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Abstract

For a one-dimensional wave equation with integral nonlinearity, the second Darboux problem is considered for which the
questions on the existence and uniqueness of a global solution are investigated.
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1. Statement of the problem

In a plane of independent variables x and t we consider the wave equation with integral nonlinearity of the type

Lλu := ut t − uxx + λg


x, t, u,

 β(t)

α(t)
u(x, t)dx


= f (x, t), (1.1)

where λ ≠ 0 is the given real constant; g, α, β and f are the given and u is an unknown real functions of their
arguments.

By DT := {(x, t) ∈ R2
: −k2 t < x < k1 t, 0 < t < T ; 0 < ki := const < 1, i = 1, 2} we denote a

triangular domain lying inside of a characteristic angle Λ := {(x, t) ∈ R2
: t > |x |} and bounded by the segmentsγ1,T : x = k1 t , 0 ≤ t ≤ T , γ2,T : x = −k2 t , 0 ≤ t ≤ T and γ3,T : t = T , −k2 T ≤ x ≤ k1 T . For T = +∞,

D∞ := {(x, t) ∈ R2
: −k2 t < x < k1 t, 0 < t < +∞} (Fig. 1.1).

For Eq. (1.1), let us consider the second Darboux problem on finding in the domain DT a solution u(x, t) of the
above equation by the boundary conditions (see e.g., [1, p. 107]; [2, p. 228])

u|γi,T = 0, i = 1, 2. (1.2)
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Fig. 1.1.

Below, when investigating problem (1.1), (1.2) it will be assumed that

−k2 t ≤ α(t) < β(t) ≤ k1 t, 0 < t < ∞. (1.3)

For linear hyperbolic equations of second order with one spatial variable, a great number of works were devoted
to the questions of the well-posedness of the Darboux problem (see, e.g., [2,3] and references therein). As it turned
out, the presence of a weak nonlinearity in the equation affects the correctness of formulation even in the case of the
first Darboux problem (see, e.g., [4–10]). Note that hyperbolic equations with nonlocal nonlinearities of type (1.1)
have been considered in many works (see, e.g., [11–14] and references therein). In the present work it is shown that
under definite conditions on the growth of nonlinear function g = g(x, t, s1, s2) with respect to the variables s1, s2
the second Darboux problem (1.1), (1.2) is globally solvable.

Definition 1.1. Let α, β ∈ C([0, T ]), g ∈ C(DT × R2), f ∈ C(DT ). The function u is said to be a strong
generalized solution of problem (1.1), (1.2) of the class C in the domain DT if u ∈ C(DT ) and there exists a

sequence of functions un ∈
◦

C 2(DT ,ΓT ) such that un → u and Lλ un → f in the space C(DT ), as n → ∞, where
◦

C 2(DT ,ΓT ) := {v ∈ C2(DT ) : v|ΓT = 0}, ΓT := γ1,T ∪ γ2,T .

Remark 1.1. Note that two different approximations with given properties define the same function in Definition 1.1.

Obviously, the classical solution of problem (1.1), (1.2) from the space
◦

C 2(DT ,ΓT ) is a strong generalized solution
of that problem of the class C in the domain DT . In its turn, if a strong generalized solution of problem (1.1), (1.2)
of the class C in the domain DT belongs to the space C2(DT ), then it will be a classical solution of that problem, as
well.

Definition 1.2. Let α, β ∈ C([0, ∞)), g ∈ C(D∞ × R2), f ∈ C(D∞). We say that problem (1.1), (1.2) is globally
solvable in the class C , if for any finite T > 0, this problem has a strong generalized solution of the class C in the
domain DT .

2. An a priori estimate of solution of problem (1.1), (1.2)

Let us consider the following condition imposed on the function g:g(x, t, s1, s2)
 ≤ a + b|s1| + c|s2|, (x, t, s1, s2) ∈ DT × R2, (2.1)

where a, b, c = const ≥ 0.

