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1 Introduction

In the space Rn+1 of variables x = (x1, . . . , xn) and t, in the cylindrical domainDT = Ω×(0, T ), whereΩ is
an open Lipschitz domain in R

n, we consider a nonlocal problem of finding a solution u(x, t) of the equation

Lλu :=
∂2u

∂t2
−

n
∑

i=1

∂2u

∂x2i
+ λf(x, t, u) = F (x, t), (x, t) ∈ DT , (1.1)

satisfying the Dirichlet homogeneous boundary condition

u|Γ = 0 (1.2)

on the lateral face Γ := ∂Ω × (0, T ) of the cylinder DT and the homogeneous nonlocal conditions

Kµu := u(x, 0) − µu(x, T ) = 0, x ∈ Ω, (1.3)

Kµut := ut(x, 0)− µut(x, T ) = 0, x ∈ Ω, (1.4)

where f and F are given functions, λ and µ are given nonzero constants, and n > 2.
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Remark 1. Many papers are devoted to nonlocal problems for partial differential equations. Nonlocal problems
posed for abstract evolution equations and hyperbolic partial differential equations are considered in the works
[1, 2, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 25] and the references therein. Note that, for |µ| 6= 1, it suffices
to consider the case |µ| < 1 since the case |µ| > 1 can be reduced to the latter by passing from variable t
to variable t′ = T − t. The case |µ| = 1 is considered at the end of the work. Particularly, when µ = 1,
problem (1.1)–(1.4) can be considered as a periodic problem.

We further impose the following requirements on the function f = f(x, t, u):

f ∈ C(DT × R),
∣

∣f(x, t, u)
∣

∣ 6M1 +M2|u|
α, (x, t, u) ∈ DT × R, (1.5)

where

0 6 α = const <
n+ 1

n− 1
. (1.6)

We consider the following functional spaces:

C̊2
µ(DT ) :=

{

v ∈ C2(DT ): v|Γ = 0, Kµv = 0, Kµvt = 0
}

, (1.7)

W̊ 1
2,µ(DT ) :=

{

v ∈W 1
2 (DT ): v|Γ = 0, Kµv = 0

}

, (1.8)

whereW 1
2 (DT ) represents the known Sobolev space, and the equalities v|Γ = 0,Kµv = 0 must be understood

in the sense of the trace theory [19].

Remark 2. The embedding operator I : W̊ 1
2 (DT ) → Lq(DT ) represents a linear continuous compact operator

for 1 < q < 2(n + 1)/(n − 1) when n > 1 [19]. At the same time, the Nemitski operator N : Lq(DT ) →
L2(DT ), acting by the formula Nu = f(x, t, u), is continuous by (1.5) and bounded if q > 2α [18]. Thus,
since by (1.6) we have 2α < 2(n + 1)/(n − 1), there exists a number q such that 1 < q < 2(n + 1)/(n − 1)
and q > 2α. Therefore, in this case the operator

N0 = NI: W̊ 1
2,µ(DT ) → L2(DT ) (1.9)

is continuous and compact. Besides, from u ∈ W̊2, µ1(DT ) it follows that f(x, t, u) ∈ L2(DT ) and that
if um → u in the space W̊2, µ1(DT ), then f(x, t, um) → f(x, t, u) in the space L2(DT ).

DEFINITION 1. Let function f satisfy conditions (1.5) and (1.6), and F ∈ L2(DT ). We call a function u
a generalized solution of problem (1.1)–(1.4) if u ∈ W̊ 1

2,µ(DT ) and there exists a sequence of functions
um ∈ C̊2

µ(DT ) such that

lim
m→∞

‖um − u‖W̊ 1
2,µ(DT )

= 0, lim
m→∞

‖Lλum − F‖L2(DT ) = 0. (1.10)

Note that this definition of a generalized solution of problem (1.1)–(1.4) also remains in the linear case,
that is, for λ = 0.

