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1. STATEMENT OF THE PROBLEM

In the plane of independent variables x and t, consider the nonlinear wave equation

Lu := �u + f(x, t, u) = F (x, t), (1.1)

where f = f(x, t, s) is a given real function nonlinear with respect to the variable s, F = F (x, t)
is a given real function, and u = u(x, t) is the unknown real function; moreover, we assume that f
and F are continuous functions of their arguments and � := ∂2/∂t2 − ∂2/∂x2.

By D : γ2(t) < x < γ1(t), t > 0, we denote the angular domain lying inside the characteristic
angle Λ0 : t > |x| and bounded by smooth noncharacteristic curves γi : x = γi(t), t ≥ 0, i = 1, 2 (i.e.,
|γ′

i(t)| �= 1, t ≥ 0, i = 1, 2), of the class C2 issuing from the origin O(0, 0). Set DT := D ∩ {t < T}
and γi,T := γi ∩ {t ≤ T}, T > 0, i = 1, 2.

For Eq. (1.1), we consider the Darboux boundary value problem, where the directional derivative
of the solution of Eq. (1.1) is posed on γ1,T , and a solution itself is posed on γ2,T , in the following
statement: find a solution u = u(x, t) of that equation in the domain DT with the boundary
conditions

(l1ux + l2ut)|γ1,T
= 0, (1.2)

u|γ2,T
= 0, (1.3)

where l1 and l2 are given continuous functions; moreover, (|l1| + |l2|)|γ1 �= 0.
Note that, in the linear case in which the function f occurring in Eq. (1) is linear with respect

to the variable s and the conditions

(αiux + βiut)|γi,T
= 0, i = 1, 2; u(0, 0) = 0, (1.4)

are considered instead of the boundary conditions (1.2) and (1.3), problem (1.1), (1.4) in the domain
DT was studied in [1–6]. Note also that problem (1.1)–(1.3) is equivalent to problem (1.1), (1.4) in
which the direction (α2, β2) coincides with the direction of the tangent to the curve γ2,T at each of its
points. In the case of Eq. (1.1) with a power-law nonlinearity in which the homogeneous Dirichlet
conditions u|γi,T

= 0, i = 1, 2, are posed on the curves γ1 and γ2, and moreover, one of these curves,
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either γ1 or γ2, is characteristic, this problem was considered in the papers [7–9], and the case
in which both curves are noncharacteristic was studied in [10]. The special case of the boundary
conditions (1.2) and (1.3) of the form ux|γ1,T

= 0 and u|γ2,T
= 0, where γ1,T : x = 0, 0 ≤ t ≤ T ,

and γ2,T : x = −t, 0 ≤ t ≤ T , is a characteristic of Eq. (1.1) with a power-law nonlinearity, was
considered in [11, 12]; moreover, the case in which γ2,T is a noncharacteristic curve was considered
in [13, 14]. As was noted in [1, 6], such problems arise in the mathematical modeling of small
harmonic oscillations of a wedge in a supersonic flow and oscillations of a string inside a cylinder
filled with a viscous fluid.

In the present paper, we consider the more general case of a nonlinear function f(x, t, s), smooth
noncharacteristic curves γ1 and γ2, and the behavior of the vector field (l1, l2) in the boundary
condition (1.2) as compared with the cases studied in the above-mentioned papers. Note that,
in the case under consideration, the analysis of the solvability of problem (1.1)–(1.3) encounters
additional difficulties of nontechnical character.

Set C̊2(DT , γT ) := {v ∈ C2(DT ) : (l1vx + l2vt)|γ1,T
= 0, v|γ2,T

= 0} and γT := γ1,T ∪ γ2,T .

Definition 1.1. Let the conditions f ∈ C(DT × R), F ∈ C(DT ), and l1, l2 ∈ C(γ1,T ) be
satisfied. A function u is called a strong generalized solution of problem (1.1)–(1.3) in the class C

in the domain DT if u belongs to C(DT ) and there exists a function sequence un ∈ C̊2(DT , γT )
such that un → u and Lun → F in the space C(DT ) as n → ∞.

Remark 1.1. Obviously, a classical solution of problem (1.1)–(1.3) in the space C̊2(DT , γT )
is a strong generalized solution of that problem in the class C in the domain DT in the sense of
Definition 1.1.

Definition 1.2. Let f ∈ C(D∞ × R), F ∈ C(D∞), and l1, l2 ∈ C(γ1,∞). We say that prob-
lem (1.1)–(1.3) is globally solvable in the class C if, for any finite T > 0, it has at least one strong
generalized solution of the class C in the domain DT in the sense of Definition 1.1.

Definition 1.3. Under the assumptions of Definition 1.2, a function u ∈ C(D∞) is called
a global strong generalized solution of problem (1.1)–(1.3) in the class C in the domain D∞ if,
for any finite T > 0, the function u|DT

is a strong generalized solution of that problem in the class
C in the domain DT in the sense of Definition 1.1.

Definition 1.4. Under the assumptions of Definition 1.2, we say that problem (1.1)–(1.3) is
locally solvable in the class C if there exists a positive number T0 = T0(F ) such that, for T ≤ T0,
it has at least one strong generalized solution of the class C in the domain DT in the sense of
Definition 1.1.

Remark 1.2. Under the above-mentioned assumptions, one can readily note that

−t < γ2(t) < γ1(t) < t, t > 0; |γ′
i(t)| < 1, t ≥ 0, γi(0) = 0, i = 1, 2. (1.5)

Remark 1.3. Below, without loss of generality, one can assume that γ1(t) ≤ 0, 0 ≤ t ≤ T ,
since otherwise, by virtue of condition (1.5), this could be achieved with the use of the Lorentz
transformation

x′ =
x − k0t√

1 − k2
0

, t′ =
t − k0x√

1 − k2
0

, k0 := max
0≤t≤T

|γ′
1(t)| < 1,

which does not change the form of Eq. (1.1) and maps the characteristic angle Λ0 : t > |x| into the
characteristic angle Λ′

0 : t′ > |x′|.
Below, by virtue of Remark 1.3, in addition to condition (1.5), we require that

γ2(t) < γ1(t) ≤ 0, γ′
1(t) ≤ 0, γ′

2(t) < 0, t > 0. (1.6)

In Section 2, we present conditions on the data of problem (1.1)–(1.3) under which we prove
an a priori estimate for a strong generalized solution of that problem in the class C in the do-
main DT . In Section 3, we study the global solvability of the problem in the class C in the
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domain DT . We analyze the smoothness of the solution in Section 4 and study the uniqueness
and existence of a global solution of problem (1.1)–(1.3) in the domain D∞ in Section 5. Finally,
in Section 6, we study the case of absence of a global solution as well as the local solvability of that
problem.

2. A PRIORI ESTIMATE FOR THE SOLUTION OF PROBLEM (1.1)–(1.3)

Set

g(x, t, s) :=

s∫

0

f(x, t, s1) ds1, (x, t, s) ∈ DT × R. (2.1)

In view of notation (2.1), consider the following conditions imposed on the nonlinear function f :

g(x, t, s) ≥ −M1 − M2s
2, (x, t, s) ∈ DT × R, (2.2)

gt(x, t, s) ≤ M3 + M4s
2, (x, t, s) ∈ DT × R, (2.3)

where Mi := Mi(T ) = const ≥ 0, 1 ≤ i ≤ 4.

Remark 2.1. Let f0, f0t ∈ C(D∞), f0 ≥ 0, and f0t ≤ 0. We present some classes of functions
f = f(x, t, s) that are often used in applications and satisfy conditions (2.2) and (2.3).

1. f(x, t, s) = f0(x, t)|s|α sgn s, where α > 0, α �= 1. In this case, we have

g(x, t, s) = f0(x, t)
|s|α+1

α + 1
.

2. f(x, t, s) = f0(x, t)ψ(s), where ψ belongs to C(R), ψ(s) sgn s ≥ 0, and s ∈ R. Here

g(x, t, s) = f0(x, t)

s∫

0

ψ(τ) dτ.

3. f(x, t, s) = f0(x, t)es. In this case, we have g(x, t, s) = f0(x, t)(es − 1).
Now we subject the curve γ1,T to an additional constraint of the geometric nature, which de-

pends on the direction of the vector (l1, l2) of the directional derivative occurring in the boundary
condition (1.2),

[(l21 + l22)νt + 2l1l2νx](P ) ≥ 0, P ∈ γ1,T , (2.4)
where ν := (νx, νt) is the unit outward normal to ∂DT at the point P .

Remark 2.2. By virtue of conditions (1.5) and (1.6), one can readily see that, on γ1,T ⊂ ∂DT ,
the unit vector ν := (νx, νt) of the outward normal to ∂DT is defined by the relations

νx =
1

√
1 + |γ′

1(t)|2
> 0, νt = − γ′

1(t)√
1 + |γ′

1(t)|2
≥ 0, 0 ≤ t ≤ T. (2.5)

It follows from relations (2.5) that condition (2.4) is satisfied for the case in which l1l2|γ1,T
≥ 0.