Lemma 2.1. Let the condition (2.1) be fulfilled. Then for a strong generalized solution of problem (1.1), (1.2) of the
class C in the domain DT the following a priori estimateu


C(DT )

≤ c1
 f


C(DT )

+ c2 (2.2)

with nonnegative constants ci , i = 1, 2, independent of u and f , is valid.
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Proof. Let u be a strong generalized solution of problem (1.1), (1.2) of the class C in the domain DT . Then by virtue

of Definition 1.1, there exists a sequence of functions un ∈
◦

C 2(DT ,ΓT ) such that

lim
n→∞

un − u


C(DT )
= 0, lim

n→∞

Lλ un − f


C(DT )
= 0. (2.3)

Denote

fn := Lλ un . (2.4)

Multiplying both parts of equality (2.4) by unt and integrating with respect to the domain Dτ := {(x, t) ∈ DT :

t < τ }, 0 < τ ≤ T , we obtain

1
2


Dτ

(u2
nt )t dx dt −


Dτ

unxx unt dx dt + λ


Dτ

g


x, t, un,

 β(t)

α(t)
un(x, t)dx


unt dx dt =


Dτ

fn unt dx dt.

Assume ωτ := D∞ ∩ {t = τ }, 0 < τ ≤ T . Then taking into account that un|ΓT = 0, the integration by parts of the
left-hand side of the last equality yields

2


Dτ

fn unt dx dt =


Γτ

1
νt


(unx νt − unt νx )

2
+ u2

nt (ν
2
t − ν2

x )

ds

+


ωτ

(u2
nx + u2

nt )dx + 2λ


Dτ

g


x, t, un,

 β(t)

α(t)
un(x, t)dx


unt dx dt, (2.5)

where ν := (νx , νt ) is the unit vector of the outer normal to ∂ Dτ , and Γτ := ΓT ∩ {t ≤ τ }.
Taking into account that νt

∂
∂x − νx

∂
∂t is the inner differential operator on ΓT and un|ΓT = 0, we have

(unx νt − unt νx )

Γτ

= 0. (2.6)

Since Dτ : −k2t < x < k1t , t < τ , it is easy to see that

(ν2
t − ν2

x )

Γτ

< 0, νt

Γτ

< 0. (2.7)

Bearing in mind (2.6) and (2.7), from (2.5) we obtain

wn(τ ) :=


ωτ

(u2
nx + u2

nt )dx ≤ 2


Dτ

fn unt dx dt − 2λ


Dτ

g


x, t, un,

 β(t)

α(t)
un(x, t)dx


unt dx dt. (2.8)

In view of (2.1), we haveg
x, t, un,

 β(t)

α(t)
un(x, t)dx


unt

 ≤


a + b|un| + c

  β(t)

α(t)
un(x, t)dx

|unt |

≤
1
2


a + b|un| + c

  β(t)

α(t)
un(x, t)dx

2

+
1
2

u2
nt

≤
3
2

a2
+

3
2

b2u2
n +

3
2

c2
 β(t)

α(t)
un(x, t)dx

2

+
1
2

u2
nt . (2.9)

If (x, t) ∈ DT , then owing to (1.3), un|ΓT = 0 and Schwartz inequality, we have

|un(x, t)| =

un(−k2 t, t) +

 x

−k2t
unx (s, t)ds

 =

  x

−k2t
unx (s, t)ds


≤

 x

−k2t
12ds

 1
2
 x

−k2t
u2

nx (s, t)ds

 1
2

≤
√

2t

 x

−k2t
u2

nx (s, t)ds

 1
2

, (2.10)

 β(t)

α(t)
un(x, t)dx

2

≤

 β(t)

α(t)
12dx

 β(t)

α(t)
u2

n(x, t)dx ≤ 2t
 β(t)

α(t)
u2

n(x, t)dx . (2.11)
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It follows from (2.8), (2.10) and (2.11) that  β(t)

α(t)
u2

n(x, t)dx

 ≤ 2t
 β(t)

α(t)


2t

 x

−k2t
u2

nx (s, t)ds


dx

≤ (2t)2
 k1t

−k2t
dx

 k1t

−k2t
u2

nx (s, t)ds = 4t3(k1 +k2)


ωt

u2
nx dx ≤ 8 t3


ωt

(u2
nx + u2

nt )dx = 8 t3wn(t),

whence we get
Dτ

  β(t)

α(t)
un(ξ, t)dξ

2

dx dt =

 τ

0
dt


ωt

  β(t)

α(t)
un(ξ, t)dξ

2

dx ≤

 τ

0
dt


ωt

8 t3wn(t)dx

=

 τ

0
8 t3wn(t) mes ωt dt ≤ 16 τ 4

 τ

0
wn(t)dt. (2.12)

