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Abstract
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1. Statement of the problem

In a plane of independent variables x and ¢ we consider the wave equation with integral nonlinearity of the type

B@)
Lyu = uy —uxx+kg<x,t,u,/ u(x,t)dx) = f(x,1), (1.1)
o

()
where A # 0 is the given real constant; g, «, 8 and f are the given and u is an unknown real functions of their

arguments. - . ~

By Dy = {(x,t) € R? : —kyt < x < k1t,0 <t < T;0 < k; := const < 1,i = 1,2} we denote a
triangular domain lying inside of a characteristic angle A := {(x,1) € R?:¢ > |x[} and bounded by the segments
Vit ix=kit,0<t <T,yr:x=~-kt,0<t <Tandys7 :t =T, kT <x <kyT.For T = +o0,

Doo :={(x,1) e R?2: —kat <x < ki 1,0 <t < 400} (Fig. 1.1).
For Eq. (1.1), let us consider the second Darboux problem on finding in the domain D7 a solution u(x, t) of the
above equation by the boundary conditions (see e.g., [1, p. 107]; [2, p. 228])

ulp =0, i=12. (1.2)
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Fig. 1.1.

Below, when investigating problem (1.1), (1.2) it will be assumed that
—Tot <a(t) <B@) <kit, 0<t<o0. (1.3)

For linear hyperbolic equations of second order with one spatial variable, a great number of works were devoted
to the questions of the well-posedness of the Darboux problem (see, e.g., [2,3] and references therein). As it turned
out, the presence of a weak nonlinearity in the equation affects the correctness of formulation even in the case of the
first Darboux problem (see, e.g., [4—10]). Note that hyperbolic equations with nonlocal nonlinearities of type (1.1)
have been considered in many works (see, e.g., [11-14] and references therein). In the present work it is shown that
under definite conditions on the growth of nonlinear function g = g(x, t, 51, s2) with respect to the variables sy, 52
the second Darboux problem (1.1), (1.2) is globally solvable.

Definition 1.1. Let o, 8 € C([0,T]), g € C(Dr x R?), f € C(Dr). The function u is said to be a strong
generalized solution of problem (1.1), (1.2) of the class C in the domain Dr if u € C(D7) and there exists a
sequence of functions u, € 8‘ 2(Dr, I'r) such that u,, — u and L; u, — f in the space C(BT), as n — 00, where

C>(Dr,I't) ={ve C*(Dr) :vlp, =0}, I'r =P 7 U 7.

Remark 1.1. Note that two different approximations with given properties define the same function in Definition 1.1.

Obviously, the classical solution of problem (1.1), (1.2) from the space é‘ 2(57, I'r) is a strong generalized solution
of that problem of the class C in the domain Dr. In its turn, if a strong generalized solution of problem (1.1), (1.2)
of the class C in the domain D7 belongs to the space CZ(Dr), then it will be a classical solution of that problem, as
well.

Definition 1.2. Let o, 8 € C([0, 00)), g € C(Dyo x R?), f € C(Doo). We say that problem (1.1), (1.2) is globally
solvable in the class C, if for any finite 7 > 0, this problem has a strong generalized solution of the class C in the
domain Dr7.

2. An a priori estimate of solution of problem (1.1), (1.2)
Let us consider the following condition imposed on the function g:
lg(x, 1,51, 82)| < a+blsi|+clsal, (x,t,51,5) € D x R?, 2.1)
where a, b, ¢ = const > 0.

Lemma 2.1. Let the condition (2.1) be fulfilled. Then for a strong generalized solution of problem (1.1), (1.2) of the
class C in the domain Dr the following a priori estimate

”””C(Er) =a ”f”c@T) to (2.2)

with nonnegative constants c;j, i = 1, 2, independent of u and f, is valid.
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Proof. Let u be a strong generalized solution of problem (1.1), (1.2) of the class C in the domain D7. Then by virtue

o J—
of Definition 1.1, there exists a sequence of functions u, € C 2(Dy, I't) such that

nli)nc}o ””n - L‘HC(ET) =0, nli{ro‘o ”LA Un — fHC(ET) =0. (2.3)
Denote
fn = Lj)uy. 2.4)

Multiplying both parts of equality (2.4) by u,,, and integrating with respect to the domain D; = {(x,t) € Dr :
t <71},0 <1 <T,we obtain

B()
g(x,t,un,/ un(x,t)dx>um dxdt = Jnunr dx dt.
o

UpyxUns dx dt + A /
(1) D:

D

! 2
3 () dx dt —

D; D;

Assume w; := Dy, N{t = 1},0 < t < T. Then taking into account that u,| r; = 0, the integration by parts of the
left-hand side of the last equality yields

1
2/ fnthn dx dt = ﬁ —[(unx Vi — U V)% + uﬁt(vt2 - vg)]ds
D .