In particular, if condition (1.2) is a homogeneous Neumann boundary condition, i.e., uν |γ1,T
=

(νxux + νtut)|γ1,T
= 0, then condition (2.4) is satisfied. One can also readily show that, for the case

in which l1, l2 = const , l2 = −k0l1, where k0 > 0, k0 �= 1, and γ1,T : x = −kt, 0 ≤ k = const < 1,
condition (2.4) is equivalent to the condition k ≥ 2k0/(1 + k2

0).

Lemma 2.1. Let f ∈ C(DT × R), F ∈ C(DT ), and l1, l2 ∈ C(γ1,T ), and let conditions (1.5),
(1.6), (2.2)–(2.4) be satisfied. Then any strong generalized solution u = u(x, t) of problem (1.1)–(1.3)
of the class C in the domain DT satisfies the a priori estimate

‖u‖C(DT ) ≤ c1‖F‖C(DT ) + c2 (2.6)

with nonnegative constants ci := ci(f, l1, l2, T ), i = 1, 2, independent of u and F ; moreover , c1 > 0.
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Proof. Let u be a strong generalized solution of problem (1.1)–(1.3) of the class C in the
domain DT . By Definition 1.1, there exists a sequence of functions un ∈ C̊2(DT , γT ) such that

lim
n→∞

‖un − u‖C(DT ) = 0, lim
n→∞

‖Lun − F‖C(DT ) = 0. (2.7)

Consider the function un ∈ C̊2(DT , γT ) treated as a solution of the problem

Lun = Fn, (2.8)
(l1unx + l2unt)|γ1,T

= 0, (2.9)
un|γ2,T

= 0, (2.10)

where
Fn := Lun. (2.11)

By multiplying both sides of Eq. (2.8) by unt, by integrating the resulting relation over the
domain Dτ := {(x, t) ∈ DT : t < τ}, 0 < τ ≤ T , and by using relation (2.1), we obtain

1
2

∫

Dτ

(u2
nt)t dx dt −

∫

Dτ

unxxunt dx dt +
∫

Dτ

d

dt
(g(x, t, un(x, t)) dx dt −

∫

Dτ

gt(x, t, un(x, t)) dx dt

=
∫

Dτ

Fnunt dx dt. (2.12)

Set Ωτ := D∞ ∩ {t = τ}, 0 < τ ≤ T . By integrating by parts on the left-hand side in
relation (2.12) and by taking into account relations (2.1) and (2.10), we obtain

2
∫

Dτ

Fnunt dx dt =
∫

γ1,τ

(u2
ntνt − 2unxuntνx + u2

nxνt) ds

+
∫

γ2,τ

1
νt

[(unxνt − untνx)2 + u2
nt(ν

2
t − ν2

x)] ds +
∫

Ωτ

(u2
nt + u2

nx) dx + 2
∫

Ωτ

g(x, τ, un(x, τ)) dx

+ 2
∫

γ1,τ

g(x, t, un(x, t))νt ds − 2
∫

Dτ

gt(x, t, un(x, t)) dx dt. (2.13)

It follows from Eq. (2.9) that the relations

unx = −λl2, unt = λl1 (2.14)

hold on γ1,T , where λ is a proportionality coefficient.
By virtue of relations (2.4) and (2.14), we have

∫

γ1,τ

(u2
ntνt − 2unxuntνx + u2

nxνt) ds =
∫

γ1,τ

λ2[(l21 + l22)νt + 2l1l2νx] ds ≥ 0. (2.15)

Since νt

∂

∂x
− νx

∂

∂t
is the operator of differentiation along the direction of the tangent to γ2,T ,

i.e., is an internal differential operator on γ2,T , it follows from conditions (2.10) that

(unxνt − untνx)|γ2,τ
= 0. (2.16)
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By taking into account conditions (1.5) and (1.6), one can readily see that on γ2,T ⊂ ∂DT the
unit vector ν := (νx, νt) of the outward normal to ∂DT is defined by the relations

νx = − 1
√

1 + |γ′
2(t)|2

< 0, νt =
γ′

2(t)√
1 + |γ′

2(t)|2
< 0, 0 ≤ t ≤ T ; (2.17)

moreover,
(ν2

t − ν2
x)|γ2,T

< 0. (2.18)

It follows from relations (2.16)–(2.18) that
∫

γ2,τ

1
νt

[(unxνt − untνx)2 + u2
nt(ν

2
t − ν2

x)] ds ≥ 0. (2.19)

By virtue of inequalities (2.2), (2.3), and (2.5),
∫

Ωτ

g(x, τ, un(x, τ)) dx +
∫

γ1,τ

g(x, t, un(x, t))νt ds −
∫

Dτ

gt(x, t, un(x, t)) dx dt

≥ −
∫

Ωτ

[M1 + M2|un(x, τ)|2] dx −
∫

γ1,τ

[M1 + M2|un(x, t)|2] ds

−
∫

Dτ

[M3 + M4|un(x, t)|2] dx dt. (2.20)

Now, by taking into account inequalities (2.15), (2.19), and (2.20), from relation (2.13) we obtain

wn(τ) :=
∫

Ωτ

(u2
nt + u2

nx) dx ≤ 2M1(mes ΩT + mes γ1,T ) + 2M3 mes DT

+ 2M2

∫

Ωτ

|un(x, τ)|2 dx + 2M2

∫

γ1,τ

|un(x, t)|2 ds

+ 2M4

∫

Dτ

|un(x, t)|2 dx dt + 2
∫

Dτ

Fnunt dx dt. (2.21)

By virtue of conditions (1.5) and (1.6), one can readily see that

mes ΩT ≤ T, mes γ1,T ≤
√

2T , mes DT ≤ T 2. (2.22)

Since Ωτ : γ2(τ) ≤ x ≤ γ1(τ), t = τ , and γ2,T : t = γ−1
2 (x), γ2(T ) ≤ x ≤ 0, where γ−1

2 is
the function inverse to γ2, which is uniquely determined by virtue of condition (1.6), we can use
relations (2.10) and the Newton–Leibniz formulas to obtain

un(x, τ) =

τ∫

γ−1
2 (x)

unt(x, t) dt, γ2(τ) ≤ x ≤ γ1(τ), (x, τ) ∈ Ωτ , (2.23)

un(γ1(t), t) =

γ1(t)∫

γ2(t)

unx(x, t) dx, 0 ≤ t ≤ τ, (γ1(t), t) ∈ γ1,τ . (2.24)
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This, together with the Schwarz inequality, implies that

|un(x, τ)|2 ≤
τ∫

γ−1
2 (x)

12 dt

τ∫

γ−1
2 (x)

|unt(x, t)|2 dt ≤ T

τ∫

γ−1
2 (x)

|unt(x, t)|2 dt, (x, τ) ∈ Ωτ , (2.25)

|un(γ1(t), t)|2 ≤
γ1(t)∫

γ2(t)

12 dx

γ1(t)∫

γ2(t)

|unx(x, t)|2 dx

≤ T

γ1(t)∫

γ2(t)

|unx(x, t)|2 dx, 0 ≤ t ≤ τ, (γ1(t), t) ∈ γ1,τ . (2.26)

By integrating both sides of inequality (2.25) with respect to x on the closed interval
[γ2(τ), γ1(τ)], we obtain

∫

Ωτ

|un(x, τ)|2 dx ≤ T

γ1(τ)∫

γ2(τ)

[ τ∫

γ−1
2 (x)

|unt(x, t)|2 dt

]

dx = T

∫

Dτ∩{x<γ1(τ)}

|unt(x, t)|2 dx dt

≤ T

∫

Dτ

|unt(x, t)|2 dx dt. (2.27)

In a similar way, since |γ′
1(t)| < 1, t ≥ 0, it follows that, by integrating both sides of inequal-

ity (2.26) with respect to t over the interval [0, τ ], we obtain

∫

γ1,τ

|un(x, t)|2 ds =

τ∫

0

|un(γ1(t), t)|2
√

1 + |γ′
1(t)|2 dt ≤

√
2

τ∫

0

|un(γ1(t), t)|2 dt

≤
√

2T

τ∫

0

[ γ1(t)∫

γ2(t)

|unx(x, t)|2 dx

]

dt =
√

2T

∫

Dτ

|unx(x, t)|2 dx dt. (2.28)

From inequality (2.27), we have

∫

Dτ

u2
n dx dt =

τ∫

0

[ ∫

Ωσ

u2
n dx

]

dσ ≤ T

τ∫

0

[ ∫

Dσ

u2
nt dx dt

]

dσ ≤ T 2

∫

Dτ

u2
nt dx dt. (2.29)