It is obvious that a classical solution u ∈ C2(DT ) of problem (1.1)–(1.4) represents a generalized solu-
tion of this problem. It is easy to verify that a generalized solution of problem (1.1)–(1.4) is a solution of
Eq. (1.1) in the sense of the theory of distributions. Indeed, let Fm := Lλum. Multiplying both sides of the
equality Lλum = Fm by a test function w ∈ Vµ := {v ∈ W 1

2 (DT ): v|Γ = 0, v(x, T ) − µv(x, 0) = 0,
x ∈ Ω} and integrating in the domain DT , after simple transformations connected with integration by parts
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and the equality w|Γ = 0, we get
∫

Ω

[

umt(x, T )w(x, T ) − umt(x, 0)w(x, 0)
]

dx

+

∫

DT

[

−umtwt +

n
∑

i=1

umxi
wxi

+ λf(x, t, um)w

]

dxdt =

∫

DT

Fmw dxdt ∀w ∈ Vµ. (1.11)

Since Kµumt = 0 and w(x, T )−µw(x, 0) = 0, x ∈ Ω, it is easy to see that umt(x, T )w(x, T )− umt(x, 0)×
w(x, 0) = umt(x, T )(w(x, T ) − µw(x, 0)) − w(x, 0)(umt(x, 0) − µumt(x, T )) = 0. Therefore, Eq. (1.11)
takes the form

∫

DT

[

−umtwt +

n
∑

i=1

umxi
wxi

+ λf(x, t, um)w

]

dxdt =

∫

DT

Fmw dxdt ∀w ∈ Vµ. (1.12)

In view of (1.5), (1.6), and Remark 2, we have f(x, t, um) → f(x, t, u) in the space L2(DT ) as um → u in
the space W̊ 1

2,µ(DT ). Therefore, by (1.10), passing to the limit in Eq. (1.12) as m→ ∞, we get

∫

DT

[

−utwt +

n
∑

i=1

uxi
wxi

+ λf(x, t, u)w

]

dxdt =

∫

DT

Fw dxdt ∀w ∈ Vµ. (1.13)

Since C∞
0 (DT ) ⊂ Vµ, from (1.13), integrating by parts, we have

∫

DT

u✷w dxdt+ λ

∫

DT

f(x, t, u)w dxdt =

∫

DT

Fw dxdt ∀w ∈ C∞
0 (DT ), (1.14)

where ✷ := ∂2/∂t2 −
∑n

i=1 ∂
2/∂x2i , and C∞

0 (DT ) is the space of finite infinitely differentiable functions
in DT . Equality (1.14), which is valid for any w ∈ C∞

0 (DT ), means that a generalized solution u of prob-
lem (1.1)–(1.4) is a solution of Eq. (1.1) in the sense of the theory of distributions. Besides, since the trace
operators u → u|t=0 and u → u|t=T are continuous operators acting from the space W 1

2 (DT ) into the spaces
L2(Ω × {t = 0}) and L2(Ω × {t = T}), respectively, then by (1.10) the generalized solution u of problem
(1.1)–(1.4) satisfies the nonlocal condition (1.3) in the sense of the trace theory. As for the nonlocal condition
(1.4), it is taken into account in the integral sense in Eq. (1.13), which is valid for all w ∈ Vµ. Note also that
if a generalized solution u belongs to the class C2(DT ), then by the standard reasoning, combined with the
integral identity (1.13) [19], we have that u is a classical solution of problem (1.1)–(1.4), satisfying pointwise
Eq. (1.1), the boundary condition (1.2), and the nonlocal conditions (1.3) and (1.4).

Remark 3. Note that even in the linear case, that is, for λ = 0, problem (1.1)–(1.4) is not always well posed.
For example, when λ = 0 and |µ| = 1, the corresponding to (1.1)–(1.4) homogeneous problem may have an
infinite number of linearly independent solutions (see Remark 6).