Vt
5 ) B()
+ / (uy, +u,)dx + ZA/ g(x, t, Uy, / Uy (x, t)dx)un, dx dt, 2.5)
wr T O((I)
where v := (vy, v;) is the unit vector of the outer normal to 0D, and I'; .= I'r N{t < t}.

Taking into account that v; % — vy % is the inner differential operator on I'r and u, |, = 0, we have

(tnx Ve = g v3) | = 0. (2.6)
Since D; : —%ﬂ <x < Elt, t < 1,itis easy to see that

w2 - u§)|ﬂ <0, wl, <0 2.7)
Bearing in mind (2.6) and (2.7), from (2.5) we obtain

B@)
wy, (1) = (uﬁx + u%,)dx <2 Jn unrdx dt — ZA/ g<x, t, Up, / Uy (x, t)dx)un, dxdt. (2.8)
D - o

wr

O]

In view of (2.1), we have

B() B()
‘g(x,r,un,f un(x,ndx)um < <a+b|un|+c f i (x, 1)dlx >|um|
alt) a(t)
1 B(®) 2 9 5
< —<a+b|un|+c / un(x,t)dx> + = uy,
2 alt) 2
3 2 3 2.2 3 2 pO g 1 2
< Ea + Eb u;, + 5 c " uy(x,t)dx | + 5 Uy, 2.9)

If (x, 1) € D, then owing to (1.3), u, |, = 0 and Schwartz inequality, we have

X
= ‘/~ Upx (S, 1)ds
—kot
1

L 1 . 1
</~ 12ds>2</~ u,%x(s,t)ds>2 < \/Z_I(/N uﬁx(s,t)ds)Z, (2.10)
—kot —kot —kot

B(1) 2 B(®) B(t) B(t)
(/ un(x,t)dx> 5/ 12dx/ u? (x, )dx §2t/ u? (x, r)dx. 2.11)
a(t) a(t) a(t) a(t)

X

lup(x, )| = un(—zzt,t)Jr/~ Upy (S, 1)ds
—kot

IA
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It follows from (2.8), (2.10) and (2.11) that

B B(t) x
/ ul(x, H)dx| <2t f [2: / ~ u,%x(s,t)ds:|dx
o a(t) —kot

®
k]l‘ klt ~ ~
< (2n)? / dx/ u (s, 0yds = 43 (k) + ko) | w2 dx < 8t3/ W2, +u?)dx = 82w, (1),
wy wy

kzt kzt

whence we get

B()
/ / (&, 1)dE
D; o

)
From (2.9) and (2.12), we now obtain

B 3 3
/ g(x,t,un,/ un(x,t)dx)umdxdt < —azmesD, + —bZ/ uﬁdx dt
. a(r) 2 2 .

2 T 2 T
dx dt =f dt/ de/ d;/ 8 13wy (1)dx
0 Wy 0 2

T T
:/ 8t3wn(t)mesw,dt§l6r4/ wy (H)dt. (2.12)
0 0

B()
f (&, 1)dE
alt)

n (24 At + %) for w, (1)dt. (2.13)

Further, in view of (2.10), we have

/ uldx dt = f dt/ u? (x, )dx <f d:/ (2:/~ x(s,t)ds)dx
D wy 0 y kot
kit kit
< / dtf <2tf~ (s, t)ds)dx < mesa),<2t/~ uﬁx(s,t)ds)dt
wy kot kot
klt
<4t / dt/ u (s, t)ds = 412 / dt/ u, . d
kzt wr

< 412/ dr | (u2, +ul)dx = 4r2/ wy (1)dt. (2.14)
0

Wy

Taking into account (2.13), (2.14) and the fact that mes D, < 2 <T? s 2 fullny < u T+ fn , as well as

T
/ ul,dx dt < / wy(2)dt,
D, 0

from (2.8) we get
T T T T
wy () < |A|<3a2T2+ 12b2T2/ w,l(t)dt+4802T4/ wn(t)dt+/ wn(t)dt> +/ Wy (1)dt
0 0 0 0
T
+ | fu ||L2(DT) [|/\|(12b2T2+48c2T4+ 1)+1][ wp ()dt + 3|A|a>T?
0

+ | ”LZ(DT)’ O0<z<T.

