx]2 + [�(−ε, T )vnt + ψn]2

+
2λ

α + 2
|�(−ε, T )vn + ϕn|α+2

]
dx − γ−1(k − ε)[�(−ε, T )vn(0, T ) + ϕn(0)]2

≤ (1 + ε2)�2(−ε, T )wn,λ(T ) + βn,λ = (1 + ε2)�(−2ε, T )wn,λ(T ) + βn,λ, (2.25)
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1374 KHARIBEGASHVILI, DZHOKHADZE

where

βn,λ := C1(α, ε2)

{∫

ωT

[
(c + ε2 − 2εa)ϕ2

n + ϕ2
nx + ψ2

n +
2λ

α + 2
|ϕn|α+2

]
dx − γ−1(k − ε)ϕ2

n(0)

}
,

C1(α, ε2) = const > 0.

One can readily see that
lim

n→∞
βn,λ = 0 (2.26)

by virtue of relations (2.8) and (2.15). Then it follows from inequalities (2.23) and (2.25) that

wn,λ(0) ≤ (1 + ε2)�(−2ε, T )[wn,λ(0) + lT ε−1
1 �(2ε, T )‖fn‖2

C(ΩT )
]�(ε1, T ) + βn,λ. (2.27)

By virtue of the equation ε = ε(a, c, k) > 0 and notation (2.1), the positive numbers εi =
εi(ε, a, c, k, T ), i = 1, 2, can be chosen small enough to ensure that

μ := (1 + ε2)�(−2ε, T )�(ε1, T ) = (1 + ε2)�(−2ε + ε1, T ) < 1. (2.28)

For example, since ex > 1 + x for x > 0, one can take ε1 = ε and ε2 = εT , where ε =
min(c/(2a), a/2, k/2). Then, by using the estimate (2.28), from relation (2.27), we obtain the
inequality

wn,λ(0) ≤ lTμ�(2ε, T )
ε1(1 − μ)

‖fn‖2
C(ΩT )

+
βn,λ

1 − μ
.

Relation (2.23), together with the last inequality, implies that

wn,λ(τ) ≤
[
lT�(2ε, T )

ε1

‖fn‖2
C(ΩT )

+ βn,λ

]
�(ε1, T )
1 − μ

. (2.29)

By taking into account conditions (2.13) and (2.18), notation (2.19), and the relations γ < 0
and λ > 0 and by using the Schwarz inequality, for any (x, τ) ∈ ΩT , we obtain

|vn(x, τ)|2 =

∣∣∣∣∣
l∫

x

vnx(ξ, τ) dξ

∣∣∣∣∣
2

≤
l∫

x

12 dξ

l∫

x

v2
nx(ξ, τ) dξ ≤ l

l∫

0

v2
nx(ξ, τ) dξ = l

∫

ωτ

v2
nx dx ≤ lwn,λ(τ),

and hence
|vn(x, τ)| ≤ [lwn,λ(τ)]1/2, (x, τ) ∈ ΩT . (2.30)

Next, by virtue of the obvious inequality
√

a2
1 + a2

2 ≤
√

|a1| +
√

|a2|, it follows from rela-
tions (2.29) and (2.30) that

|vn(x, τ)| ≤ c1‖fn‖C(ΩT ) + c2

√
βn,λ, (x, τ) ∈ ΩT . (2.31)

Here c2 := c2(a, c, k, l, T ) = const > 0 and c1 := l�(ε + 2−1ε1, T )
√

T/(ε1(1 − μ)), where ε1 = ε;
i.e.,

c1 := l�

(
3ε
2

, T

)(
T

ε(1 − μ)

)1/2

; (2.32)

moreover, if a > 0, c ≥ a2, and k ≥ a, then one can take the number a for ε. It follows from
inequality (2.31) that

‖vn‖C(ΩT ) ≤ c1‖fn‖C(ΩT ) + c2

√
βn,λ.

Since the limit relation
lim

n→∞
‖fn − f‖C(ΩT ) = 0
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holds by virtue of relations (2.7) and (2.15), it follows that, by passing in the last inequality to the
limit as n → ∞ and by using (2.26), we obtain

‖v‖C(ΩT ) ≤ c1‖f‖C(ΩT ). (2.33)

This, together with notation (2.1) and the inequality ε > 0, implies the estimates

‖u‖C(ΩT ) ≤ ‖v‖C(ΩT ) ≤ c1‖f‖C(ΩT )

with constant c1 := c1(a, c, k, l, T ) > 0 defined in (2.32). The proof of Lemma 2.1 is complete.

Remark 2.1. In the linear case, i.e., in the case where the parameter λ in Eq. (1.1) is zero, in
a similar way, we introduce the notion of a strong generalized solution of problem (1.5)–(1/8) in
the class C, which satisfies the same a priori estimate (2.10) under conditions (2.9) as shown by the
argument presented in the proof of Lemma 2.1. Since problem (1.5)–(1.8) is linear, it follows that
the strong generalized solution of this problem is unique in the class C.