The relations 2Fnunt ≤ F 2
n + u2

nt, (2.22), and (2.27)–(2.29), together with inequality (2.21), imply
the estimate

wn(τ) ≤ M5 + M6

∫

Dτ

(u2
nt + u2

nx) dx dt +
∫

Dτ

F 2
n dx dt. (2.30)

Here
M5 := 2(1 +

√
2)TM1 + 2T 2M3, M6 := 2(1 +

√
2)M2T + 2M4T

2 + 1. (2.31)

Since
∫

Dτ

(u2
nt + u2

nx) dx dt =

τ∫

0

wn(σ) dσ,
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it follows from inequality (2.30) that

wn(τ) ≤ M6

τ∫

0

wn(σ) dσ + M5 + T 2‖Fn‖2
C(DT )

, 0 < τ ≤ T. (2.32)

This, together with the Gronwall lemma, implies that

wn(τ) ≤ (M5 + T 2‖Fn‖2
C(DT )

) exp(M6τ), 0 < τ ≤ T. (2.33)

Next, by virtue of condition (2.10), for any (x, t) ∈ DT\O we have

un(x, t) = un(x, t) − un(γ2(t), t) =

x∫

γ2(t)

unx(ξ, t) dξ,

whence, by analogy with the derivation of inequality (2.26), one can show that

|un(x, t)|2 ≤ T

x∫

γ2(t)

|unx(ξ, t)|2 dξ, (x, t) ∈ DT\O. (2.34)

Inequality (2.34), together with the estimate (2.33) and the definition of the quantity wn as the
left-hand side in relation (2.21), implies that

|un(x, t)|2 ≤ T

∫

Ωt

u2
nx dx ≤ Twn(t) ≤ T (M5+T 2‖Fn‖2

C(DT )
) exp(M6t), (x, t) ∈ DT\O. (2.35)

By taking into account the estimate (2.35) and by using the obvious inequality

(
m∑

i=1

a2
i

)1/2

≤
m∑

i=1

|ai|,

we obtain
‖un‖C(DT ) ≤ c1‖Fn‖C(DT ) + c2, (2.36)

where
c1 = T 3/2 exp(2−1M6T ), c2 = (TM5)1/2 exp(2−1M6T ), (2.37)

and M5 and M6 are the constants defined in (2.31). By taking into account relations (2.7) and (2.11)
and by passing in inequality (2.36) to the limit as n → ∞, we obtain the a priori estimate (2.6).
The proof of Lemma 2.1 is complete.

Remark 2.3. In the linear case in which the function f occurring in Eq. (1.1) vanishes, one can
introduce the notion of a strong generalized solution of problem (1.1)–(1.3) in a similar way. In this
case, by virtue of relation (2.1), the function g vanishes and satisfies conditions (2.2) and (2.3) for
Mi = 0, 1 ≤ i ≤ 4; moreover, under conditions (1.5), (1.6), and (2.4), the a priori estimate (2.6) is
valid and, by virtue of relations (2.31) and (2.37), acquires the form

‖u‖C(DT ) ≤ T 3/2 exp(2−1T )‖F‖C(DT ). (2.38)
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3. CASES OF GLOBAL SOLVABILITY OF PROBLEM (1.1)–(1.3)
IN THE CLASS C

In the new independent variables ξ = t + x, η = t − x, the domain DT becomes a curvi-
linear triangular domain GT with vertices at the points O(0, 0), Q1(T + γ1(T ), T − γ1(T )), and
Q2(T + γ2(T ), T − γ2(T )) of the plane of the variables ξ and η, and problem (1.1)–(1.3) becomes
the problem

L̃ũ := ũξη + f̃(ξ, η, ũ) = F̃ (ξ, η), (ξ, η) ∈ GT , (3.1)
(m1ũξ + m2ũη)|γ̃1,T

= 0, (3.2)
ũ|γ̃2,T

= 0 (3.3)

for the unknown function

ũ(ξ, η) := u

(
ξ − η

2
,
ξ + η

2

)
.

Here

f̃(ξ, η, ũ) :=
1
4
f

(
ξ − η

2
,
ξ + η

2
, ũ

)
, F̃ (ξ, η) :=

1
4
F

(
ξ − η

2
,
ξ + η

2

)
,

m1 := l2 + l1, m2 := l2 − l1 on γ̃1,T , (3.4)

and γ̃1,T and γ̃2,T are the images of the curves γ1,T and γ2,T under that transformation issuing from
the common point O(0, 0) with terminal points Q1 and Q2.

By analogy with Definition 1.1, one can introduce the notion of strong generalized solution ũ of
problem (3.1)–(3.3) in the class C in the domain GT .

By virtue of conditions (1.5) and (1.6), the smooth noncharacteristic curves γ̃1,T and γ̃2,T can
be represented in the form

γ̃1,T : η = λ1(ξ), 0 ≤ ξ ≤ ξ0; γ̃2,T : ξ = λ2(η), 0 ≤ η ≤ η0, (3.5)

where ξ0 := T + γ1(T ) < η0 := T − γ2(T ) and

λ′
1(ξ) > 0, 0 ≤ ξ ≤ ξ0; λ′

2(η) > 0, 0 ≤ λ2(η) ≤ η, 0 ≤ η ≤ η0; (3.6)
λ2(λ1(ξ)) < ξ, 0 < ξ ≤ ξ0; λ1(λ2(η)) < η, 0 < η ≤ η0; (3.7)
GT := {(ξ, η) ∈ (0, ξ0) × (0, η0) : λ1(ξ) < η, λ2(η) < ξ, ξ + η < 2T}. (3.8)

Remark 3.1. Obviously, u = u(x, t) is a strong generalized solution of problem (1.1)–(1.3) in
the class C in the domain DT if and only if ũ is a strong generalized solution of problem (3.1)–(3.3)
in the class C in the domain GT ; moreover, under the assumptions of Lemma 2.1 this solution ũ
satisfies an a priori estimate of the type (2.6),

‖ũ‖C(GT ) = ‖u‖C(DT ) ≤ c1‖F‖C(DT ) + c2 ≤ 4c1‖F̃‖C(GT ) + c2 (3.9)

with the same constants c1 and c2.
Further, we first consider the linear case of problem (3.1)–(3.3) for which the function f̃ occurring

in Eq. (3.1) vanishes,

�̃w̃ := w̃ξη = F̃ (ξ, η), (ξ, η) ∈ GT , (3.10)
(m1w̃ξ + m2w̃η)|γ̃1,T

= 0, (3.11)
w̃|γ̃2,T

= 0. (3.12)

Remark 3.2. By Remarks 2.3 and 3.1, a strong generalized solution w̃ of the linear prob-
lem (3.10)–(3.12) in the class C in the domain GT satisfies the estimate

‖w̃‖C(GT ) ≤ 4T 3/2 exp(2−1T )‖F̃‖C(GT ). (3.13)
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In particular, the estimate (3.13) holds for a classical solution w̃ ∈ C2(GT ) of that problem.
The estimate (3.13) implies the uniqueness of both generalized and classical solutions of that
problem.

Remark 3.3. It follows from the condition (|l1| + |l2|)|γ1 �= 0 that, by virtue of relations (3.4),
at each point P ∈ γ̃1,T at least one of the numbers m1(P ) and m2(P ) is nonzero. In what follows,
we assume that m1|γ1 �= 0; i.e.,

(l2 + l1)(P ) �= 0, P ∈ γ1,T . (3.14)

Condition (3.14) implies that the direction (l1, l2) is not a characteristic direction corresponding
to the family of characteristics x + t = const of Eq. (1.1).

Set

a(ξ) :=
m2(ξ)
m1(ξ)

λ′
2(λ1(ξ)), 0 ≤ ξ ≤ ξ0, (3.15)

and consider the equation

|a(0)| =
∣
∣
∣∣
m2(0)
m1(0)

λ′
2(0)

∣
∣
∣∣ < 1. (3.16)

Lemma 3.1. Let conditions (2.4) and (3.14) be satisfied at the point P = O(0, 0). If either
(l1l2)(O) �= 0 or (l1l2)(O) = 0 but the curves γ1,T and γ2,T are not tangent to each other at the
point O or are tangent but γ′

2(0) < 0, then condition (3.16) is also satisfied.