From (2.9) and (2.12), we now obtain
Dτ

g


x, t, un,

 β(t)

α(t)
un(x, t)dx


unt dx dt ≤

3
2

a2 mes Dτ +
3
2

b2


Dτ

u2
ndx dt

+


24 c2τ 4

+
1
2

  τ

0
wn(t)dt. (2.13)

Further, in view of (2.10), we have
Dτ

u2
ndx dt =

 τ

0
dt


ωt

u2
n(x, t)dx ≤

 τ

0
dt


ωt


2 t

 x

−k2t
u2

nx (s, t)ds


dx

≤

 τ

0
dt


ωt


2 t

 k1t

−k2t
u2

nx (s, t)ds


dx ≤

 τ

0
mes ωt


2 t

 k1t

−k2t
u2

nx (s, t)ds


dt

≤ 4 τ 2
 τ

0
dt

 k1t

−k2t
u2

nx (s, t)ds = 4 τ 2
 τ

0
dt


ωt

u2
nx dx

≤ 4 τ 2
 τ

0
dt


ωt

(u2
nx + u2

nt )dx = 4 τ 2
 τ

0
wn(t)dt. (2.14)

Taking into account (2.13), (2.14) and the fact that mes Dτ ≤ τ 2
≤ T 2, 2 fnunt ≤ u2

nt + f 2
n , as well as

Dτ

u2
nt dx dt ≤

 τ

0
wn(t)dt,

from (2.8) we get

wn(τ ) ≤ |λ|


3 a2T 2

+ 12 b2T 2
 τ

0
wn(t)dt + 48 c2T 4

 τ

0
wn(t)dt +

 τ

0
wn(t)dt


+

 τ

0
wn(t)dt

+
 fn

2
L2(DT )

≤


|λ|


12 b2T 2

+ 48 c2T 4
+ 1


+ 1

  τ

0
wn(t)dt + 3|λ|a2T 2

+
 fn

2
L2(DT )

, 0 < τ ≤ T .

Hence according to the Gronwall’s lemma, it follows that

wn(τ ) ≤


3|λ|a2T 2

+
 fn

2
L2(DT )


exp


T


|λ|


12 b2T 2

+ 48 c2T 4
+ 1


+ 1


, 0 < τ ≤ T . (2.15)

If (x, t) ∈ DT , then owing to (2.8), (2.10) and (2.15), we haveun(x, t)
2

≤ 2 t
 x

−k2t
u2

nx (s, t)ds ≤ 2 T
 k1t

−k2t


u2

nx + u2
nt


dx = 2 T wn(t)

≤ 2 T

3|λ|a2T 2

+
 fn

2
L2(DT )


exp


T


|λ|


12 b2T 2

+ 48 c2T 4
+ 1


+ 1


.
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This implies thatun


C(DT )
≤ c1

 fn


C(DT )
+ c2, (2.16)

where

c1 =
√

2T exp
T

2


|λ|


12 b2T 2

+ 48 c2T 4
+ 1


+ 1


,

c2 = a T


6T |λ| exp
T

2


|λ|


12 b2T 2

+ 48 c2T 4
+ 1


+ 1


.

(2.17)

By virtue of (2.3), passing in inequality (2.16) to the limit, as n → ∞, we obtain the estimate (2.2) which proves
Lemma 2.1. �

Remark 2.1. If in inequality (2.1) the number a = 0, then in the a priori estimate (2.2) the value c2 = 0. In this case
estimate (2.2) takes the formu


C(DT )

≤ c1
 f


C(DT )

,

hence from f = 0 it follows that u = 0, which in a linear case implies the uniqueness of a solution of problem (1.1),
(1.2).