Hence according to the Gronwall’s lemma, it follows that

wn(@) = (3T + | a7, 5, ) 0 (T[M(120°T2 448274 + 1) +1]), 0< 7 <T. 2.15)
If (x,1) € D, then owing to (2.8), (2.10) and (2.15), we have
5 X Elt
|un(x, )| < 2;/~ u (s, tyds < ZT/N (U2, +u2)dx = 2T wy (1)
—kyt —kot

< 27 BIMa T + | full ] p,) exp(T[ 11126772 + 48T+ 1) 4 1]).
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This implies that

lunll e, < ctlfull e, + 2 (2.16)

where

ci «/ﬁexp(z[|x|(12bzrz+48c2r‘ +1)+1]),

2 = 6T 2] eXp( [IA|(12b2T2+48c T4 + 1)+1]), (2.17)

By virtue of (2.3), passing in inequality (2.16) to the limit, as n — oo, we obtain the estimate (2.2) which proves
Lemma2.1. O

Remark 2.1. If in inequality (2.1) the number a = 0, then in the a priori estimate (2.2) the value ¢; = 0. In this case
estimate (2.2) takes the form

lulew, = el flew,:

hence from f = 0 it follows that # = 0, which in a linear case implies the uniqueness of a solution of problem (1.1),
(1.2).

3. Equivalent reduction of problem (1.1), (1.2) to a nonlinear integral equation of Volterra type

In new independent variables § = 5 L+ x) n=3 L(t — x) the domain D7 will go over to a triangular domain

G with vertices at the points O(0, 0), O (1+k1 T, 1= kl T) o) (1 3 T, 1+k2 T) of the plane of variables &, 1, and
problem (1.1), (1.2) will go over to the problem

Livi=ve, +1Kv=f(n), &neGr, (.13)

v, 7=0, %r=00i i=12, (3.2;)
with respect to a new unknown function v(§, ) == u(§ — n, & + n); f(é, n) = f(&—n,&+n).
Here, the operator K acts by the formula

BE+n)
(K U)(é’ 77) = g(é - nvé + n,v, / v(év U)dé - v(év U)dﬂ), (33)

E+n)
nr:n =kt 0<g<g:=2"'A+k)T,

- 34
var i€ =kmn, 0<n<n:=2""1+k)T, G4
1 -k .
O<k,-:=1 ~ <1, i=1,2. 3.5)
i

Analogously to Definition 1.1, we introduce the notion of a strong generalized solution v of problem (3.1;), (3.2;) of
the class C in the domain G7.

If Py(&,n) € Gr, we denote by Py MyPyNy a rectangle, characteristic with respect to Eq. (3.1,) whose vertices
No and M) lie, respectively, on the segments y; 7 and y2 7, that is, by virtue of (3.4): No := (§, k1§), Mo = (kan, n),
P1 = (kan, k1&). Since P; € Gr, we construct analogously the characteristic rectangle P, M| P1 N1 whose vertices
Nj and M lie, respectively, on the segments y; 7 and y» 7. Continuing this process, we obtain the characteristic
rectangle P; 1 M; P; N; for which N; € y1 7, M; € y» 7, and N; = (&, k1&;), M; = (kani, i), Piv1 = (kami, k1&;)
if P, == (&, n;),i > 0 (Fig. 3.1).