Proof. By virtue of condition (3.6), we have

0 < λ′
2(0) ≤ 1. (3.17)

If (l1l2)(O) > 0, then, obviously,
∣
∣∣
∣

(
l2 − l1
l2 + l1

)
(O)

∣
∣∣
∣ < 1; therefore, by virtue of relations (3.4) and

(3.17), inequality (3.16) is satisfied.
It follows from inequalities (2.4) and (2.5) at the point P = O(0, 0) that

γ′
1(0) ≤

2l1l2
l21 + l22

(O). (3.18)

By virtue of the representations (3.5), one can readily show that

λ′
1(0) =

1 − γ′
1(0)

1 + γ′
1(0)

, λ′
2(0) =

1 + γ′
2(0)

1 − γ′
2(0)

. (3.19)

Next, by virtue of conditions (3.6) and (3.7), we have 0 < λ′
1(0)λ′

2(0) ≤ 1, because [λ2(λ1(ξ))]′(0) =
[λ1(λ2(η))]′(0) = λ′

1(0)λ
′
2(0). Therefore,

λ′
2(0) ≤

1
λ′

1(0)
. (3.20)

For (l1l2)(O) < 0, one can readily see that
∣∣
∣
∣

(
l2 − l1
l2 + l1

)
(O)

∣∣
∣
∣ > 1, (3.21)

but nevertheless, as is shown below, inequality (3.16) remains valid.
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Now, in view of the fact that μ(s) := (1 + s)/(1 − s), s ∈ R, is an increasing function and by
taking into account relations (3.4) and (3.18)–(3.21), we obtain the estimate

|a(0)| =
∣
∣
∣
∣

(
l2 − l1
l2 + l1

)
(O)

∣
∣
∣
∣ λ′

2(0) ≤
∣
∣
∣
∣

(
l2 − l1
l2 + l1

)
(O)

∣
∣
∣
∣
1 + γ′

1(0)
1 − γ′

1(0)

≤
∣
∣
∣
∣

(
l2 − l1
l2 + l1

)
(O)

∣
∣
∣
∣
1 + 2l1l2

l21+l22
(O)

1 − 2l1l2
l21+l22

(O)
=

∣
∣
∣
∣

(
l2 + l1
l2 − l1

)
(O)

∣
∣
∣
∣ < 1.

It remains to consider the case in which (l1l2)(O) = 0. By virtue of inequalities (1.6), we have
γ′

2(0) ≤ γ′
1(0) ≤ 0. Therefore, if the curves γ1,T and γ2,T are not tangent at the point O(0, 0), then

γ′
2(0) �= γ′

1(0) ≤ 0 and hence γ′
2(0) < 0. This, together with relations (3.19), implies that

λ′
2(0) < 1. (3.22)

Since the relation (l1l2)(O) = 0 implies that
∣
∣
∣
∣

(
l2 − l1
l2 + l1

)
(O)

∣
∣
∣
∣ = 1, it follows from the estimate (3.22)

that

|a(0)| =
∣
∣
∣
∣

(
l2 − l1
l2 + l1

)
(O)

∣
∣
∣
∣ λ′

2(0) = λ′
2(0) < 1.

In a similar way, one can consider the case in which (l1l2)(O) = 0, the curves γ1,T and γ2,T are
tangent at the point O, but γ′

2(0) < 0. The proof of Lemma 3.1 is complete.
Remark 3.4. One can readily see that if (l1l2)(O) = 0, then the relation |a(0)| = 1 holds if and

only if γ′
2(0) = 0; in this case, by virtue of conditions (1.6), the curves γ1,T and γ2,T are tangent at

the common point O.
Let G0,T := {(ξ, η) ∈ R

2 : 0 < ξ < ξ0, 0 < η < η0} be the characteristic rectangle in the
plane of the variables ξ and η corresponding to Eq. (3.10). By virtue of (3.8), we have GT ⊂ G0,T .
If F̃ belongs to C(GT ), then we extend that function as a continuous function into the closed
domain G0,T and keep the previous notation for it by setting, for example, F̃ (ξ, η) = F̃ (ξ, λ1(ξ))
for 0 ≤ η ≤ λ1(ξ), 0 ≤ ξ ≤ ξ0, F̃ (ξ, η) = F̃ (λ2(η), η) for 0 ≤ ξ ≤ λ2(η), 0 ≤ η ≤ η0, and
F̃ (ξ, η) = F̃ (2T − η, η) for (ξ, η) ∈ G0,T ∩ {ξ + η ≥ 2T}. Since the space C1(G0,T ) is dense in the
space C(G0,T ) [15, p. 37 of the Russian translation], it follows that there exists a function sequence
F̃n such that

F̃n ∈ C1(G0,T ), lim
n→∞

‖F̃n − F̃‖C(G0,T ) = 0. (3.23)

We introduce the function ũn ∈ C2(G0,T ) that is the solution of the Goursat problem

�̃ũn = F̃n(ξ, η), (ξ, η) ∈ G0,T ,

ũn(ξ, 0) = ϕn(ξ), 0 ≤ ξ ≤ ξ0; ũn(0, η) = ψn(η), 0 ≤ η ≤ η0,

where ϕn ∈ C2([0, ξ0]) and ψn ∈ C2([0, η0]) are some functions satisfying the matching condition

ϕn(0) = ψn(0) = 0. (3.24)

It is well known that the unique solution of this problem can be represented in the form
[16, p. 246]

ũn(ξ, η) = ϕn(ξ) + ψn(η) +

ξ∫

0

dξ′

η∫

0

F̃n(ξ′, η′) dη′, (ξ, η) ∈ G0,T . (3.25)

By assuming that
γi ∈ Ci([0, T ]), li ∈ C1(γ1,T ), i = 1, 2, (3.26)
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we readily obtain

λ1 ∈ C1([0, ξ0]), λ2 ∈ C2([0, η0]), mi ∈ C1(γ̃1,T ), i = 1, 2. (3.27)

Now we construct functions ϕn ∈ C2([0, ξ0]) and ψn ∈ C2([0, η0]) such that the function w̃ = ũn

defined by relation (3.25) satisfies the boundary conditions (3.11) and (3.12). By differentiating
relation (3.12) in the direction of the tangent to γ̃2,T with regard of (3.5), we obtain

λ′
2(η)ũnξ(λ2(η), η) + ũnη(λ2(η), η) = 0, 0 ≤ η ≤ η0. (3.28)

Obviously, relation (3.28), together with the condition ũn(0, 0) = 0, is equivalent to condition (3.12).
By substituting the expression for ũn in (3.25) into relations (3.11) and (3.28) and by using the
representations (3.5), for the functions ϕ′

n and ψ′
n we obtain the system of functional equations

m1(ξ)ϕ′
n(ξ) + m2(ξ)ψ′

n(λ1(ξ)) = ω1n(ξ), 0 ≤ ξ ≤ ξ0, (3.29)
λ′

2(η)ϕ′
n(λ2(η)) + ψ′

n(η) = ω2n(η), 0 ≤ η ≤ η0. (3.30)

Here

ω1n(ξ) := −m1(ξ)

λ1(ξ)∫

0

F̃n(ξ, η′) dη′ − m2(ξ)

ξ∫

0

F̃n(ξ′, λ1(ξ)) dξ′, 0 ≤ ξ ≤ ξ0, (3.31)

ω2n(η) := −λ′
2(η)

η∫

0

F̃n(λ2(η), η′) dη′ −
λ2(η)∫

0

F̃n(ξ′, η) dξ′, 0 ≤ η ≤ η0. (3.32)

If condition (3.14) is satisfied, which is equivalent to the condition m1|γ̃1,T
�= 0, then, by elim-

inating the function ψ′
n from the system of equations (3.29) and (3.30), for ϕ0n := ϕ′

n, we obtain
the functional equation

ϕ0n(ξ) − a(ξ)ϕ0n(λ2(λ1(ξ))) = ωn(ξ), 0 ≤ ξ ≤ ξ0. (3.33)

Here a(ξ), 0 ≤ ξ ≤ ξ0, is the function defined by relation (3.15), and

ωn(ξ) :=
1

m1(ξ)
[ω1n(ξ) − m2(ξ)ω2n(λ1(ξ))], 0 ≤ ξ ≤ ξ0. (3.34)

By setting
τ(ξ) := λ2(λ1(ξ)), 0 ≤ ξ ≤ ξ0, (3.35)

and by taking into account relations (3.7) and (3.27), we obtain

τ ∈ C1([0, ξ0]), τ(0) = 0, τ(ξ) < ξ if 0 < ξ ≤ ξ0. (3.36)

Since a ∈ C([0, ξ0]), it follows that, under condition (3.16), there exists a positive number ε such
that

|a(ξ)| ≤ q := const < 1 if 0 ≤ ξ ≤ ε. (3.37)

From relations (3.36), we find that if τk(ξ) := τ(τk−1(ξ)) and τ0(ξ) := ξ, 0 ≤ ξ ≤ ξ0, then the
function sequence {τk(ξ)}∞k=1 converges uniformly to zero on the interval [0, ξ0]; i.e., there exists
a positive integer n0 = n0(ε) such that

τk(ξ) ≤ ε, 0 ≤ ξ ≤ ξ0, k ≥ n0. (3.38)

By Λ : C([0, ξ0]) → C([0, ξ0]) we denote the linear continuous operator acting by the rule

(Λωn)(ξ) := a(ξ)ωn(τ(ξ)), 0 ≤ ξ ≤ ξ0. (3.39)
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Obviously,
(Λkωn)(ξ) = a(ξ)a(τ(ξ)) · · · a(τk−1(ξ))ωn(τk(ξ)), k ≥ 2, (3.40)

and for k = 1 and k = 0, we set
Λ1 = Λ and Λ0 = I, (3.41)

where I is the identity operator.
By virtue of relations (3.36)–(3.41), we have the estimate

|(Λkωn)(ξ)| ≤ [a(ξ)a(τ(ξ)) · · · a(τn0−1(ξ))][a(τn0(ξ)) · · · a(τk−1(ξ))]ωn(τk(ξ))

≤ ‖a‖n0
C([0,ξ])q

k−n0‖ωn‖C([0,ξ]), 0 ≤ ξ ≤ ξ0, k > n0,

whence we obtain
‖Λk‖C([0,ξ0])→C([0,ξ0]) ≤ M0q

k, k > n0, (3.42)

where
M0 := (q−1‖a‖C([0,ξ0]))n0 .