The work is organized in the following way. In Section 2, we single out the class of semilinear equa-
tions (1.1) when, for |µ| < 1, an a priori estimate for the generalized solution of problem (1.1)–(1.4) is valid.
In Section 3, on the basis of the a priori estimate obtained in the previous section, we prove the solvability of
problem (1.1)–(1.4). In Section 4, we consider the conditions imposed on the data of the problem that ensure
the uniqueness of the solution of this problem. In Section 5, using the method of test functions, we show that
when the conditions imposed on the nonlinear term in Eq. (1.1) are violated, problem (1.1)–(1.4) may not have
a solution. Finally, in the last section, we consider the case |µ| = 1 as an application of the results obtained in
the previous sections.
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2 A priori estimate of the solution of problem (1.1)–(1.4)

Let

g(x, t, u) =

u
∫

0

f(x, t, s) ds, (x, t, u) ∈ DT × R. (2.1)

Consider the following conditions imposed on the function g = g(x, t, u):

g(x, t, u) > 0, (x, t, u) ∈ DT × R, (2.2)

gt ∈ C(DT × R), gt(x, t, u) 6M3, (x, t, u) ∈ DT × R, (2.3)

g(x, 0, µu) 6 µ2g(x, T, u), (x, u) ∈ Ω × R, (2.4)

where M3 = const > 0, and µ is the fixed constant from (1.3)– (1.4).

Remark 4. Let us consider the class of functions f from (1.1) satisfying conditions (1.5), (2.2), (2.3), and
(2.4). For α = β + 1, consider the function f = f0(t)|u|

βu, where f0 ∈ C1([0, T ]), f0 > 0, df0/dt 6 0,
f0(0)µ

β 6 f0(T ), β > 0, and µ > 0 is the fixed constant from (1.3)–(1.4). In particular, these conditions
are satisfied if f0 = const > 0 and 0 < µ 6 1. Indeed, with these conditions, by (2.1) we have: g =
f0(t)|u|

β+2/(β + 2), g > 0, gt 6 0, and g(x, 0, µv) = f0(0)|µv|
β+2/(β + 2) = µ2(f0(0)µ

β)|v|β+2/
(β + 2) 6 µ2f0(T )(|v|

β+2)/(β + 2) = µ2g(x, T, v).

Lemma 1. Let λ > 0, |µ| < 1, f ∈ C(DT × R), F ∈ L2(DT ), and conditions (2.2)–(2.4) be satisfied. Then,
for a generalized solution u of problem (1.1)–(1.4), we have the a priori estimate

‖u‖W̊ 1
2,µ(DT )

6 c1‖F‖L2(DT ) + c2 (2.5)

with nonnegative constants ci = ci(λ, µ,Ω, T,M1,M2,M3) not depending on u and F, c1 > 0, whereas in the
linear case (λ = 0), the constant c2 = 0, and in this case, by (2.5) we have the uniqueness of the generalized
solution of problem (1.1)–(1.4).

Proof. Let u be a generalized solution of problem (1.1)–(1.4). By Definition 1 there exists a sequence of
functions um ∈ C̊2

µ(DT ) such that the limit equalities (1.10) are satisfied.
Set

Lλum = Fm, (x, t) ∈ DT . (2.6)

Multiplying both sides of Eq. (2.6) by 2umt and integrating in the domainDτ := DT∩{t < τ}, 0 < τ 6 T ,
by (2.1) we obtain

∫

Dτ

∂

∂t

(

∂um
∂t

)2

dxdt− 2

∫

Dτ

n
∑

i=1

∂2um
∂x2i

∂um
∂t

dxdt

+ 2λ

∫

Dτ

d

dt

(

g(x, t, um(x, t)
)

dxdt− 2λ

∫

Dτ

gt
(

x, t, um(x, t)
)

dxdt

= 2

∫

Dτ

Fm
∂um
∂t

dxdt. (2.7)
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Let ωτ := {(x, t) ∈ DT : x ∈ Ω, t = τ}, 0 6 τ 6 T , where ω0 and ωT are upper and lower bases of the
cylindrical domainDT , respectively. Denote by ν := (νx1

, νx2
, . . . , νxn

, νt) the unit vector of the outer normal
to ∂Dτ . Since

νxi
|ωτ∪ω0

= 0, i = 1, . . . , n,

νt|Γτ :=Γ∩{t6τ} = 0, νt|ωτ
= 1, νt|ω0

= −1,

taking into account that um ∈ C̊2
µ(DT ) and, therefore, by (1.7)

um|Γ = 0, Kµum = 0, Kµumt = 0, (2.8)

integrating by parts, we obtain

∫

Dτ

∂

∂t

(

∂um
∂t

)2

dxdt =

∫

∂Dτ

(

∂um
∂t

)2

νt ds

=

∫

ωτ

u2mt dx−

∫

ω0

u2mt dx− 2

∫

Dτ

∂2um
∂x2i

∂um
∂t

dxdt (2.9)