It is not difficult to see that

Py = ((kik2)"&, (kik2)"n),  Pany1 = ((kik2)"kon, (kik2)"ki§), n=0,1,2,...,
My, = ((kik2)"kan, (kik2)"n),  Mant1 = ((kik)" e, (kik2)'ki€), n=0,1,2,..., (3.6)
Noy = ((kik2)"g, (kik2)"ki&),  Nowg1 = ((kik2)"kan, (kik2)" '), n=0,1,2,....
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Consider first a linear case, i.e., when in problem (3.1, ), (3.2;) the parameter A = 0. If v is a strong generalized
solution of problem (3.1¢p), (3.2¢) of the class C in the domain G, then considering the function v as a solution of
the Goursat problem for equation (3.1p), in the rectangle P;1M; P; N; with data on characteristic segments P;|N;
and P;41M;, we have (see, e.g., [15, p. 173]),

W(P) = v(My) + (ND) — v(Pig1) +/ Fdgdm, i=0.1,....
P11 M; P;N;

Thus, by virtue of equality (3.29), it follows that

v(E, m) = v(Py) = v(Mo) + v(No) — v(Py) +f fdg dn
Py MyPyNy

= —v(P1>+/ f g dn
P1MoPyNo

= —v(M;) — v(N)) +v(Pp) — /

PyM PIN;

fdg dn -I-/ fdg dn

P1Mo PoNo

= v(P2) —/ fdgrdm
PyM PN,

+ / Fderdn = = (—1)"v(P,)
Py Mo PyNy

n—1

+ Z(—l)f/P Fdgidn, & eGr. 3.7)
i=0 i

+1M; P;N;
Since the point P, from (3.7) tends to the point O (0, 0), as n — o0, by (3.29), we have lim,_, 5, v(P,) = 0. Hence,

passing in equality (3.7) to the limit, as n — oo, for a strong generalized solution v of problem (3.1¢), (3.2¢) of the
class C in the domain G7, we obtain the following integral representation:

v(E, n) = Z(—l)f/ fdgidn, (€.n) eGr. (3.8)
i=0 Pi 1 M; P N;



S. Kharibegashvili, O. Jokhadze / Transactions of A. Razmadze Mathematical Institute 170 (2016) 385-394 391

Remark 3.1. Since f € C(Gr) and there take place inequalities (3.5), and moreover, owing to (3.6),

mes Pi 1 M; P;N; = (kik2)' (€ — kan)(n — k1), (3.9)

the series in the right-hand side of equality (3.8) is uniformly and absolutely convergent.

Remark 3.2. From the above reasoning it follows that for any ]7 € C(Gr), linear problem (3.1p), (3.2¢) has a unique
strong generalized solution v of the class C in the domain G7 which is representable in the form of uniformly and
absolutely converging series (3.8).

Introduce into consideration the operator Za L.c (Gr) — C(G7) acting by the formula

o8]

(Ly' HE ) = Z(—l)ff fdgidn. (€.n) €Gr. (3.10)
i=0 Pi11 M; P N;

Remark 3.3. According to (3.10) and Remark 3.2, a unique strong generalized solution v of problem (3.1¢), (3.20) of
the class C in the domain G is representable in the form v = L, f and owing to (3.5), (3.9), we have the estimate

e ;[PMPN Pl an < &40 e,y b
282+ 1) 14k

_ 21 7 ~ ~ ~
= 1 —kiky Hf”C(ET) = 1 — kiky r ”f”c(ET)v k = max{ky, ka2},
whence in its turn it follows that

L+k*

-1
15 ||C(Gr)—>C(Gr>§1 kiky

3.11)

Lemma 3.1. The function v € C (67) is a strong generalized solution of problem (3.1,), (3.2;) of the class C in
the domain G, if and only if this function is a continuous solution of the following nonlinear Volterra type integral
equation

v(E ) + ALy 'K v)E ) =Ly He n, &) eGr. (3.12)

Proof. Indeed, let v € C(Gr) be a solution of Eq. (3.12). Since f € C(GT) and the space CZ(GT) 1s dense
in C(GT) (see, e.g., [16, p. 37]), there exists a sequence of functions fn € C2(GT) such that f,, — f in the
space C(Gr), as n — oo. Analogously, since v € C (Gr), there exists a sequence of functions w, € C*(Gr)
such that w, — v in the space C(Gr), asn — oo. Assume vy, = —AL Kwn + Ly f,,, n = 1,2,.... Taking
into account (3.5), (3.6), (3.9) and (3.10), it is easy to see that v, € CZ(GT) and vn|y, =0,i =1, 2 On the
one hand, by virtue of estimate (3.1;) and equality (3.12), we have v, — —AL 'Kv + L f v in the space
C(GT) asn — oo, le., v, — vin C(GT) as n — 00. On the other hand Lovn = —)»Kw,, + f,,, but since
lim,, oo ||vn U”C(GT) =0, lim,_ ~ ||lw, — U”C(G )= = 0 and lim,_ ||fn f”C(GT) = 0, in view of (2.3) we have
LAvn = Lovn +AKv, = -AKw, + fn +AKv, = —A(Kw, — Kv) +A(Kv, — Kv) + fn — f in the space C(Gr),
as n — 0o. Thus, the function v € C(Gr) is a strong generalized solution of problem (3.1, ), (3.2, of the class C in
the domain G7. The converse is obvious. [