It follows from inequality (3.42), where q < 1, that if condition (3.16) is satisfied, then the
Neumann series

(I − Λ)−1 =
∞∑

k=0

Λk

of the operator Λ is convergent in the space C([0, ξ0]), and by (3.35), the unique solution ϕ0n ∈
C([0, ξ0]) of Eq. (33) can be represented in the form

ϕ0n(ξ) =

[
∞∑

k=0

Λkωn

]

(ξ), 0 ≤ ξ ≤ ξ0. (3.43)

Remark 3.5. Note that, by virtue of Remark 3.4, if, in the case (l1l2)(O) = 0, we have
γ′

2(0) = 0, which is equivalent to the condition λ′
2(0) = 1, then the curves γ1,T and γ2,T are tangent

at the point O; moreover, |a(0)| = 1, τ ′(0) = λ′
2(0)λ

′
1(0) = 1, and Eq. (3.33) is not solvable in

the class C([0, ξ0]) for any right-hand side ωn ∈ C([0, ξ0]). In this case, a necessary and sufficient
condition for the solvability of Eq. (3.33) in the class C([0, ξ0]) is given by the uniform convergence
of the series on the right-hand side in relation (3.43) on the interval [0, ξ0], which is not necessarily
true for any function ωn ∈ C([0, ξ0]).

Remark 3.6. One can readily see that if we additionally require that the functions a, τ , and ωn

belong to C1([0, ξ0]), then the solution ϕ0n of Eq. (3.33), which can be represented as the convergent
series (3.43) in C([0, ξ0]), belongs to the space C1([0, ξ0]) as well; moreover, its derivative χn := ϕ′

0n

can be found from the functional equation

χn(ξ) − a1(ξ)χn(τ(ξ)) = ω̃1n(ξ), 0 ≤ ξ ≤ ξ0, (3.44)

where a1(ξ) := a(ξ)τ ′(ξ) and ω̃1n(ξ) := ω′
n(ξ) + a′(ξ)ϕ0n(τ(ξ)), 0 ≤ ξ ≤ ξ0, and since |τ ′(0)| ≤ 1

by virtue of relations (3.36), we have |a1(0)| < 1 under condition (3.16); consequently, by analogy
with (3.43), the solution χn of Eq. (3.44) can be represented in the form

χn =
∞∑

k=0

Λk
1ω̃1n, (3.45)

where (Λ1ω̃1n)(ξ) := a1(ξ)ω̃1n(τ(ξ)), 0 ≤ ξ ≤ ξ0. By setting

ϕ̃0n(ξ) :=

ξ∫

0

χn(ξ′) dξ′ + ϕ0n(0), 0 ≤ ξ ≤ ξ0, (3.46)
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and by integrating Eq. (3.44), we obtain

ϕ̃0n(ξ) − ϕ0n(0) −
ξ∫

0

a(ξ′) dϕ̃0n(τ(ξ′)) =

ξ∫

0

a′(ξ′)ϕ0n(τ(ξ′)) dξ′ + ωn(ξ) − ωn(0), 0 ≤ ξ ≤ ξ0.

By integrating the third term on the left-hand side in the last relation, we obtain

ϕ̃0n(ξ) − ϕ0n(0) − a(ξ)ϕ̃0n(τ(ξ)) + a(0)ϕ̃0n(τ(0)) +

ξ∫

0

a′(ξ′)ϕ̃0n(τ(ξ′)) dξ′

=

ξ∫

0

a′(ξ′)ϕ0n(τ(ξ′)) dξ′ + ωn(ξ) − ωn(0), 0 ≤ ξ ≤ ξ0.

By using relation (3.35), by subtracting relation (3.33) from the last relation, and by taking
into account the equalities τ(0) = 0 and ϕ̃0n(0) = ϕ0n(0) in view of relations (3.36) and (3.46),
for ψ0n := ϕ̃0n − ϕ0n, we obtain the Volterra integro-functional equation

ψ0n(ξ) − a(ξ)ψ0n(τ(ξ)) +

ξ∫

0

a′(ξ′)ψ0n(τ(ξ′)) dξ′ = 0, 0 ≤ ξ ≤ ξ0.

By applying the standard successive approximation method [4] to that equation, we obtain
ψ0n = 0; i.e., ϕ̃0n = ϕ0n, and therefore,

ϕ0n(ξ) =

ξ∫

0

χn(ξ′) dξ′ + ϕ0n(0), 0 ≤ ξ ≤ ξ0,

taking into account the representation (3.46). Hence it follows that ϕ0n belongs to C1([0, ξ0]). Since
ϕ0n := ϕ′

n, we have
ψ′

n(η) = ω2n(η) − λ′
2(η)ϕ0n(λ2(η)), 0 ≤ η ≤ η0, (3.47)

by virtue of relation (3.30); by relations (3.24), (3.27), and (3.32), we have

ϕn(ξ) =

ξ∫

0

ϕ0n(ξ′) dξ′ ∈ C2([0, ξ0]), ψn(η) =

η∫

0

ψ′
n(η′) dη′ ∈ C2([0, η0]). (3.48)

Remark 3.7. By keeping the same notation for the restrictions of the functions ũn and F̃n to
the subdomain GT of the domain G0,T and by taking into account their definition, we find that the
function ũn ∈ C2(GT ) is a classical solution of the linear problem (3.10)–(3.12) for F̃ = F̃n;
by Remark 3.2 and the estimate (3.13), the following inequality holds:

‖ũn − ũk‖C(GT ) ≤ 4T 3/2 exp(2−1T )‖F̃n − F̃k‖C(GT ).

This, together with relations (3.23), implies that the function sequence ũn ∈ C2(GT ) is a Cauchy
sequence in the complete space C(GT ); therefore, the exists a function w̃ ∈ C(GT ) such that

lim
n→∞

‖ũn − w̃‖C(GT ) = 0. (3.49)
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By virtue of relations (3.23) and (3.49), the function w̃ thus defined is a strong generalized solution
of the linear problem (3.10)–(30.12) in the class C in the domain GT , whose uniqueness follows
from the estimate (3.13). We denote this solution w̃ by �̃−1F̃ ; i.e.,

w̃ = �̃−1F̃ , (3.50)

where the linear operator �̃−1 : C(GT ) → C(GT ) is continuous, and by (3.13), its norm satisfies
the estimate

‖�̃−1‖C(GT )→C(GT ) ≤ 4T 3/2 exp(2−1T ). (3.51)

Moreover, it follows from relations (3.31), (3.32), (3.34), (3.39)–(3.41), and (3.43)–(3.45) that the
operator �̃−1 occurring in relation (3.55) indeed maps any continuous function F̃ ∈ C(GT ) to
a function w̃ ∈ C1(GT ) and the linear operator

�̃−1 : C(GT ) → C1(GT )

is also continuous. [For details on the smoothness of w̃ in (3.50), see Section 4, the represen-
tation (4.10).] The above-performed argument implies that, for the validity of the representa-
tion (3.50), i.e., for the unique solvability of the linear problem (3.10)–(3.12) in the class C, it suf-
fices to require that f ∈ C(DT × R), F ∈ C(DT ), conditions (1.5), (1.6), and (2.4) are satisfied at
the point O, and relations (3.14) and (3.26) and assumptions of Lemma 3.1 are valid.

Remark 3.8. Since the space C1(GT ) is compactly embedded in C(GT ) [17, p. 135 of the
Russian translation], it follows from Remark 3.7 that the linear operator �̃−1 : C(GT ) → C(GT ) is
compact, and its norm can be estimated as (3.51).