=

∫

Dτ

[(

u2mxi

)

t
− 2(umxi

umt)xi

]

dxdt

=

∫

ωτ

u2mxi
dx−

∫

ω0

u2mxi
dx, i = 1, . . . , n, (2.10)

2λ

∫

Dτ

d

dt

(

g(x, t, um(x, t)
)

dxdt = 2λ

∫

∂Dτ

g
(

x, t, um(x, t)
)

νt ds

= 2λ

∫

ωτ

g
(

x, t, um(x, t)
)

dx− 2λ

∫

ω0

g
(

x, t, um(x, t)
)

dx. (2.11)

In view of (2.9)–(2.11), from (2.7) we get

∫

ωτ

[

u2mt +

n
∑

i=1

u2mxi

]

dx =

∫

ω0

[

u2mt +

n
∑

i=1

u2mxi

]

dx

− 2λ

∫

ωτ

g
(

x, t, um(x, t)
)

dx+ 2λ

∫

ω0

g
(

x, t, um(x, t)
)

dx

+ 2λ

∫

Dτ

gt
(

x, t, um(x, t)
)

dxdt+ 2

∫

Dτ

Fmumt dxdt. (2.12)

Let

wm(τ) :=

∫

ωτ

[

u2mt +

n
∑

i=1

u2mxi
+ 2λg

(

x, t, um(x, t)
)

]

dx. (2.13)
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Since 2Fmumt 6 ǫ−1F 2
m + ǫu2mt for any ǫ = const > 0 and since λ > 0, by (2.3) and (2.13) from (2.12) it

follows that

wm(τ) = wm(0) + 2λ

∫

Dτ

gt
(

x, t, um(x, t)
)

dxdt+ 2

∫

Dτ

Fmumt dxdt6 w0(0) + 2λM3τ mesΩ + ǫ

∫

Dτ

u2mt dxdt+ ǫ−1

∫

Dτ

F 2
m dxdt. (2.14)

Since λ > 0, taking into account and (2.2) and the inequality

∫

Dτ

u2mt dxdt =

τ
∫

0

[
∫

ωs

u2mt dx

]

ds6 τ
∫

0

[

∫

ωs

[

u2mt +

n
∑

i=1

u2mxi
+ 2λg

(

x, t, um(x, t)
)]

dx

]

ds

=

τ
∫

0

wm(s) ds,

from (2.14) we obtain

wm(τ) 6 ǫ

τ
∫

0

wm(s) ds+ wm(0) + 2λM3τ mesΩ + ǫ−1

∫

Dτ

F 2
m dxdt, 0 < τ 6 T. (2.15)

Because of Dτ ⊂ DT , 0 < τ 6 T , the right-hand side of inequality (2.15) is a nondecreasing function of
variable τ , and by Gronwall’s lemma [3] from (2.15) it follows that

wm(τ) 6 [wm(0) + 2λM3T mesΩ + ǫ−1

∫

DT

F 2
m dxdt

]

eǫτ , 0 < τ 6 T. (2.16)

In view of λ > 0, by (2.4) and (2.8) from (2.13) it follows that

wm(0) =

∫

Ω

[

u2mt(x, 0) +

n
∑

i=1

u2mxi
(x, 0) + 2λg

(

x, 0, um(x, 0)
)

]

dx

=

∫

Ω

[

µ2u2mt(x, T ) + µ2
n
∑

i=1

u2mxi
(x, T ) + 2λg

(

x, 0, µum(x, T )
)

]

dx6 µ2
∫

Ω

[

u2mt(x, T ) +

n
∑

i=1

u2mxi
(x, T ) + 2λg

(

x, T, um(x, T )
)

]

dx

= µ2wm(T ). (2.17)
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Using inequality (2.16) for τ = T , from (2.17) we obtain

wm(0) 6 µ2wm(T ) 6 µ2
[

wm(0) + 2λM3T mesΩ + ǫ−1

∫

DT

F 2
m dxdt

]

eǫT

= µ2eǫTwm(0) +M4 + µ2ǫ−1eǫT ‖Fm‖2L2(DT )
, (2.18)

where

M4 := µ22λM3T e
ǫT mesΩ. (2.19)