3. Equivalent reduction of problem (1.1), (1.2) to a nonlinear integral equation of Volterra type

In new independent variables ξ =
1
2 (t + x), η =

1
2 (t − x) the domain DT will go over to a triangular domain

GT with vertices at the points O(0, 0), Q1
 1+k1

2 T,
1−k1

2 T

, Q2

 1−k2
2 T,

1+k2
2 T


of the plane of variables ξ , η, and

problem (1.1), (1.2) will go over to the problem

Lλv := vξη + λ K v = f (ξ, η), (ξ, η) ∈ GT , (3.1λ)

v

γi ,T

= 0, γi,T := O Qi , i = 1, 2, (3.2λ)

with respect to a new unknown function v(ξ, η) := u(ξ − η, ξ + η); f (ξ, η) := f (ξ − η, ξ + η).
Here, the operator K acts by the formula

(K v)(ξ, η) = g


ξ − η, ξ + η, v,

 β(ξ+η)

α(ξ+η)

v(ξ, η)dξ − v(ξ, η)dη


, (3.3)

γ1,T : η = k1ξ, 0 ≤ ξ ≤ ξ0 := 2−1(1 +k1)T,

γ2,T : ξ = k2η, 0 ≤ η ≤ η0 := 2−1(1 +k2)T,
(3.4)

0 < ki :=
1 −ki

1 +ki
< 1, i = 1, 2. (3.5)

Analogously to Definition 1.1, we introduce the notion of a strong generalized solution v of problem (3.1λ), (3.2λ) of
the class C in the domain GT .

If P0(ξ, η) ∈ GT , we denote by P1 M0 P0 N0 a rectangle, characteristic with respect to Eq. (3.1λ) whose vertices
N0 and M0 lie, respectively, on the segments γ1,T and γ2,T , that is, by virtue of (3.4): N0 := (ξ, k1ξ), M0 := (k2η, η),
P1 := (k2η, k1ξ). Since P1 ∈ GT , we construct analogously the characteristic rectangle P2 M1 P1 N1 whose vertices
N1 and M1 lie, respectively, on the segments γ1,T and γ2,T . Continuing this process, we obtain the characteristic
rectangle Pi+1 Mi Pi Ni for which Ni ∈ γ1,T , Mi ∈ γ2,T , and Ni := (ξi , k1ξi ), Mi := (k2ηi , ηi ), Pi+1 := (k2ηi , k1ξi )

if Pi := (ξi , ηi ), i > 0 (Fig. 3.1).
It is not difficult to see that

P2n =

(k1k2)

nξ, (k1k2)
nη


, P2n+1 =


(k1k2)

nk2η, (k1k2)
nk1ξ


, n = 0, 1, 2, . . . ,

M2n =

(k1k2)

nk2η, (k1k2)
nη


, M2n+1 =


(k1k2)

n+1ξ, (k1k2)
nk1ξ


, n = 0, 1, 2, . . . , (3.6)

N2n =

(k1k2)

nξ, (k1k2)
nk1ξ


, N2n+1 =


(k1k2)

nk2η, (k1k2)
n+1η


, n = 0, 1, 2, . . . .
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Fig. 3.1.

Consider first a linear case, i.e., when in problem (3.1λ), (3.2λ) the parameter λ = 0. If v is a strong generalized
solution of problem (3.10), (3.20) of the class C in the domain GT , then considering the function v as a solution of
the Goursat problem for equation (3.10), in the rectangle Pi+1 Mi Pi Ni with data on characteristic segments Pi+1 Ni
and Pi+1 Mi , we have (see, e.g., [15, p. 173]),

v(Pi ) = v(Mi ) + v(Ni ) − v(Pi+1) +


Pi+1 Mi Pi Ni

f dξ1 dη1, i = 0, 1, . . . .

Thus, by virtue of equality (3.20), it follows that

v(ξ, η) = v(P0) = v(M0) + v(N0) − v(P1) +


P1 M0 P0 N0

f dξ1 dη1

= −v(P1) +


P1 M0 P0 N0

f dξ1 dη1

= −v(M1) − v(N1) + v(P2) −


P2 M1 P1 N1

f dξ1 dη1 +


P1 M0 P0 N0

f dξ1 dη1

= v(P2) −


P2 M1 P1 N1

f dξ1 dη1

+


P1 M0 P0 N0

f dξ1 dη1 = · · · = (−1)nv(Pn)

+

n−1
i=0

(−1)i


Pi+1 Mi Pi Ni

f dξ1 dη1, (ξ, η) ∈ GT . (3.7)

Since the point Pn from (3.7) tends to the point O(0, 0), as n → ∞, by (3.20), we have limn→∞ v(Pn) = 0. Hence,
passing in equality (3.7) to the limit, as n → ∞, for a strong generalized solution v of problem (3.10), (3.20) of the
class C in the domain GT , we obtain the following integral representation:

v(ξ, η) =

∞
i=0

(−1)i


Pi+1 Mi Pi Ni

f dξ1 dη1, (ξ, η) ∈ GT . (3.8)
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Remark 3.1. Since f ∈ C(GT ) and there take place inequalities (3.5), and moreover, owing to (3.6),

mes Pi+1 Mi Pi Ni = (k1k2)
i (ξ − k2η)(η − k1ξ), (3.9)

the series in the right-hand side of equality (3.8) is uniformly and absolutely convergent.