Remark 3.9. By virtue of Remarks 3.1 and 3.7 and relation (3.50), the function u = u(x, t) is
a strong generalized solution of problem (1.1)–(1.3) of the class C in the domain DT if and only if

ũ(ξ, η) := u

(
ξ − η

2
,
ξ + η

2

)
is a continuous solution of the functional equation

ũ = K0ũ := �̃−1(−f̃(ξ, η, ũ) + F̃ ) (3.52)

in the class C(GT ), where K0 : C(GT ) → C(GT ) is a continuous compact operator, because
the nonlinear operator N : C(GT ) → C(GT ) acting by the rule Nũ = −f̃(ξ, η, ũ) + F̃ , where
f̃ ∈ C(GT ×R) and F̃ ∈ C(GT ), is bounded and continuous, and the linear operator �̃−1 : C(GT ) →
C(GT ) is compact by virtue of Remark 3.8. At the same time, by virtue of the estimate (3.9) and
relations (2.37), the same a priori estimate (3.9) with the same constants c1 and c2 is valid for any
parameter τ ∈ [0, 1] and for any solution ũ ∈ C(GT ) of the equation ũ = τK0ũ. Therefore, by the
Leray–Schauder theorem [18, p. 375], Eq. (3.52) has at least one solution ũ ∈ C(GT ). Therefore,
in view of Remarks 3.1 and 3.9, we have thereby proved the following assertion.

Theorem 3.1. Let the conditions f ∈ C(DT × R) and F ∈ C(DT ) as well as conditions (1.5),
(1.6), (2.2)–(2.4), (3.14), and (3.26) be satisfied ; moreover , in the case of (l1l2)(O) = 0, assume
that the curves γ1,T and γ2,T either are not tangent at the point O or are tangent but γ′

2(0) < 0.
Then problem (1.1)–(1.3) has at least one strong generalized solution u of the class C in the domain
DT in the sense of Definition 1.1.

Remark 3.10. One can readily see that if the assumptions of Theorem 3.1 are true for T = ∞,
then problem (1.1)–(1.3) is globally solvable in the class C in the sense of Definition 1.2.

4. SMOOTHNESS OF SOLUTION OF PROBLEM (1.1)–(1.3)

Now let us study the smoothness of the strong generalized solution of the nonlinear prob-
lem (1.1)–(1.3) depending on the smoothness of the data of that problem. To this end, under the
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assumptions of Theorem 3.1 with regard of Remark 3.1, we trace the scheme of the construction
of a strong generalized solution w̃ of the linear problem (3.10)–(3.12) in the class C in the do-
main GT and show that such a solution actually belongs to the class C1(GT ), and the boundary
conditions (3.11) and (3.12) are satisfied pointwise. Indeed, by virtue of relations (3.31), (3.32),
and (3.34), the right-hand side ωn of Eq. (33) can be represented in the form

ωn(ξ) = − 1
m1(ξ)

[

m1(ξ)

λ1(ξ)∫

0

F̃n(ξ, η′) dη′ + m2(ξ)

ξ∫

0

F̃n(ξ′, λ1(ξ)) dξ′

− m2(ξ)λ′
2(λ1(ξ))

λ1(ξ)∫

0

F̃n(τ(ξ), η′) dη′ − m2(ξ)

τ(ξ)∫

0

F̃n(ξ′, λ1(ξ)) dξ′

]

, 0 ≤ ξ ≤ ξ0. (4.1)

This, together with conditions (3.23), implies that

lim
n→∞

‖ωn − ω‖C(GT ) = 0, (4.2)

where

ω(ξ) := − 1
m1(ξ)

[

m1(ξ)

λ1(ξ)∫

0

F̃ (ξ, η′) dη′ + m2(ξ)

ξ∫

0

F̃ (ξ′, λ1(ξ)) dξ′

− m2(ξ)λ′
2(λ1(ξ))

λ1(ξ)∫

0

F̃ (τ(ξ), η′) dη′ − m2(ξ)

τ(ξ)∫

0

F̃ (ξ′, λ1(ξ)) dξ′

]

, 0 ≤ ξ ≤ ξ0. (4.3)

In turn, it follows from relations (3.39)–(3.43), (4.1)–(4.3) that

lim
n→∞

‖ϕ0n − ϕ0‖C([0,ξ0]) = 0, (4.4)

where ϕ0n := ϕ′
n and

ϕ0 :=

[
∞∑

k=0

Λkω

]

∈ C([0, ξ0]). (4.5)

Since the derivative ψ′
n of the function ψn occurring in the representation (3.25) is defined by

relation (3.47), it follows from (3.23), (3.32), and (4.4) that

lim
n→∞

‖ψ′
n − ψ0‖C([0,η0]) = 0, (4.6)

where

ψ0 ∈ C([0, η0]), ψ0(η) := ω2(η) − λ′
2(η)ϕ0(λ2(η)), 0 ≤ η ≤ η0, (4.7)

ω2(η) := −λ′
2(η)

η∫

0

F̃ (λ2(η), η′) dη′ −
λ2(η)∫

0

F̃ (ξ′, η) dξ′, 0 ≤ η ≤ η0. (4.8)

Finally, by using Remark 3.7 and the limit relations (3.23), (3.49), (4.4), (4.6), and (3.48) in the
notation

ϕ(ξ) :=

ξ∫

0

ϕ0(ξ′) dξ′, 0 ≤ ξ ≤ ξ0, ψ(η) :=

η∫

0

ψ0(η′) dη′, 0 ≤ η ≤ η0, (4.9)
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and by passing to the limit in relation (3.25), for the strong generalized solution w̃ of the linear
problem (3.10)–(3.12) in the class C in the domain GT we obtain the representation

w̃(ξ, η) = ϕ(ξ) + ψ(η) +

ξ∫

0

dξ′

η∫

0

F̃ (ξ′, η′) dη′, (ξ, η) ∈ GT . (4.10)

If F̃ belongs to C(GT ), then, by virtue of relations (4.5) and (4.7), it follows from the represen-
tation (4.10) that

w ∈ C1(GT ).

Next, by virtue of relations (4.2), (4.4) and (3.33), (3.35), the function ϕ0 satisfies the functional
equation

ϕ0(ξ) − a(ξ)ϕ0(τ(ξ)) = ω(ξ), 0 ≤ ξ ≤ ξ0. (4.11)

Remark 4.1. If the function F̃ belongs to C1(GT ) and the curves γ1,T and γ2,T are not tangent
at the point O, then, by [19, p. 595], one can extend that function in the rectangle G0,T (keeping
the same notation for it) so as to ensure that the function F̃ belongs to C1(G0,T ). In the case
of tangency of the curves γ1,T and γ2,T at the point O, throughout the following we assume that
such an extension is possible.

It follows from relation (4.2) that if condition (3.26) is satisfied and one additionally requires
that the function F̃ belongs to C1(GT ), then the right-hand side ω of Eq. (4.11) belongs to the
class C1([0, ξ0]). This, together with the argument carried out in Remark 3.6, implies that the solu-
tion of Eq. (4.11) belongs to the space C1([0, ξ0]); consequently, by (4.7) and (4.8), the function ψ0

belongs to the space C1([0, η0]) as well. Therefore, under the above-stipulated assumptions with re-
gard of notation (4.9), we find that the function w̃ occurring in (4.10) belongs to the space C2(GT ).
Thus, in view of Remark 3.7, we have proved the following assertion.

Theorem 4.1. If conditions (1.5), (1.6), (2.4), (3.14), and (3.26) are satisfied , F̃ ∈ C(GT ), and
moreover , for (l1l2)(O) = 0 the curves γ1,T and γ2,T either are not tangent at the point O or are
tangent but γ′

2(0) < 0, then the strong generalized solution w̃ of the linear problem (3.10)–(3.12)
in the class C in the domain GT belongs to the space C1(GT ); i.e., by relation (3.50), w̃ = �̃−1F̃ in
the class C1(GT ); and if it is additionally required that the function F̃ belongs to C1(GT ), then w̃
belongs to C2(GT ); in addition, the boundary conditions (3.11) and (3.12) are valid pointwise in
both cases.

The following assertion is a consequence of Remarks 3.1 and 3.9, relation (3.52), and Theo-
rem 4.1.

Theorem 4.2. If the assumptions of Theorem 3.1 are satisfied , then a strong generalized so-
lution u of problem (1.1)–(1.3) in the class C in the domain DT belongs to the space C1(DT );
under the additional requirements f ∈ C1(DT × R) and F ∈ C1(DT ), this solution belongs to the
space C2(DT ), i.e., is classical ; moreover , in both cases the boundary conditions (1.1) and (1.3) are
satisfied pointwise.