Since |µ| < 1, a positive constant ǫ = ǫ(µ, T ) can be chosen small enough so that

µ1 = µ2eǫT < 1. (2.20)

For example, we can set ǫ = (1/T ) ln(1/|µ|).
By (2.20) from (2.18) we have

w(0) 6 (1− µ1)
−1M4 + (1− µ1)

−1µ2ǫ−1eǫT ‖Fm‖2L2(DT )
. (2.21)

From (2.16) and (2.21) it follows that

wm(τ) 6 [(1− µ1)
−1M4 + (1− µ1)

−1µ2ǫ−1eǫT ‖Fm‖2L2(DT )

+ 2λM3T mesΩ + ǫ−1‖F‖2L2(DT )

]

eǫT6 σ1‖Fm‖2L2(DT )
+ σ2, 0 < τ 6 T, (2.22)

where

σ1 =
[

(1− µ1)
−1µ2eǫT + 1

]

ǫ−1eǫT , σ2 =
[

(1− µ1)
−1M4 + 2λM3T mesΩ

]

eǫT . (2.23)

Since, for fixed τ , the function um(x, τ) belongs to the space W̊21(Ω) := {v ∈ W̊21(Ω) : v|∂Ω = 0}, by
the Friedrichs inequality [19], taking into account (2.2) and λ > 0, we have

∫

ωτ

[

u2m + u2mt +

n
∑

i=1

u2mxi

]

dx 6 c0

∫

ωτ

[

u2mt +

n
∑

i=1

u2mxi

]

dx6 c0

∫

ωτ

[

u2mt +

n
∑

i=1

u2mxi
+ λg

(

x, t, um(x, t)
)

]

dx

= c0wm(τ), (2.24)

where the positive constant c0 = c0(Ω) does not depend on um.
From (2.22) and (2.24) it follows

‖um‖2
W̊2,µ1(DT )

=

T
∫

0

[

∫

ωτ

(

u2m + u2mt +

n
∑

i=1

u2mxi

)

dx

]

dτ 6 c0

T
∫

0

wm(τ) dτ6 c0

T
∫

0

[

σ1‖F‖
2
L2(DT )

+ σ2
]

dτ = c0σ1T‖Fm‖2L2(DT ) + c0σ2T. (2.25)
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Taking the square root from the both sides of inequality (2.25) and using the inequality (a2 + b2)1/2 6
|a|+ |b|, we get

‖um‖W̊2,µ1(DT )
6 c1‖Fm‖L2(DT ) + c2, (2.26)

where

c1 =
(

c0T
[

(1− µ1)
−1µ2eǫT + 1

]

ǫ−1eǫT
)1/2

,

c2 =
(

c0T
[

(1− µ1)
−1µ22λM3T e

ǫT mesΩ + 2λM3T mesΩ
]

eǫT
)1/2

.
(2.27)

In view of the limit equalities (1.10), passing to the limit in inequality (2.26) as m → ∞, we obtain (2.5).
This proves Lemma 1. ⊓⊔

3 The existence of the solution of problem (1.1)–(1.4)

For the existence of the solution of problem (1.1)–(1.4) in the case |µ| < 1, we will use the well-known facts
on the solvability of the following linear mixed problem [19]:

L0u :=
∂2u

∂t2
−

n
∑

i=1

∂2u

∂x2i
= F (x, t), (x, t) ∈ DT , (3.1)

u|Γ = 0, u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ Ω, (3.2)

where F,ϕ, and ψ are given functions.
For F ∈ L2(DT ), ϕ ∈ W̊ 1

2 (Ω), and ψ ∈ L2(Ω), the unique generalized solution u of problem (3.1), (3.2)
(in the sense of the integral identity