Remark 2.2. It follows from the proof of Lemma 2.1 that if condition (2.9) is satisfied, then,
for diminishing coefficients of Eq. (1.5), the constant c1 occurring in the a priori estimates (2.10)
and (2.33) can infinitely grow; for example, if a → 0+, then ε → 0+ because 0 < ε ≤ a, and,
by virtue of (2.32), we have limε→0+ c1 = +∞. At the same time, the problem on the solvability
of problem (1.5)–(1.8) in Section 3 is reduced to the problem of the derivation of a uniform, with
respect to the parameter τ ∈ [0, 1], a priori estimate for a strong generalized solution of the equation

vtt − vxx + τ(c − a2)v + τλ�(−αa, t)|v|αv = τ�(a, t)f(x, t), (x, t) ∈ ΩT , (2.34)

satisfying the boundary and nonlocal conditions (2.3)–(2.5) for ε = a. To obtain a uniform, with
respect to τ , a priori estimate for the solution of problem (2.34), (2.3)–(2.5) for ε = a, it suffices to
replace conditions (2.9) by the following more restrictive conditions:

a > 0, c ≥ a2, γ < 0, k ≥ a. (2.35)

Indeed, by considering the case of conditions (2.35) and by reproducing the argument used in
the solution of problem (2.2)–(2.5) in Lemma 2.1 with ε = a for the solution of problem (2.34),
(2.3)–(2.5) with ε = a, we obtain the a priori estimate (2.33) with the constant

c1 := l�

(
3a
2

, T

)(
T

a(1 − μ)

)1/2

, (2.36)

independent of τ ∈ [0, 1], where μ = (1 + aT )�(−a, T ) < 1, because �(a, T ) = eaT > 1 + aT .

3. REDUCTION OF PROBLEM (1.5)–(1.8) TO A NONLINEAR INTEGRAL EQUATION.
SOLVABILITY OF PROBLEM (1.5)–(1.8)

In notation (2.1) with ε = a, i.e.,

v := �(a, t)u, (x, t) ∈ ΩT , (3.1)

we rewrite problem (1.5)–(1.8) in the form

Φλ(a)v = vtt − vxx + (c − a2)v + λ�(−αa, t)|v|αv = �(a, t)f(x, t), (x, t) ∈ ΩT , (3.2)
γvx(0, t) + vt(0, t) + (k − a)v(0, t) = 0, 0 ≤ t ≤ T (γ �= 0), (3.3)

v(l, t) = 0, 0 ≤ t ≤ T, (3.4)
(Bav)(x) = 0, (Bavt)(x) = 0, x ∈ [0, l]. (3.5)
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Note that a function u is a strong generalized solution of problem (1.5)–(1.8) in the class C
in the sense of Definition 1.1 if and only if the function v is a strong generalized solution of
problem (3.2)–(3.5) in the class C; i.e., v belongs to C(ΩT ), and there exists a function sequence
vn ∈ C̊2(ΩT ,Γ1,Γ2; k − a) such that

lim
n→∞

‖vn − v‖C(ΩT ) = 0, lim
n→∞

‖Φλ(a)vn − �(a, ·)f‖C(ΩT ) = 0,

lim
n→∞

‖Bavn‖C1([0,l]) = 0, lim
n→∞

‖Bavnt‖C([0,l]) = 0.

In what follows, we study the solvability of problem (3.2)–(3.5) for the case in which T = l.
To this end, we consider several auxiliary linear problems retaining the same notation v and f for
the unknown function and the right-hand side of the equation.

Problem I. Find a function v ∈ C2(Ωl) satisfying the equation

�v := vtt − vxx = f(x, t), (x, t) ∈ Ωl, (3.6)

the boundary conditions

v(0, t) = ν(t), v(l, t) = 0, 0 ≤ t ≤ l, (3.7)

and the initial conditions

v(x, 0) = ϕ(x), vt(x, 0) = ψ(x), xın[0, l], (3.8)

where f ∈ C1(Ωl), ν ∈ C2([0, l]), ϕ ∈ C2([0, l]), and ψ ∈ C1([0, l]) are given functions satisfying the
matching conditions

ν(0) = ϕ(0), ν ′(0) = ψ(0), ν ′′(0) − ϕ′′(0) = f(0, 0), ϕ(l) = ψ(l) = 0, ϕ′′(l) = −f(l, 0).

It is known that problem (3.8)–(3.10) is well posed; below we represent its solution v ∈ C2(Ωl) in
a convenient form. To this end, we split the domain Ωl, that is, the square with the vertices O(0, 0),
A1(0, l), A2(l, l), and A3(l, 0), into four right triangles D1 := ΔOO1A3, D2 := ΔOO1A1, D3 :=
ΔA3O1A2, and D4 := ΔO1A1A2, where the point O1(l/2, l/2) is the center of the square Ωl. It is well
known that the solution of Problem I in the triangle D1 is defined by the formula [18, pp. 158, 162]

v(x, t) =
1
2
[ϕ(x − t) + ϕ(x + t)] +

1
2

x+t∫

x−t

ψ(τ) dτ +
1
2

∫

Ω1
x,t

f(ξ, τ) dξ dτ, (x, t) ∈ D1, (3.9)

where Ω1
x,t is the triangle with vertices (x, t), (x − t, 0), and (x + t, 0).