5. UNIQUENESS THEOREM. EXISTENCE OF GLOBAL SOLUTION
OF PROBLEM (1.1)–(1.3) IN THE DOMAIN D∞

By definition, a function f = f(x, t, s) satisfies the local Lipschitz condition with respect to the
variable s on the set DT × R if

|f(x, t, s2) − f(x, t, s1)| ≤ M(T, r)|s2 − s1|, (x, t) ∈ DT , |si| ≤ r, i = 1, 2, (5.1)

where M(T, r) := const ≥ 0.
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Theorem 5.1. Let condition (2.4) be satisfied , let the function f ∈ C(DT × R) satisfy con-
dition (5.1), let F belong to C(DT ), and let l1 and l2 belong to the class C(γ1,T ). Then prob-
lem (1.1)–(1.3) has at most one strong generalized solution in the class C in the domain DT in the
sense of Definition 1.1.

Proof. Indeed, assume that problem (1.1)–(1.3) has two possible distinct strong generalized
solutions u1 and u2 in the class C in the domain DT . Then, by Definition 1.1, there exist sequences
of functions ui

n ∈ C̊2(DT , γT ), i = 1, 2, such that

lim
n→∞

‖ui
n − ui‖C(DT ) = 0, lim

n→∞
‖Lui

n − F‖C(DT ) = 0, i = 1, 2. (5.2)

Set ωn := u2
n − u1

n. One can readily see that the function ωn ∈ C̊2(DT , γT ) is a classical solution
of the problem

�ωn + gn = Fn, (l1ωnx + l2ωnt)|γ1,T
= 0, ωn|γ2,T

= 0. (5.3)

Here
gn := f(x, t, u2

n) − f(x, t, u1
n), Fn := Lu2

n − Lu1
n. (5.4)

By virtue of relations (5.2), there exists a number m := const > 0 independent of the indices i
and n such that ‖ui

n‖C(DT ) ≤ m, which, together with relations (5.1) and (5.2), implies that

|gn| ≤ M(T,m)|ωn|. (5.5)

By virtue of relations (5.2) and the second relation in (5.4), we have

lim
n→∞

‖Fn‖C(DT ) = 0. (5.6)

By multiplying both sides of the first relation in (5.3) by ωnt, by integrating the resulting relation
over the domain

Dτ := {(x, t) ∈ DT : t < τ}, 0 < τ ≤ T,

and by following the derivation of relation (2.13) in (2.8)–(2.10), we obtain

wn(τ) :=
∫

Ωτ

(ω2
nt + ω2

nx) dx = −
∫

γ1,τ

(ω2
ntνt − 2ωnxωntνx + ω2

nxνt)ds

−
∫

γ2,τ

1
νt

[(ωnxνt − ωntνx)2 + ω2
nt(ν

2
t − ν2

x)] ds + 2
∫

Dτ

(Fn − gn)ωnt dx dt. (5.7)

By virtue of inequality (5.5) and the Cauchy inequality, we have the estimate
∣
∣∣
∣
∣
2

∫

Dτ

(Fn − gn)ωnt dx dt

∣
∣∣
∣
∣
≤

∫

Dτ

(Fn − gn)2 dx dt +
∫

Dτ

ω2
nt dx dt

≤ 2
∫

Dτ

F 2
n dx dt + 2M2(T,m)

∫

Dτ

ω2
n dx dt +

∫

Dτ

ω2
nt dx dt. (5.8)

Since inequalities (2.15) and (2.19), true for un, also hold for ωn, it follows from relations (5.7)
and (5.8) that

wn(τ) ≤ 2M2(T,m)
∫

Dτ

ω2
n dx dt +

∫

Dτ

ω2
nt dx dt + 2

∫

Dτ

F 2
n dx dt. (5.9)

DIFFERENTIAL EQUATIONS Vol. 52 No. 5 2016



ON THE SOLVABILITY OF A BOUNDARY VALUE PROBLEM 661

Since inequality (2.29), true for un, also holds for ωn, from the estimate (5.9), we have

wn(τ) ≤ (2M2(T,m)T 2 + 1)
∫

Dτ

ω2
nt dx dt + 2

∫

DT

F 2
n dx dt

≤ M0

∫

Dτ

(ω2
nt + ω2

nx) dx dt + 2
∫

DT

F 2
n dx dt, (5.10)

where M0 := 2M2(T,m)T 2 + 1.
By taking into account the relation

∫

Dτ

(ω2
nt + ω2

nx) dx dt =

τ∫

0

wn(σ) dσ,

from inequality (5.10) we obtain

wn(τ) ≤ M0

τ∫

0

wn(σ) dσ + 2‖Fn‖2
C(DT )

mes DT , 0 < τ ≤ T.

This, together with the Gronwall lemma, implies that

wn(τ) ≤ 2‖Fn‖2
C(DT )

(mes DT ) exp(M0T ), 0 < τ ≤ T. (5.11)

Since inequality (2.34), true for un, also holds for ωn, it follows from the estimate (5.11) and
inequality (2.35) that

|ωn(x, t)|2 ≤ Twn(t) ≤ 2T‖Fn‖2
C(DT )

(mes DT ) exp(M0T ), (x, t) ∈ DT \O. (5.12)

By using relations (5.2) and (5.6) and the relation ωn := u2
n − u1

n and by passing in inequal-
ity (5.12) to the limit as n → ∞, we obtain |(u2 − u1)(x, t)|2 ≤ 0, (x, t) ∈ DT\O; i.e., u2 = u1,
which contradicts the above assumption. The proof of Theorem 5.1 is complete.

Remark 5.1. Obviously, condition (5.1) is satisfied if f ∈ C1(DT × R).
Theorems 3.1, 4.2, and 5.1 and Remark 5.1 imply the following assertion.

Theorem 5.2. Let f ∈ C1(DT×R) and F ∈ C1(DT ), and let conditions (1.5), (1.6), (2.2)–(2.4),
(3.14), and (3.26) be satisfied. Moreover , assume that in the case of (l1l2)(O) = 0 either the curves
γ1,T and γ2,T are not tangent at the point O or γ′

2(0) < 0. Then problem (1.1)–(1.3) has a unique
classical solution u ∈ C2(DT ) in the domain DT .

Corollary 5.1. If the assumptions of Theorem 5.2 hold for T = ∞, then problem (1.1)–(1.3)
has a unique global classical solution u ∈ C2(D∞).

Indeed, by Theorem 5.2, problem (1.1)–(1.3) for T = n has a unique classical solution un in the
domain Dn. Since un+1 is a classical solution of that problem in the domain Dn as well, we have
un+1|Dn

= un by virtue of the uniqueness Theorem 5.1. Therefore, the function u constructed in the
domain D∞ by the rule u(x, t) = un(x, t) for n = [t] + 1, where [t] is the integer part of the number
t and (x, t) ∈ D∞, is the unique global classical solution of problem (1.1)–(1.3) in the domain D∞.

6. CASES OF THE ABSENCE OF GLOBAL SOLVABILITY
OF PROBLEM (1.1)–(1.3) AND ITS LOCAL SOLVABILITY

In what follows, we show that if condition (2.2) fails, then problem (1.1)–(1.3) is not necessarily
globally solvable in the class C in the sense of Definition 1.2. To this end, we use the method of
test functions described in [20, pp. 10–14].
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Lemma 6.1. Let u be a strong generalized solution of problem (1.1)–(1.3) in the class C in the
domain DT in the sense of Definition 1.1. Then the integral relation

∫

DT

u�ϕdx dt +
∫

DT

f(x, t, u)ϕdx dt =
∫

DT

Fϕdx dt (6.1)

holds for any test function ϕ such that

ϕ ∈ C2(DT ), ϕ|∂DT
= 0, ∇ϕ|∂DT

= 0, (6.2)

where ∇ :=
(

∂

∂x
,

∂

∂t

)
.

Proof. By the definition of a strong generalized solution u of problem (1.1)–(1.3) in the class C,
in the domain DT , we have u ∈ C(DT ), and there exists a function sequence un ∈ C̊2(DT , γT ) such
that the limit relations (2.7) hold.

Set Fn := Lun. We multiply both sides of the relation Lun = Fn by the function ϕ and integrate
the resulting relation over the domain DT . By virtue of condition (6.2), after the integration by
parts in the resulting integral relation, we obtain

∫

DT

un�ϕdx dt +
∫

DT

f(x, t, un)ϕdx dt =
∫

DT

Fnϕdx dt. (6.3)

By taking into account the limit relations (2.7) and by passing in relation (6.3) to the limit
as n → ∞, we obtain the desired relation (6.1). The proof of Lemma 6.1 is complete.