−

∫

Ω

ψw(x, 0) dx +

∫

DT

[

−utwt +

n
∑

i=1

uxi
wxi

]

dxdt =

∫

DT

Fw dxdt ∀w ∈ V0,

where V0 := {v ∈ W 1
2 (DT ): v|Γ = 0, v(x, T ) = 0, x ∈ Ω} and u|t=0 = ϕ) from the space E2,1(DT ) with

the norm

‖v‖2E2,1(DT )
= sup

06τ6T

∫

ωτ

[

v2 + v2t +

n
∑

i=1

v2xi

]

dx

is given by the formula [19]

u =

∞
∑

k=1

(

ãk cosµkt+ b̃k sinµkt+
1

µk

t
∫

0

Fk(τ) sinµk(t− τ) dτ

)

ϕk(x), (3.3)

where λ̃k = −µ2k (0 < µ1 6 µ2 6 · · · , limk→∞ µk = ∞) and ϕk ∈ W̊ 1
2 (Ω) are the eigenvalues and corre-

sponding eigenfunctions of the spectral problem ∆w = λ̃w, w|∂Ω = 0 in the domainΩ (∆ :=
∑n

i=1 ∂
2/∂x2i ),

simultaneously forming an orthonormal basis in L2(Ω) and an orthogonal basis in W̊ 1
2 (Ω) with respect to the

scalar product (v,w)W̊ 1
2 (Ω) =

∫

Ω

∑n
i=1 vxi

wxi
dx [19], that is,

(ϕk, ϕl)L2(Ω) = δlk, (ϕk, ϕl)W̊ 1
2 (Ω) = −λ̃kδ

l
k, δlk =

{

1, l = k,

0, l 6= k.
(3.4)



One nonlocal problem for a semilinear wave equation 339

Here

ãk = (ϕ,ϕk)L2(Ω), b̃k = µ−1
k (ψ,ϕk)L2(Ω), k = 1, 2, . . . , (3.5)

F (x, t) =

∞
∑

k=1

Fk(t)ϕk(x), Fk(t) = (F,ϕk)L2(ωt), ωτ := DT ∩ {t = τ}. (3.6)

Besides, for the solution u from (3.3), we have the following estimate

‖u‖E2,1(DT ) 6 γ
(

‖F‖L2(DT ) + ‖ϕ‖W̊ 21(Ω) + ‖ψ‖L2(Ω)

)

(3.7)

with positive constant γ independent of F,ϕ, and ψ [19, 21].
Let us consider the linear problem corresponding to (1.1)–(1.4), that is, the case λ = 0:

L0u :=
∂2u

∂t2
−

n
∑

i=1

∂2u

∂x2i
= F (x, t), (x, t) ∈ DT , (3.8)

u|Γ = 0, (3.9)

u(x, 0) − µu(x, T ) = 0, ut(x, 0) − µut(x, T ) = 0, x ∈ Ω. (3.10)

Let us show that when |µ| < 1, for any F ∈ L2(DT ), there exists a unique generalized solution of
problem (3.8)–(3.10). Indeed, since the space of finite infinitely differentiable functions C∞

0 (DT ) is dense in
the space L2(DT ), for F ∈ L2(DT ) and any natural number m, there exists a function Fm ∈ C∞

0 (DT ) such
that

‖Fm − F‖L2(DT ) <
1

m
. (3.11)

On the other hand, for a function Fm in the space L2(DT ), we have the following expansion [19]:

Fm(x, t) =

∞
∑

k=1

Fm,k(t)ϕk(x), Fm,k(t) = (Fm, ϕk)L2(Ω). (3.12)

Therefore, there exists a natural number lm such that limm→∞ lm = ∞ and, for

F̃m(x, t) =

lm
∑

k=1

Fm,k(t)ϕk(x), (3.13)

we have

‖F̃m − Fm‖L2(DT ) <
1

m
. (3.14)

From (3.11) and (3.14) it follows

lim
m→∞

‖F̃m − F‖L2(DT ) = 0. (3.15)

The solution u = um of problem (3.1)–(3.2) for

ϕ =

lm
∑

k=1

ãkϕk, ψ =

lm
∑

k=1

µkb̃kϕk, F = F̃m,
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is given by formula (3.3), which by (3.4)–(3.6) and (3.13) can be rewritten as follows:

um =

lm
∑

k=1

(

ãk cosµkt+ b̃k sinµkt+
1

µk

t
∫

0

Fm,k(τ) sinµk(t− τ) dτ

)