To obtain a solution of Problem I in the triangles D2, D3, and D4, we use the following relation
(e.g., see [18, p. 173; 19; 20]) :

v(P ) = v(P1) + v(P2) − v(P3) +
1
2

∫

PP1P2P3

f(ξ, τ) dξ dτ, (3.10)

which holds for any characteristic rectangle PP1P2P3 ⊂ Ωl for Eq. (3.6), where P and P3, as well
as P1 and P2, are opposite vertices of that rectangle; moreover, the ordinate of the point P exceeds
the ordinates of the remaining points.

Indeed, if the point (x, t) belongs to D2, then, by using relation (3.10) for the characteristic
rectangle with vertices P (x, t), P1(0, t−x), P2(t, x), and P3(t−x, 0) and formula (3.9) for the point
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P2(t, x) ∈ D1, we obtain

v(x, t) = v(P1) + v(P2) − v(P3) +
1
2

∫

PP1P2P3

f(ξ, τ) dξ dτ

= ν(t − x) +
1
2
[ϕ(t − x) + ϕ(t + x)] +

1
2

t+x∫

t−x

ψ(τ) dτ

+
1
2

∫

Ω1
t,x

f(ξ, τ) dξ dτ − ϕ(t − x) +
1
2

∫

PP1P2P3

f(ξ, τ) dξ dτ

= ν(t − x) +
1
2
[ϕ(t + x) − ϕ(t − x)] +

1
2

t+x∫

t−x

ψ(τ) dτ

+
1
2

∫

Ω2
x,t

f(ξ, τ) dξ dτ, (x, t) ∈ D2. (3.11)

Here Ω2
x,t is the quadrangle PP1P3P̃2, and P̃2 = P̃2(x + t, 0).

In a similar way, we obtain

v(x, t) =
1
2
[ϕ(x − t) − ϕ(2l − x − t)] +

1
2

2l−x−t∫

x−t

ψ(τ) dτ +
1
2

∫

Ω3
x,t

f(ξ, τ) dξ dτ, (x, t) ∈ D3, (3.12)

and

v(x, t) = ν(t − x) − 1
2
[ϕ(t − x) + ϕ(2l − t − x)] +

1
2

2l−t−x∫

t−x

ψ(τ) dτ

+
1
2

∫

Ω4
x,t

f(ξ, τ) dξ dτ, (x, t) ∈ D4, (3.13)

where Ω3
x,t is the quadrangle with the vertices P 3(x, t), P 3

1 (l, x+t−l), P 3
2 (x−t, 0), and P 3

3 (2l−x−t, 0)
and Ω4

x,t is the pentagon with the vertices P 4(x, t), P 4
1 (0, t − x), P 4

2 (t− x, 0), P 4
3 (2l − x− t, 0), and

P 4
4 (l, x + t − l).

Problem II. Find a solution v ∈ C2(Ωl) of Eq. (3.6) for f ∈ C1(Ωl) satisfying the boundary
and nonlocal conditions (3.3)–(3.5).

In what follows, we show that, under the conditions

a > 0, γ �= 1 − �(−2a, l)
1 + �(−2a, l)

, (3.14)

Problem II has a unique classical solution v ∈ C2(Ωl) for f ∈ C1(Ωl) and a unique strong generalized
solution (by analogy with Definition 1.1) v in the class C for f ∈ C(Ωl); moreover, in both cases,
the solution can be represented by quadratures via the same formula.

Remark 3.1. One can readily see that condition (2.9) implies condition (3.14).
To construct a solution v of Problem II by quadratures, we treat it as a solution of Problem I

and assume for now that the functions

ϕ(x) := v(x, 0), ψ(x) := vt(x, 0), ν(t) := v(0, t), 0 ≤ x, t ≤ l, (3.15)

on the right-hand sides in conditions (3.7) and (3.8) are unknown.
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Remark 3.2. By taking into account the structure of the domain Ω2
x,t, for (x, t) ∈ D2, we obtain

1
2

∫

Ω2
x,t

f(ξ, τ) dξ dτ =
1
2

t−x∫

0

dτ

x+t−τ∫

−x+t−τ

f(ξ, τ) dξ +
1
2

t∫

t−x

dτ

x+t−τ∫

x−t+τ

f(ξ, τ) dξ.