Remark 3.2. From the above reasoning it follows that for any f ∈ C(GT ), linear problem (3.10), (3.20) has a unique
strong generalized solution v of the class C in the domain GT which is representable in the form of uniformly and
absolutely converging series (3.8).

Introduce into consideration the operator L−1
0 : C(GT ) → C(GT ) acting by the formula

(L−1
0

f )(ξ, η) :=

∞
i=0

(−1)i


Pi+1 Mi Pi Ni

f dξ1 dη1, (ξ, η) ∈ GT . (3.10)

Remark 3.3. According to (3.10) and Remark 3.2, a unique strong generalized solution v of problem (3.10), (3.20) of
the class C in the domain GT is representable in the form v = L−1

0
f , and owing to (3.5), (3.9), we have the estimate

v(ξ, η)
 ≤

∞
i=0


Pi+1 Mi Pi Ni

| f | dξ1 dη1 ≤ (ξ + η)2
 f 

C(GT )

∞
i=0

(k1k2)
i

≤
2(ξ2

+ η2)

1 − k1k2

 f 
C(GT )

≤
1 +k2

1 − k1k2
T 2

 f 
C(GT )

, k := max{k1,k2},

whence in its turn it follows thatL−1
0


C(GT )→C(GT )

≤
1 +k2

1 − k1k2
T 2. (3.11)

Lemma 3.1. The function v ∈ C(GT ) is a strong generalized solution of problem (3.1λ), (3.2λ) of the class C in
the domain GT , if and only if this function is a continuous solution of the following nonlinear Volterra type integral
equation

v(ξ, η) + λ(L−1
0 K v)(ξ, η) = (L−1

0
f )(ξ, η), (ξ, η) ∈ GT . (3.12)

Proof. Indeed, let v ∈ C(GT ) be a solution of Eq. (3.12). Since f ∈ C(GT ), and the space C2(GT ) is dense
in C(GT ) (see, e.g., [16, p. 37]), there exists a sequence of functions fn ∈ C2(GT ) such that fn → f in the
space C(GT ), as n → ∞. Analogously, since v ∈ C(GT ), there exists a sequence of functions wn ∈ C2(GT )

such that wn → v in the space C(GT ), as n → ∞. Assume vn := −λL−1
0 Kwn + L−1

0
fn , n = 1, 2, . . .. Taking

into account (3.5), (3.6), (3.9) and (3.10), it is easy to see that vn ∈ C2(GT ), and vn|γi,T = 0, i = 1, 2. On the
one hand, by virtue of estimate (3.1λ) and equality (3.12), we have vn → −λL−1

0 Kv + L−1
0

f = v in the space
C(GT ), as n → ∞, i.e., vn → v in C(GT ), as n → ∞. On the other hand, L0vn = −λKwn + fn , but since
limn→∞ ∥vn − v∥C(GT ) = 0, limn→∞ ∥wn − v∥C(GT ) = 0 and limn→∞ ∥ fn − f ∥C(GT ) = 0, in view of (2.3) we haveLλvn = L0vn + λKvn = −λKwn + fn + λKvn = −λ(Kwn − Kv)+ λ(Kvn − Kv)+ fn → f in the space C(GT ),
as n → ∞. Thus, the function v ∈ C(GT ) is a strong generalized solution of problem (3.1λ), (3.2λ) of the class C in
the domain GT . The converse is obvious. �

4. The case of global solvability of problem (1.1), (1.2) in the class of continuous functions

Lemma 4.1. The operator L−1
0 defined by formula (3.10) is the linear continuous operator acting from the space