ϕk(x). (3.16)

By construction the function um from (3.16) satisfies Eq. (3.8) and the boundary condition (3.9) for F =
F̃m from (3.13). Let us define define unknown coefficients ãk and b̃k so that the function um from (3.16)
would satisfy the nonlocal conditions (3.10) too. For this purpose, let us substitute the right-hand part of
expression (3.16) into Eqs. (3.10). As a result, since the system of functions {ϕk(x)} forms a basis in L2(Ω),
for defining the coefficients ãk and b̃k, we have the following system of linear algebraic equations:

(1− µ cosµkT )ãk − (µ sinµkT )b̃k =
µ

µk

T
∫

0

Fm,k(τ) sin µk(T − τ) dτ,

(µµk sinµkT )ãk + µk(1− µ cosµkT )b̃k = µ

T
∫

0

Fm,k(τ) cosµk(T − τ) dτ,

(3.17)

k = 1, 2, . . . , lm. Its solution is

ãk =
[

d1kµµk sinµkT − d2k(1− µ cosµkT )
]

∆−1
k , k = 1, 2, . . . , lm, (3.18)

b̃k =
[

d2k(1− µ cosµkT )− d1kµµk sinµkT
]

∆−1
k , k = 1, 2, . . . , lm, (3.19)

where

d1k =
µ

µk

T
∫

0

Fm,k(τ) sinµk(T − τ) dτ,

d2k = µ

T
∫

0

Fm,k(τ) cos µk(T − τ) dτ.

Since |µ| < 1, for the determinant ∆k of system (3.17), we have

∆k = µk
[

(1− µ cosµkT )
2 + µ2 sin2 µkT

] > µk
(

1− |µ|
)2
> 0. (3.20)

We further assume that the Lipschitz domain Ω is such that the eigenfunctions ϕk ∈ C2(Ω), k > 1. For
example, this will take place if ∂Ω ∈ C [n/2]+3 [21]. This fact will also take place in the case of a piece-wise
smooth Lipschitz domain, for example, for the parallelepiped Ω = {x ∈ R

n: |xi| < ai, i = 1, . . . , n},
the corresponding eigenfunctions ϕk ∈ C∞(Ω) [22] (see also Remark 6). Therefore, since Fm ∈ C∞

0 (DT ),
by (3.12) the function Fm,k ∈ C2([0, T ]), and consequently the function um from (3.16) belongs to the space
C2(DT ). Further, by construction the function um from (3.16) belongs to the space C̊2

µ(DT ) defined in (1.7),
besides,

L0um = F̃m, L0(um − uk) = F̃m − F̃k. (3.21)

From (3.21) and a priori estimate (2.5) we have

‖um − uk‖W̊ 1
2,µ(DT )

6 c1‖F̃m − F̃k‖L2(DT ) (3.22)
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since by Lemma 1 the coefficient c2 = 0 when λ = 0. In view of (3.15), from (3.22) it follows that the
sequence um ∈ C̊2

µ(DT ) is fundamental in the complete space W̊ 1
2,µ(DT ). Therefore, there exists a function

u ∈ W̊ 1
2,µ(DT ) such that by (3.15) and (3.21) the limit equalities (1.10) are valid for λ = 0. This means that

the function u is a generalized solution of problem (3.8)–(3.10). The uniqueness of this solution follows from
a priori estimate (2.5), where the constant c2 = 0 for λ = 0, that is,

‖u‖W̊ 1
2,µ(DT ) 6 c1‖F‖L2(DT ). (3.23)

Therefore, for the solution u of problem (3.8)–(3.10), we have u = L−1
0 (F ), whereL−1

0 :L2(DT ) → W̊ 1
2,µ(DT )

is a linear continuous operator with norm that by (2.23) can be estimated as follows:

‖L−1
0 ‖L2(DT )→W̊2,µ1(DT )

6 c1. (3.24)

Remark 5. Note that when conditions (1.5) and (1.6) are satisfied and F ∈ L2(DT ), by (3.24) and Remark 2
the function u ∈ W̊2, µ1(DT ) is a generalized solution of problem (1.1)–(1.4) in the sense of Definition 1 if
and only if u is a solution of the functional equation

u = L−1
0

(

−λf(x, t, u)
)

+ L−1
0 (F ) (3.25)

in the space W̊2, µ1(DT ).