Consider the following condition imposed on the function f :

f(x, t, s) ≤ −λ|s|α+1, (x, t, s) ∈ D∞ × R; λ, α := const > 0. (6.4)

One can readily see that condition (2.2) fails in case (6.4).
We introduce the function ϕ0 := ϕ0(x, t) satisfying the conditions

ϕ0 ∈ C2(D∞), ϕ0|DT =1 > 0, ϕ0|∂DT =1 = 0, ∇ϕ0|∂DT =1 = 0, ϕ0|t≥1 = 0 (6.5)

and

κ0 :=
∫

DT=1

|�ϕ0|p′

|ϕ0|p′−1
dx dt < ∞, p′ = 1 +

1
α

. (6.6)

To simplify the exposition, we consider the case in which the curves γ1 and γ2 are rays; i.e.,

γi : x = −kit, ki := const , i = 1, 2; 0 < k1 < k2 < 1. (6.7)

One can readily see that, in the case of (6.7), for the function ϕ0 satisfying conditions (6.5) and (6.6)
one can take the function

ϕ0(x, t) =
{

[(x + k1t)(x + k2t)(1 − t)]m for (x, t) ∈ DT=1,
0 for t ≥ 1

for a sufficiently large m := const > 0.

By setting ϕT (x, t) := ϕ0

(
x

T
,

t

T

)
, T > 0, and by using conditions (6.5), one can readily see

that
ϕT ∈ C2(D∞), ϕT |DT

> 0, ϕT |∂DT
= 0, ∇ϕT |∂DT

= 0, ϕT |t≥T = 0. (6.8)

By assuming that F ∈ C(D∞) is a fixed function, we introduce the following function of one
variable T :

ζ(T ) :=
∫

DT

FϕT dx dt, T > 0. (6.9)

We have the following assertion on the absence of the global solvability of problem (1.1)–(1.3).
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Theorem 6.1. Let the function f ∈ C(D∞×R) satisfy condition (6.4), let F belong to C(D∞),
F ≥ 0, in the domain D∞, and let

lim inf
T→∞

ζ(T ) > 0. (6.10)

Then there exists a positive number T0 = T0(F ) such that problem (1.1)–(1.3) with T > T0 cannot
have a strong generalized solution in the class C in the domain DT in the sense of Definition 1.1.

Proof. Suppose that, under assumptions of the theorem, there exists a strong generalized solu-
tion u of problem (1.1)–(1.3) in the class C in the domain DT . Then, by Lemma 6.1, relation (6.1)
holds, where, by virtue of condition (6.8), for the test function ϕ one can take the function ϕT ; i.e.,

−
∫

DT

f(x, t, u)ϕT dx dt +
∫

DT

FϕT dx dt =
∫

DT

u�ϕT dx dt. (6.11)

Since the function ϕT is positive in the domain DT , it follows from condition (6.4), notation (6.9),
and relation (6.11) that

λ

∫

DT

|u|pϕT dx dt ≤
∫

DT

|u| |�ϕT | dx dt − ζ(T ), p := α + 1. (6.12)

If in the Young inequality with parameter ε > 0,

ab ≤ ε

p
ap +

1
p′εp′−1

bp′
; a, b ≥ 0,

1
p

+
1
p′ = 1, p > 1,

we take a = |u|ϕ1/p
T and b = |�ϕT |/ϕ1/p

T , then, by virtue of the relation p′/p = p′ − 1, we obtain

|u�ϕT | = |u|ϕ1/p
T

|�ϕT |
ϕ

1/p
T

≤ ε

p
|u|pϕT +

1
p′εp′−1

|�ϕT |p
′

ϕp′−1
T

. (6.13)

It follows from inequalities (6.12) and (6.13) that

(
λ − ε

p

) ∫

DT

|u|pϕT dx dt ≤ 1
p′εp′−1

∫

DT

|�ϕT |p
′

ϕp′−1
T

dx dt − ζ(T ),

whence for ε < λp we obtain

∫

DT

|u|pϕT dx dt ≤ p

(λp − ε)p′εp′−1

∫

DT

|�ϕT |p
′

ϕp′−1
T

dx dt − p

λp − ε
ζ(T ). (6.14)

By taking into account the relations p′ =
p

p − 1
, p =

p′

p′ − 1
, and the minimum

min
0<ε<λp

p

(λp − ε)p′εp′−1
=

1
λp′ ,

which is attained for ε = λ, we rewrite inequality (6.14) in the form

∫

DT

|u|pϕT dx dt ≤ 1
λp′

∫

DT

|�ϕT |p
′

ϕp′−1
T

dx dt − p′

λ
ζ(T ). (6.15)
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Since ϕT (x, t) := ϕ0

(
x

T
,

t

T

)
, it follows that, by taking into account relation (6.6) and by

performing the change of variables x = Tx1 and t = Tt1, one can represent the integral on the
right-hand side in inequality (6.15) in the form

∫

DT

|�ϕT |p
′

ϕp′−1
T

dx dt = T−2(p′−1)

∫

DT=1

|�ϕ0|p′

|ϕ0|p′−1
dx1 dt1 = T−2(p′−1)κ0 < ∞. (6.16)

By virtue of relations (6.8) and (6.16), it follows from inequality (6.15) that

0 ≤
∫

DT

|u|pϕT dx dt ≤ 1
λp′ T−2(p′−1)κ0 −

p′

λ
ζ(T ). (6.17)

Since p′ > 1, we have −2(p′ − 1) < 0, and by virtue of (6.6),

lim
T→∞

1
λp′ T−2(p′−1)κ0 = 0. (6.18)

By virtue of relations (6.10) and (6.18), there exists a positive number T0 = T0(F ) such that
for T > T0 the right-hand side of inequality (6.17) is negative, while the left-hand side of this
inequality is nonnegative. Hence it follows that if there exists a strong generalized solution of
problem (1.1)–(1.3) in the class C in the domain DT , then the inequality T ≤ T0 is necessarily true.
The proof of Theorem 6.1 is complete.

Remark 6.1. One can readily see that if the conditions F ∈ C(D∞), F ≥ 0, and F (x, t) ≥ ct−m

are satisfied for t ≥ 1, where c := const > 0 and 0 ≤ m := const ≤ 2, then inequality (6.10) holds,
and by Theorem 6.1 problem (1.1)–(1.3) does not have a strong generalized solution in the class C
in the domain DT for sufficiently large T in this case.

Corollary 5.2. Under the assumptions of Theorem 6.1, problem (1.1)–(1.3) is not globally solv-
able in the class C in the sense of Definition 1.2; i.e., it cannot have a global strong generalized
solution in the class C in the domain D∞ in the sense of Definition 1.3.

In what follows, we show that, although the global solvability of problem (1.1)–(1.3) has been
proved under condition (2.2), the local solvability of this problem remains valid if that condition
fails.

Theorem 6.2. Let f ∈ C(D∞ × R) and F ∈ C(D∞), and let conditions (1.5), (1.6), (3.14),
and (3.26) be satisfied ; moreover , suppose that in the case (l1l2)(O) = 0 the curves γ1 and γ2 either
are not tangent at the point O or are tangent but γ′

2(0) < 0. Then problem (1.1)–(1.3) is locally
solvable in the class C in the sense of Definition 1.4; i.e., there exists a positive number T0 = T0(F )
such that this problem with T ≤ T0 has at least one strong generalized solution u in the class C in
the domain DT .

Proof. By Remarks 3.7 and 3.9, a function u ∈ C(DT ) is a strong generalized solution of
problem (1.1)–(1.3) in the class C in the domain DT if and only if

ũ(ξ, η) := u

(
ξ − η

2
,
ξ + η

2

)

is a solution of the functional equation (3.52) in the class C(GT ), where K0 : C(GT ) → C(GT ) is
a continuous compact operator. Therefore, by virtue of the Schauder theorem [18, p. 370], for the
solvability of Eq. (3.52) in the space C(GT ), it suffices to show that the operator K0 maps some
ball

B(O, r) := {w ∈ C(GT ) : ‖w‖C(GT ) ≤ r}
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of radius r > 0 (which is a closed convex set in the Banach space C(GT )) into itself for sufficiently
small T .

Take an arbitrary positive number T∗ and assume that T ≤ T∗. By virtue of relations (3.15)
and (3.52) for

‖w‖C(GT ) ≤ r, f ∗ := sup
(ξ,η)∈GT∗

|s|≤r

|f̃(ξ, η, s)|, F ∗ := ‖F̃‖C(GT∗ ) (6.19)

with regard of the embedding DT ⊂ DT∗ , we obtain

‖K0w‖C(GT ) ≤ ‖�̃−1‖C(GT )→C(GT ) sup
(ξ,η)∈GT∗

|s|≤r

|f̃(ξ, η, s)| + ‖�̃−1‖C(GT )→C(GT )‖F̃‖C(GT )

≤ 4T 3/2 exp(2−1T )(f ∗ + F ∗). (6.20)

It follows from relations (6.19) and (6.20) that if

T ≤ T0 := min{T∗, h
−1[4−1r(f ∗ + F ∗)−1]},

where h−1 is the function inverse to h(s) := s3/2 exp(2−1s), s > 0, then ‖K0w‖C(GT ) ≤ r for
‖w‖C(GT ) ≤ r. The proof of Theorem 6.2 is complete.
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