Therefore, by virtue of formula (3.11), we have the relations

vx(x, t) = −ν ′(t − x) +
1
2
[ϕ′(t + x) + ϕ′(t − x) + ψ(t + x) + ψ(t − x)]

+
1
2

t∫

0

f(x + t − τ, τ) dτ +
1
2

t−x∫

0

f(t − x − τ, τ) dτ − 1
2

t∫

t−x

f(x − t + τ, τ) dτ. (3.16)

Likewise, we obtain

vt(x, t) = ν ′(t − x) +
1
2
[ϕ′(t + x) − ϕ′(t − x) + ψ(t + x) − ψ(t − x)]

+
1
2

t∫

0

f(x + t − τ, τ) dτ − 1
2

t−x∫

0

f(t − x − τ, τ) dτ

+
1
2

t∫

t−x

f(x − t + τ, τ) dτ, (x, t) ∈ D2. (3.17)

Remark 3.3. Formulas for the derivatives vx and vt similar to (3.16) and (3.17) hold for the
solution of Problem I, that is, problem (3.6)–(3.8) in the remaining domains D1, D3, and D4.

By setting x = 0 in formula (3.16) and by taking into account the boundary condition (3.3) for
the unknown functions ν, ϕ, and ψ, from (3.15), we obtain the equation

(γ − 1)ν ′(t) + (a − k)ν(t) = γ

[
ϕ′(t) + ψ(t) +

t∫

0

f(t − τ, τ) dτ

]
, 0 ≤ t ≤ l. (3.18)

In the domain D4, the representation (3.13) for the function v with t = l has the form

v(x, l) = ν(l − x) − ϕ(l − x) + f1(x, l), 0 ≤ x ≤ l, (3.19)

where
f1(x, t) :=

1
2

∫

Ω4
x,t

f(ξ, τ) dξ dτ. (3.20)

Remark 3.4. By taking into account the structure of the domain Ω4
x,t, for (x, t) ∈ D4,

we obtain

2f1(x, t) =

x+t−l∫

0

dτ

τ+2l−x−t∫

t−x−τ

f(ξ, τ) dξ +

t−x∫

x+t−l

dτ

x+t−τ∫

t−x−τ

f(ξ, τ) dξ +

t∫

t−x

dτ

x+t−τ∫

x−t+τ

f(ξ, τ) dξ,

whence, by using the differentiation, we obtain

2f1x(x, l) = −
x∫

0

f(l − x + τ, τ) dτ +

l−x∫

0

f(l − x − τ, τ) dτ

+

l∫

x

f(x + l − τ, τ) dτ −
l∫

l−x

f(x − l + τ, τ) dτ (3.21)
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and

2f1t(x, l) = −
x∫

0

f(l − x + τ, τ) dτ −
l−x∫

0

f(l − x − τ, τ) dτ

+

l∫

x

f(x + l − τ, τ) dτ +

l∫

l−x

f(x − l + τ, τ) dτ. (3.22)

By substituting the function (3.19) into the first condition in (3.5), for the unknown functions
ϕ and ν from (3.15), we obtain the equation

ϕ(x) + �(−a, l)ϕ(l − x) − �(−a, l)ν(l − x) = ψ0(x), 0 ≤ x ≤ l, (3.23)

where
ψ0(x) := �(−a, l)f1(x, l), 0 ≤ x ≤ l. (3.24)

By replacing x in Eq. (3.23) by l − x, we obtain the equation

�(−a, l)ϕ(x) + ϕ(l − x) − �(−a, l)ν(x) = ψ0(l − x), 0 ≤ x ≤ l. (3.25)

By virtue of the first condition in (3.14) and notation (2.1), we have �(−a, l) < 1, which, after the
elimination of ϕ(l − x) from system (3.23), (3.25),

ϕ(x) =
ψ0(x) − �(−a, l)ψ0(l − x) + �(−a, l)ν(l − x) − �(−2a, l)ν(x)

1 − �(−2a, l)
, 0 ≤ x ≤ l. (3.26)

Next, by differentiating relation (3.13) with respect to the variable t, we obtain the representation

vt(x, t) = ν ′(t − x) − 1
2
[ϕ′(t − x) − ϕ′(2l − t − x)] − 1

2
[ψ(2l − t − x) + ψ(t − x)] + f1t(x, t),

whence for t = l we have

vt(x, l) = ν ′(l − x) − ψ(l − x) + f1t(x, l), 0 ≤ x ≤ l. (3.27)

By substituting the derivative (3.27) into the second condition in (3.5), for the unknown functions
ψ and ν in (3.15), we obtain the equation

ψ(x) + �(−a, l)ψ(l − x) − �(−a, l)ν ′(l − x) = ψ1(x), 0 ≤ x ≤ l. (3.28)

Here
ψ1(x) := �(−a, l)f1t(x, l), 0 ≤ x ≤ l. (3.29)

By replacing x in Eq. (3.28) by l − x, we obtain

�(−a, l)ψ(x) + ψ(l − x) − �(−a, l)ν ′(x) = ψ1(l − x), 0 ≤ x ≤ l. (3.30)