C(GT ) to the space C1(GT ).
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Proof. To prove the lemma, we first show that for f ∈ C(GT ), the series in the right-hand side of (3.10) differentiated
formally with respect to ξ and to η converges uniformly on the set GT . Indeed, as it can be easily verified, we have

∂

∂ξ

 ∞
i=0

(−1)i


Pi+1 Mi Pi Ni

f dξ1 dη1


=

∞
n=0


(k1k2)

n


N2n P2n

f dη1 + (k1k2)
n+1


P2n+2 M2n+1

f dη1

− (k1k2)
nk1


M2n+1 N2n

f dξ1


, (4.1)

∂

∂η

 ∞
i=0

(−1)i


Pi+1 Mi Pi Ni

f dξ1 dη1


=

∞
n=0


(k1k2)

n


M2n P2n

f dξ1 + (k1k2)
n+1


P2n+2 N2n+1

f dξ1

− (k1k2)
nk2


N2n+1 M2n

f dη1


. (4.2)

By virtue of (3.6), the equalities

|N2n P2n| = (k1k2)
n(η − k1ξ), |P2n+2 M2n+1| = (k1k2)

nk1(ξ − k2η), |M2n+1 N2n| = (k1k2)
n(1 − k1k2)ξ,

|M2n P2n| = (k1k2)
n(ξ − k2η), |P2n+2 N2n+1| = (k1k2)

nk2(η − k1ξ), |N2n+1 M2n| = (k1k2)
n(1 − k1k2)η,

hold, hence with regard for (3.5), it follows that the series (4.1) and (4.2) converge uniformly and absolutely, and we
have the estimate

max
 ∂

∂ξ
(L−1

0
f 

C(GT )
,

 ∂

∂η
(L−1

0
f 

C(GT )


≤

3

1 − (k1k2)2 T
 f 

C(GT )
.

Thus by virtue of 3.1 and the fact that ∥v∥C1 := max{∥v∥C , ∥vξ∥C , ∥vη∥C }, we obtain the assertion of
Lemma 4.1. �

Remark 4.1. Since the space C1(GT ) is compactly embedded into C(GT ) (see, e.g., [17, p. 135]), the operatorL−1
0 : C(GT ) → C(GT ) in view of (3.1λ) and Lemma 4.1 is linear and compact one.

We rewrite Eq. (3.12) in the form

v = A v := L−1
0 (−λ K v + f ), (4.3)

where the operator A : C(GT ) → C(GT ) is continuous and compact, since the nonlinear operator K : C(GT ) →

C(GT ), acting by formula (3.3), is bounded and continuous, whereas the linear operator L−1
0 : C(GT ) → C(GT )

is, according to Remark 4.1, compact. At the same time, by Lemmas 2.1 and 3.1, and by equalities (2.17), for
an arbitrary parameter τ ∈ [0, 1] and for any solution v ∈ C(GT ) of equation v = τ Av, the a priori estimate
∥v∥C(GT ) ≤ c1∥ f ∥C(GT ) + c2 with the same nonnegative constants c1 and c2 as in (2.1), not depending on v, τ andf , is valid. Therefore, by the Leray–Schauder’s theorem (see, e.g., [18, p. 375]), Eq. (4.3) under the condition of
Lemma 2.1 has at least one solution v ∈ C(GT ). Thus, owing to Lemma 3.1, we have proved the following.

Theorem 4.1. Let α, β ∈ C([0, T ]), g ∈ C(DT × R2), f ∈ C(DT ) and condition (2.1) be fulfilled. Then
problem (1.1), (1.2) has at least one strong generalized solution of the class C in the domain DT in the sense
of Definition 1.1.

Corollary 4.1. Let α, β ∈ C([0, ∞]), g ∈ C(D∞ × R2), f ∈ C(D∞) and condition (2.1) for (x, t) ∈ D∞ be
fulfilled. Then problem (1.1), (1.2) is globally solvable in the class C in the sense of Definition 1.2.

5. The smoothness and uniqueness of a solution of problem (1.1), (1.2). The existence of a global solution in
D∞

From equalities (3.12), (4.1), (4.2), by Lemmas 3.1 and 4.1 we immediately have

Lemma 5.1. Let u be a strong generalized solution of problem (1.1), (1.2) of the class C in the domain DT in the
sense of Definition 1.1. Then if α, β ∈ C1([0, T ]), g ∈ C1(DT × R2) and f ∈ C1(DT ), then u ∈ C2(DT ).
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Lemma 5.2. For g ∈ C1(DT × R2), problem (1.1), (1.2) fails to have more than one strong generalized solution of
the class C in the domain DT .