4. The case of global solvability of problem (1.1), (1.2) in the class of continuous functions

Lemma 4.1. The operator Zg ! defined by formula (3.10) is the linear continuous operator acting from the space
C(Gr) to the space C'(Gr).
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Proof. To prove the lemma, we first show that for f e C(Gy), the s_eries in the right-hand side of (3.10) differentiated
formally with respect to £ and to n converges uniformly on the set Gr. Indeed, as it can be easily verified, we have

00

[Z( v [ Fae, dm] - Z[(km)" | Fam+ ey [ Fam
Pi11M; P;N; Non Py Pruia Moy

n=0

— (k)" / 7 dél} @.1)
M2n+lN2n

e8]

[Z( D f Fdg, dm] = Z[(klkz)" | Faa sy | Fag,
Pi11 M; P N; May, Pop PrpaNopy1

n=0
~ (kik2)ky f 7 dm}- @2)
Nop+1 Moy,
By virtue of (3.6), the equalities
[Non Pay| = (kik2)" (n — k18), | PangoMonyi1] = (kika)"ki1(§ — kan), |[Many1 N2l = (kik2)" (1 — kik2)E,
| M2y Pon| = (k1k2)" (6 — k2n), | PonaNonsi1| = (kik2)'ko(n — k18),  |Nong1Mon| = (kik2)" (1 — kik2)n,

hold, hence with regard for (3.5), it follows that the series (4.1) and (4.2) converge uniformly and absolutely, and we
have the estimate
0 ~_ 1% 1y 3 =
mas{ | 2@ @D Vet e
X{Ha ( 0 f) ( 0 f) cenl| — ]—(k1k2)2 ||fHC(GT)
Thus by virtue of 3.1 and the fact that |v||c1 = max{||vlc, Illvellc, llvyllc}, we obtain the assertion of
Lemmad4.1. O

c@Gr)

Remark 4.1. Since the space C 1(Gr) is compactly embedded into C(G7) (see, e.g., [17, p. 135]), the operator
~1. C(G7) - C(Gr)in view of (3.1,) and Lemma 4.1 is linear and compact one.

We rewrite Eq. (3.12) in the form
v=Av:=Zal(—ka+f), 4.3)

where the operator A : C (Gr) — C(Gr) is continuous and compact, since the nonlinear operator K :C (GT) —
C(Gr), acting by formula (3.3), is bounded and continuous, whereas the linear operator L, :C (Gr) — C(Gyp)
is, according to Remark 4.1, compact. At the same time, by Lemmas 2.1 and 3.1, and by equahtles (2.17), for
an arbitrary parameter t € [0, 1] and for any solution v € C (Gr) of equation v = TAw, the a priori estimate
|E}”C(ET) <c ||f||c(§T) + ¢, with the same nonnegative constants ¢i and c; as in (2.1), not depending on v, T and

f is valid. Therefore, by the Leray—Schauder’s theorem (see, e.g., [18, p. 375]), Eq. (4.3) under the condition of
Lemma 2.1 has at least one solution v € C(Gr). Thus, owing to Lemma 3.1, we have proved the following.

Theorem 4.1. Let o, 8 € C([0,T]), g € C(Dr x R?), f € C(Dr) and condition (2.1) be fulfilled. Then
problem (1.1), (1.2) has at least one strong generalized solution of the class C in the domain Dt in the sense
of Definition 1.1.

Corollary 4.1. Let o, B € C([0,]), g € C(Doo x R?), f € C(Dys) and condition (2.1) for (x,t) € Dy be
fulfilled. Then problem (1.1), (1.2) is globally solvable in the class C in the sense of Definition 1.2.