By following the derivation of the representation (3.26) and by eliminating ψ(l − x) from sys-
tem (3.28), (3.30), we obtain

ψ(x) =
ψ1(x) − �(−a, l)ψ1(l − x) + �(−a, l)ν ′(l − x) − �(−2a, l)ν ′(x)

1 − �(−2a, l)
, 0 ≤ x ≤ l. (3.31)

By virtue of relations (3.26) and (3.31), we have

ϕ′(t) + ψ(t) =
ψ′

0(t) + ψ1(t) + �(−a, l)ψ′
0(l − t) − �(−a, l)ψ1(l − t) − 2�(−2a, l)ν ′(t)

1 − �(−2a, l)
. (3.32)
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By using relations (3.21), (3.22), (3.24), and (3.29), one can readily show that

ψ′
0(t) + ψ1(t) = �(−a, l)[f1x(t, l) + f1t(t, l)]

= �(−a, l)

[
−

t∫

0

f(l − t + τ, τ) dτ +

l∫

t

f(t + l − τ, τ) dτ

]

and
ψ′

0(l − t) − ψ1(l − t) = �(−a, l)[f1x(l − t, l) − f1t(l − t, l)]

= �(−a, l)

[ t∫

0

f(t − τ, τ) dτ −
l∫

t

f(−t + τ, τ) dτ

]
.

By taking into account these relations, by substituting the expression (3.32) into relation (3.18),
and by using (3.14), we obtain

ν ′(t) + bν(t) = h(t), 0 ≤ t ≤ l. (3.33)

Here

b :=
(a − k)[1 − �(−2a, l)]

γ − 1 + �(−2a, l) + γ�(−2a, l)
, (3.34)

h(t) :=
γ

γ − 1 + �(−2a, l) + γ�(−2a, l)

[
−�(−a, l)

t∫

0

f(l − t + τ, τ) dτ

+ �(−a, l)

l∫

t

f(t + l − τ, τ) dτ − �(−2a, l)

l∫

t

f(−t + τ, τ) dτ +

t∫

0

f(t − τ, τ) dτ

]
. (3.35)

By virtue of condition (3.5) and the notation ν in (3.15), a solution of Eq. (3.33) should satisfy
the nonlocal conditions

ν(0) = �(−a, l)ν(l), (3.36)
ν ′(0) = �(−a, l)ν ′(l). (3.37)

One can readily see that the unique solution of problem (3.33), (3.36) has the form

ν(t) =
�(−b, t)

�(a + b, l) − 1

[
�(a + b, l)

t∫

0

�(b, s)h(s) ds +

l∫

t

�(b, s)h(s) ds

]
, 0 ≤ t ≤ l, (3.38)

where b and h are determined by relations (3.34) and (3.35).

Remark 3.5. One can readily see that the function h occurring in (3.35) satisfies the nonlocal
condition h(0) = �(−a, l)h(l) similar to (3.36), which, in turn, with regard to relations (3.33) and
(3.36), implies the nonlocal condition (3.37).

Remark 3.6. One can also readily see that if f ∈ C1(Ωl) [respectively, f ∈ C(Ωl)], then, by
virtue of relation (3.35), the function ν occurring in the representation (3.38) belongs to C2([0, l])
[respectively, ν ∈ C1([0, l])]; therefore, by virtue of relations (3.20)–(3.22), (3.24), and (3.29),
the functions ϕ and ψ defined by relations (3.26) and (3.31) also belong to the classes C2([0, l])
[respectively, C1([0, l])] and C1([0, l]) [respectively, C([0, l])].

Remark 3.7. By virtue of the representations (3.9), (3.11), (3.12), and (3.13) in the domains
D1, D2, D3, and D4, respectively, with the functions ϕ, ψ, and ν replaced by their expressions from
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formulas (3.26), (3.31), and (3.38), the solution v of Problem II, that is, problem (3.6), (3.3)–(3.5),
can be represented in the form

v = �−1f, (3.39)

where, by virtue of Remarks 3.2–3.6, the linear integral operator

�−1 : C1(Ωl) → C2(Ωl) (3.40)

is continuous. The same representations, together with the above remarks, imply that the linear
integral operator

�−1 : C(Ωl) → C1(Ωl) (3.41)

occurring in (3.39) is continuous as well. In addition, hence it follows that Problem II has a unique
classical solution v ∈ C2(Ωl) for f ∈ C1(Ωl), and this solution admits the representation (3.39).

Remark 3.8. Note that since the space C1(Ωl) is compactly embedded in C(Ωl) [21, p. 135 of
the Russian translation], it follows from (3.41) that the linear operator �−1 : C(Ωl) → C(Ωl) is
a compact operator.