Proof. Indeed, assume that problem (1.1), (1.2) has two possible different strong generalized solutions u1 and u2 of

the class C in the domain DT . By Definition 1.1, there exists a sequence of functions ui
n ∈

◦

C 2(DT ,ΓT ), i = 1, 2,
such that

lim
n→∞

ui
n − ui


C(DT )

= 0, lim
n→∞

Lλui
n − f


C(DT )

= 0, i = 1, 2. (5.1)

Assume vn := u2
n − u1

n . It can be easily seen that the function vn ∈
◦

C 2(DT ,ΓT ) is a classical solution of the
problem

L0 wn + λ g1
n vn + λ g2

n

 β(t)

α(t)
vndx = fn, (5.2)

vn

ΓT

= 0. (5.3)

Here,

g1
n :=

 1

0
gs1


x, t, u1

n + s(u2
n − u1

n),

 β(t)

α(t)
u1

ndx


ds,

g2
n :=

 1

0
gs2


x, t, u2

n,

 β(t)

α(t)
u1

ndx + s
 β(t)

α(t)
(u2

n − u1
n)dx


ds,

(5.4)

fn := Lλ u2
n − Lλ u1

n, (5.5)

where we have used the following obvious equality

ϕ(x2, y2) − ϕ(x1, y1) = (x2 − x1)

 1

0
ϕx


x1 + s(x2 − x1), y1


ds

+ (y2 − y1)

 1

0
ϕy


x2, y1 + s(y2 − y1)


ds

for the function ϕ(x, y).
Assume

A :=

(x, t, s1, s2) ∈ DT × R2

: (x, t) ∈ DT , |s1| ≤ c1
 f


C(DT )

+ c2, |s2| ≤ 2 T c1
 f


C(DT )

+ c2


and

B := max
gs1


C(A)

,
gs2


C(A)


. (5.6)

Taking into account the a priori estimate (2.2), for the functions u1
n and u2

n , with regard for (5.4)–(5.6), we haveg1
nvn + g2

n

 β(t)

α(t)
vndx

 ≤ B


|vn| +

  β(t)

α(t)
vndx

. (5.7)

Now, by virtue of (5.7), Lemma 2.1 and Remark 2.1 applied to the case when in inequality (2.1) a = 0, b = B, c = B
for the solution vn of problem (5.2), (5.3) we have the following estimate:vn


C(DT )

≤
√

2T exp


T

2


|λ|


12 B2T 2

+ 48 B2T 4
+ 1


+ 1

 fn


C(DT )
. (5.8)

Since owing to (5.1),u2 − u1
 = lim

n→∞

vn


C(DT )
, lim

n→∞

 fn


C(DT )
= 0,
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therefore passing in estimate (5.8) to the limit, as n → ∞, we obtainu2 − u1


C(DT )
≤ 0,

i.e., u1 = u2, which contradicts our assumption. Thus Lemma 5.2 is proved. �

Theorem 5.1. Let α, β ∈ C1([0, +∞)), g ∈ C1(D∞ × R2) and condition (2.1) be fulfilled. Then for any

f ∈ C1(D∞), problem (1.1), (1.2) has the unique global classical solution u ∈
◦

C 2(D∞,Γ∞) in the domain D∞.

Proof. If f ∈ C1(D∞) and condition (2.1) is fulfilled, then according to Theorem 4.1 and Lemmas 5.1 and 5.2, in

the domain DT for T = n there exists the unique classical solution u ∈
◦

C 2(Dn,Γn) of problem (1.1), (1.2). Since
un+1 is likewise a classical solution of problem (1.1), (1.2) in the domain Dn , by Lemma 5.2, we have un+1|Dn = un .
Therefore, the function u constructed in the domain D∞ by the rule u(x, t) = un(x, t) for n = [t] + 1, where [t]
is integer part of the number t , and (x, t) ∈ D∞, will be the unique classical solution of problem (1.1), (1.2) in the

domain D∞ of the class
◦

C 2(D∞,Γ∞). Thus Theorem 5.1 is proved. �
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