5. The smoothness and uniqueness of a solution of problem (1.1), (1.2). The existence of a global solution in
Do

From equalities (3.12), (4.1), (4.2), by Lemmas 3.1 and 4.1 we immediately have

Lemma S.1. Let u be a strong generalized solution of problem (1.1), (1.2) of the class C in the domain Dt in the
sense of Definition 1.1. Then if a, B € C'([0,T1), g € C' (D7 x R%) and f € C'(Dr), then u € C*(Dy).
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Lemma 5.2. For g € C'(D7 x R?), problem (1.1), (1.2) fails to have more than one strong generalized solution of
the class C in the domain Dr.

Proof. Indeed, assume that problem (1.1), (1.2) has two possible different strong generalized solutions u! and u? of

. o J—
the class C in the domain D7. By Definition 1.1, there exists a sequence of functions u}, € C Z(DT, I'r),i =1,2,
such that

imuy, — a5,y =0, Nim Ly = fllog,y =0, i=1.2. (5.1)

Assume v, = u% — u,]1 It can be easily seen that the function v, € Co‘ 2(BT, I'r) is a classical solution of the
problem
| ) B()
Low, +Ag, v, +Ag, / vpdx = fy, 5.2)
a(t)
Vn|py, =0 (5.3)
Here,
1 B@)
gl = / 8s [x, toub +s@2 —ul), u,l,dx]ds,
0 a(t)
1 B B() (54)
g = / 85, |:x, t uﬁ,/ ubdx +s/ (u? — u,ll)dx:|ds,
0 a(r) a(t)
fui=Lyu? —Ljul, (5.5)

where we have used the following obvious equality
1
p(x2, y2) —o(x1, y1) = (x2 — xl)/ ox[x1 + s(x2 — x1), y1]ds
0

1
+ 02— yl)/o @y[x2, y1 + 502 — y1)]ds

for the function ¢(x, y).
Assume

A= {(x,t,5,5) € Dr x R?: (x,1) € Dy, Is1] < ||f||c(5T) +ca, || < 2Tc1(||f||c(5T) + )}

and

B = max{ 8s, ”C(Z)}' 5.6)

Taking into account the a priori estimate (2.2), for the functions u,l, and uﬁ, with regard for (5.4)—(5.6), we have
gi vy + g,2, / vpdx

B()
/ vdx ) 5.7
a(t) a(r)

Now, by virtue of (5.7), Lemma 2.1 and Remark 2.1 applied to the case when in inequality (2.1)a =0,b = B,c = B
for the solution v, of problem (5.2), (5.3) we have the following estimate:

st lleas

B(®)

=< B<|vn| +

T
lvall e,y < V2T exp<5[|x|(12 B*T? + 48 B*T* + 1) + 1]) | filleo, ) (5.8)

Since owing to (5.1),

Huz—m” = lim an 0,

L ||C(ET)’ nlgngo H Jn ||C(ET) =
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therefore passing in estimate (5.8) to the limit, as n — oo, we obtain
””2 - "c@r) =0,

i.e., u1 = uy, which contradicts our assumption. Thus Lemma 5.2 is proved. U

Theorem 5.1. Let o, f € C'([0,4+0)), ¢ € C'(Ds x R?) and condition (2.1) be fulfilled. Then for any
f e C! (Eoo), problem (1.1), (1.2) has the unique global classical solution u € E‘ 2(500, I'so) in the domain D .

Proof. If f € CY (Do) and condition (2.1) is fulfilled, then according to Theorem 4.1 and Lemmas 5.1 and 5.2, in

the domain D7 for T = n there exists the unique classical solution u € E‘ 2(D,, I, of problem (1.1), (1.2). Since
un+1 is likewise a classical solution of problem (1.1), (1.2) in the domain D,,, by Lemma 5.2, we have u,1|p, = u,.
Therefore, the function u constructed in the domain Dy, by the rule u(x,?) = u,(x,t) for n = [t] + 1, where [7]
is integer part of the number ¢, and (x, ) € Dy, Will be the unique classical solution of problem (1.1), (1.2) in the

domain D4, of the class 8‘ 2(500, I's). Thus Theorem 5.1 is proved. [
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