Remark 3.9. If condition (3.14) is satisfied and f ∈ C(Ωl), then the linear problem II has
a unique strong generalized solution v in the class C. Indeed, let us show that the solution is given
by the function (3.39). Since the space C1(Ωl) is dense in the space C(Ωl) [22, p. 37 of the Russian
translation], it follows that there exists a function sequence fn ∈ C1(Ωl) such that

lim
n→∞

‖fn − f‖C(Ωl)
= 0. (3.42)

By virtue of the representations (3.39) and (3.40), the function vn = �−1fn ∈ C2(Ωl) is a classical
solution of the linear problem II for f = fn; moreover, vn → v = �−1f and �vn = fn → f as
n → ∞ in the space C(Ωl) by virtue of (3.41) and (3.42). Therefore, the function (3.39) is a strong
generalized solution of problem II in the class C. Now let us show that this problem has no other
generalized solutions. Indeed, if ṽ is another strong generalized solution of Problem II in the class
C, then, by definition, there exists a function sequence ṽn ∈ C̊2(ΩT ,Γ1,Γ2; k − a) such that

lim
n→∞

‖ṽn − ṽ‖C(Ωl)
= 0, lim

n→∞
‖�ṽn − f‖C(Ωl)

= 0. (3.43)

By setting fn = �ṽn and by using (3.39), we obtain ṽn = �−1fn. By passing in the last relation to
the limit as n → ∞ and by taking into account relations (3.41) and (3.43), we obtain ṽ = �−1f ,
i.e., ṽ = v. The latter contradicts the above-stipulated assumption. Therefore, if condition (3.14)
is valid and f ∈ C(Ωl), then the linear problem II has a unique strong generalized solution v
in the class C, which admits the representation (3.39) and, by virtue of (3.41), belongs to the
class C1(Ωl). Under condition (3.14), the representations (3.39) and (3.41) imply that the strong
generalized solution v = �−1f of Problem II in the class C satisfies the estimate

‖�−1f‖C(Ωl)
≤ c0‖f‖C(Ωl)

, (3.44)

where c0 = c0(a, γ, k, l) > 0.

Remark 3.10. As was mentioned above, by virtue of the transformation (3.1), problem
(1.5)–(1.8) is equivalent to problem (3.2)–(3.5); moreover, by virtue of condition (3.14) and the
above Remarks 3.6–3.9, for f ∈ C(Ωl) the function v is a strong generalized solution of prob-
lem (3.2)–(3.5) in the class C if and only if v is a continuous solution of the nonlinear integral
equation

v = Kv := �−1{(a2 − c)v − λ�(−αa, t)|v|αv + �(a, t)f(x, t)}. (3.45)

Note also that, by virtue of (3.41), a continuous solution v of the nonlinear integral equation (3.45)
actually belongs to the class C1(Ωl); and if f ∈ C1(Ωl), then, by virtue of (3.40), the function v
belongs to C2(Ωl) and is a classical solution of problem (3.2)–(3.5).
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Remark 3.11 The operator K : C(Ωl) → C(Ωl) in (3.45) is continuous and compact, because
the nonlinear operator N : C(Ωl) → C(Ωl) acting by the rule

Nv = (a2 − c)v − λ�(−αa, t)|v|αv + �(a, t)f(x, t)

is bounded and continuous and, by virtue of Remark 3.8, the linear operator �−1 : C(Ωl) → C(Ωl)
is compact. By virtue of Remark 2.2, for τ ∈ [0, 1], each solution v ∈ C(Ωl) of the equation v = τKv
is a solution of problem (2.34), (2.3)–(2.5) for ε = a, which, under condition (2.35), satisfies the
a priori estimate (2.33) with a positive constant c1 defined by (2.36) for T = l and independent
of τ ∈ [0, 1]. Therefore, by the Leray–Schauder theorem [23, p. 375], Eq. (3.45) has at least one
solution v ∈ C(Ωl).

By virtue of the above remarks, we have thereby proved the following assertion.

Theorem 3.1. Let λ > 0, let condition (2.35) be satisfied , and let f ∈ C(Ωl). Then prob-
lem (1.5)–(1.8) has at least one strong generalized solution u in the class C in the sense of Defini-
tion 1.1, which belongs to the space C1(Ωl); moreover , if f ∈ C1(Ωl), then this solution is classical.

4. UNIQUENESS OF THE SOLUTION OF PROBLEM (1.5)–(1.8)

Let the following condition be satisfied:

|a2 − c| < 1/c0, 0 < λ < λ0, (4.1)

where λ0 := (1− c0|a2 − c|)(c0M0)−1, M0 := (1 + α)(2c1‖f‖C(Ωl)
)α, and c0 and c1 are the constants

occurring in (3.44) and (2.32), respectively.

Theorem 4.1. Let T = l, let conditions (2.35) and (4.1) be satisfied , and let f ∈ C(Ωl). Then
problem (1.5)–(1.8) has at most one strong generalized solution in the class C.

Proof. Since problem (1.5)–(1.8) is equivalent to problem (3.2)–(3.5), it suffices to consider the
problem on the uniqueness of the solution of the latter problem. Suppose that problem (3.2)–(3.5)
has two possible distinct strong generalized solutions v1 and v2 in the class C. By Definition 1.1,
there exists a sequence of functions vi

n ∈ C̊2(Ωl,Γ1,Γ2; k− a) such that, in particular, the following
limit relations hold:

lim
n→∞

‖vi
n − vi‖C(Ωl)

= 0, lim
n→∞

‖Φλ(a)vi
n − �(a, ·)f‖C(Ωl)

= 0. (4.2)

Set ωn := v2
n − v1

n. One can readily see that the function ωn ∈ C̊2(Ωl,Γ1,Γ2; k − a) is a classical
solution of the problem

�ωn = (fn + gn)(x, t), (x, t) ∈ Ωl, (4.3)
γωnx(0, t) + ωnt(0, t) + (k − a)ωn(0, t) = 0, 0 ≤ t ≤ l (γ �= 0), (4.4)

ωn(l, t) = 0, 0 ≤ t ≤ l, (4.5)
(Baωn)(x) = 0, (Baωnt)(x) = 0, x ∈ [0, l]. (4.6)

Here

fn := Φλ(a)v2
n − Φλ(a)v1

n, (4.7)
gn := (a2 − c)ωn − λ�(−αa, t)(|v2

n|αv2
n − |v1

n|αv1
n)

= (a2 − c)ωn − λ(1 + α)�(−αa, t)

( 1∫

0

|v1
n + s(v2

n − v1
n)|α ds

)
ωn, (4.8)
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where we have used the obvious relation

ϕ(x2) − ϕ(x1) = (x2 − x1)

1∫

0

ϕ′[x1 + s(x2 − x1)] ds

for the function ϕ(x) := |x|αx, x ∈ R, with x1 = v1
n and x2 = v2

n.
By virtue of Remark 3.9 and the estimate (3.44), for the solution ωn of problem (4.3)–(4.6),

we have
‖ωn‖C(Ωl)

≤ c0‖fn + gn‖C(Ωl)
≤ c0‖fn‖C(Ωl)

+ c0‖gn‖C(Ωl)
. (4.9)

It follows from relations (4.2) and (4.7) that

lim
n→∞

‖fn‖C(Ωl)
= 0. (4.10)

By virtue of the a priori estimate (2.33), the solutions v1 and v2 of problem (3.2)–(3.5) satisfy the
inequalities

‖vi‖C(Ωl)
≤ c1‖f‖C(Ωl)

, i = 1, 2.

This, together with the inequalities α > 0 and a > 0, implies that

(1 + α)�(−αa, t)

1∫

0

|v1
n + s(v2

n − v1
n)|α ds ≤ M0, (4.11)

where M0 is the constant occurring in condition (4.1).
It follows from relations (4.8), (4.9), and (4.11) that

‖ωn‖C(Ωl)
≤ c0‖fn‖C(Ωl)

+ c0(|a2 − c| + λM0)‖ωn‖C(Ωl)
,

which, together with condition (4.1), implies the estimate

‖ωn‖C(Ωl)
≤ 1

M0(λ0 − λ)
‖fn‖C(Ωl)

. (4.12)

Since limn→∞ ‖ωn‖C(Ωl)
= ‖v2 − v1‖C(Ωl)

by virtue of relations (4.2), it follows that, by taking
into account relation (4.10) and by passing in the estimate (4.12) to the limit as n → ∞, we obtain
‖v2 − v1‖C(Ωl)

≤ 0, i.e., v1 = v2. The last assertion contradicts the above assumption. The proof
of Theorem 4.1 is complete.

5. THE ABSENCE OF SOLUTION OF PROBLEM (1.5)–(1.8)
IN THE CLASS OF NONNEGATIVE FUNCTIONS

Below, by using the method of test functions [13, pp. 10–12], we show that if the condition λ > 0
is violated, then problem (1.5)–(1.8) has at most one strong nonnegative generalized solution in
the class C in the sense of Definition 1.1.

Lemma 5.1. Let u ≥ 0 be a strong generalized solution of problem (1.5)–(1.8) in the class C in
the sense of Definition 1.1. Then one has the integral relation∫

ΩT

u�ϕdx dt − 2a
∫

ΩT

uϕt dx dt + c

∫

ΩT

uϕdx dt = −λ

∫

ΩT

|u|α+1ϕdx dt +
∫

ΩT

fϕdx dt (5.1)

for any test function ϕ such that

ϕ ∈ C2(ΩT ), ϕ|∂ΩT
= 0, ∇ϕ|∂ΩT

= 0, (5.2)

where ∇ := (∂/∂x, ∂/∂t).
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Proof. By the definition of a strong generalized solution u of problem (1.5)–(1.8) in the class
C in the sense of Definition 1.1, the function u belongs to C(ΩT ), and there exists a sequence of
functions un ∈ C̊2(ΩT ,Γ1,Γ2; k) such that, in particular, the following limit relations are true:

lim
n→∞

‖un − u‖C(ΩT ) = 0, lim
n→∞

‖Lλun − f‖C(ΩT ) = 0. (5.3)

Set fn := Lλun. We multiply both the sides of the relation Lλun = fn by the function ϕ and
integrate the resulting relation over the domain ΩT . After the integration by parts on the left-hand
side in this relation with regard to the inclusion (5.2), we obtain

∫

ΩT

un�ϕdx dt − 2a
∫

ΩT

unϕt dx dt + c

∫

ΩT

unϕdx dt = −λ

∫

ΩT

|un|αunϕdx dt +
∫

ΩT

fnϕdx dt.

By using relations (5.3), by passing in the last relation to the limit as n → ∞, and by taking
into account the inequality u ≥ 0, we obtain the integral relation (5.1). The proof of the lemma is
complete.

Let us introduce a function ϕ0 := ϕ0(x, t) such that

ϕ0 ∈ C2(ΩT ), ϕ0|ΩT
> 0, ϕ0|∂ΩT

= 0, ∇ϕ0|∂ΩT
= 0 (5.4)

and

κ0 :=
∫

ΩT

|�ϕ0 − 2aϕ0t + cϕ0|p
′

ϕp′−1
0

dx dt < +∞, p′ = 1 +
1
α

. (5.5)

By a simple verification, one can show that, for a function ϕ0 satisfying conditions (5.4) and
(5.5), one can take the function

ϕ0(x, t) = [xt(l − x)(l − t)]m, (x, t) ∈ ΩT ,

for sufficiently large m > 0.
If λ < 0, then, by Lemma 5.1 and relation (5.1), where the function ϕ = ϕ0 can be taken for

the function ϕ with regard to conditions (5.4), we have

|λ|
∫

ΩT

uα+1ϕ0 dx dt ≤
∫

ΩT

u|�ϕ0 − 2aϕ0t + cϕ0| dx dt −
∫

ΩT

fϕ0 dx dt. (5.6)

The absence of a solution of problem (1.5)–(1.8) is proved in the following assertion.

Theorem 5.1. Let λ < 0, α > 0, and f = βf0, where β = const > 0, f0 ∈ C(ΩT ), f0 ≥ 0, and
f0 �≡ 0. Then there exists a positive number β0 = β0(α, λ, f0) such that for β > β0 problem (1.5)–
(1.8) has no strong generalized solution u ≥ 0 in the class C in the sense of Definition 1.1.

Proof. If we set a = uϕ
1/p
0 and b = |�ϕ0 − 2aϕ0t + cϕ0|ϕ−1/p

0 in the Young inequality

ab ≤ ε

p
ap +

1
p′εp′−1

bp′
; a, b ≥ 0,

1
p

+
1
p′ = 1, p := α + 1 > 1,

with the parameter ε > 0, then, by virtue of the relation p′/p = p′ − 1, we obtain the inequality

u|�ϕ0 − 2aϕ0t + cϕ0| = uϕ
1/p
0 |�ϕ0 − 2aϕ0t + cϕ0|ϕ−1/p

0 ≤ ε

p
upϕ0 +

|�ϕ0 − 2aϕ0t + cϕ0|p
′

p′εp′−1ϕp′−1
0

. (5.7)
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By virtue of relations (5.5)–(5.7), we have the inequality
(
|λ| − ε

p

) ∫

ΩT

upϕ0 dx dt ≤ κ0

p′εp′−1
− βκ1, (5.8)

where, by condition (5.4) and Theorem 5.1, the constant κ1 is given by the relation

0 < κ1 :=
∫

ΩT

f0ϕ0 dx dt < +∞.

Inequality (5.8) with ε < |λ|p implies that
∫

ΩT

upϕ0 dx dt ≤ pκ0

(|λ|p − ε)p′εp′−1
− pβκ1

|λ|p − ε
. (5.9)

By taking account of the relations p′ = p/(p − 1), p = p′/(p′ − 1), and

min
0<ε<|λ|p

(p/((|λ|p − ε)p′εp′−1)) = 1/|λ|p′

(the equality is attained for ε = |λ|), from inequality (5.9), we obtain the estimate
∫

ΩT

upϕ0 dx dt ≤ κ0

|λ|p′ −
p′βκ1

|λ| . (5.10)

Obviously,
χ(β) < 0 if β > β0 and χ(β) > 0 if β < β0, (5.11)

where
χ(β) :=

κ0

|λ|p′ −
p′βκ1

|λ| , β0 :=
κ0

p′κ1|λ|p′−1
.

It remains to note that the left-hand side of inequality (5.10) is nonnegative, while the right-
hand side of the same inequality is negative for β > β0 by virtue of condition (5.11). The latter
implies that if β > β0, then problem (1.5)–(1.8) has no strong generalized solutions in the class of
nonnegative functions in the sense of Definition 1.1. The proof of the theorem is complete.
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