Rewrite Eq. (3.25) in the form

u = A0u := −λL−1
0 (N0u) + L−1

0 (F ), (3.26)

where the operator N0 : W̊ 1
2,µ(DT ) → L2(DT ) from (1.9) by Remark 2 is continuous and compact operator.

Therefore, by (3.24) the operator A0 : W̊ 1
2,µ(DT ) → W̊ 1

2,µ(DT ) from (3.26) is also continuous and compact
when 0 6 α < (n+ 1)/(n − 1). At the same time, by Lemma 1 and (2.27), for any parameter τ ∈ [0, 1] and
for any solution u of the equation u = τA0u with the parameter τ , we have the same a priori estimate (2.5)
with nonnegative constants ci independent of u, F , and τ . Therefore, by the Schaefer fixed point theorem [7],
Eq. (3.26), and therefore by Remark 5 problem (1.1)–(1.4) has at least one solution u ∈ W̊ 1

2,µ(DT ). Thus, we
have proved the following theorem.

Theorem 1. Let λ > 0 and |µ| < 1, and let conditions (1.5), (1.6), and (2.2)–(2.4) be satisfied. Then, for

any F ∈ L2(DT ), problem (1.1)–(1.4) has at least one generalized solution u ∈ W̊ 1
2,µ(DT ) in the sense of

Definition 1.

Remark 6. Note that, for |µ| = 1, even in the linear case, that is, for f = 0, the homogeneous problem corre-
sponding to (1.1)–(1.4) may have a finite or even infinite number of linearly independent solutions, whereas
for solvability of this problem, the function F ∈ L2(DT ) must satisfy a finite or infinite number of conditions
of the form l(F ) = 0, respectively, where l is a continuous functional in L2(DT ). Indeed, in the case µ = 1,
denote by Λ(1) the set of those numbers µk from (3.3) for which the ratio µkT/(2π) is a natural number, that
is, Λ(1) = {µk: µkT/(2π) ∈ N}. Formulas (3.18)–(3.19) for determination of unknown coefficients ãk and b̃k
in representation (3.16) are obtained from the system of linear algebraic equations (3.17). In the caseΛ(1) 6= ∅
and µk ∈ Λ(1) with µ = 1, the determinant ∆k of system (3.17), given by (3.20), equals zero. Moreover,
in this case, all coefficients in front of unknown ãk and b̃k in the left-hand side part of system (3.17) equal
zero. Therefore, by (3.16) the homogeneous problem corresponding to (3.8), (3.9), and (3.10) is satisfied by
the function

uk(x, t) =
(

C1 cosµkt+C2 sinµkt
)

ϕk(x), (3.27)
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where C1 and C2 are arbitrary constant numbers; besides, by (3.17) the necessary conditions of solvability of
nonhomogeneous problem (3.8)–(3.10) corresponding µk ∈ Λ(1) are the following:

lk,1(F ) =

∫

DT

F (x, t)ϕk(x) sinµk(T − t) dxdt = 0,

lk,2(F ) =

∫

DT

F (x, t)ϕk(x) cosµk(T − t) dxdt = 0.

(3.28)

Analogously, in the case µ = −1, denote by Λ(−1) the set of points µk from (3.3) for which the ratio
µkT/π is an odd integer number. For µk ∈ Λ(−1) with µ = −1, the function uk from (3.27) also is a solu-
tion of the homogenous problem corresponding to (3.8)–(3.10), and conditions (3.28) are the corresponding
necessary conditions for solvability of this problem. For example, when n = 2 and Ω = (0, 1) × (0, 1), the
eigenvalues and eigenfunctions of the Laplace operator ∆ are [22]

λk = −π2
(

k21 + k22
)

, ϕk(x1, x2) = 2 sin k1πx1 · sin k2πx2, k = (k1, k2),

that is, µk = π(k21 + k22)
1/2. For k1 = p2 − q2 and k2 = 2pq, where p and q are any integer numbers, we

obtain µk = π(p2 + q2). In this case, for T/2 ∈ N, we have µkT/(2π) = (p2 + q2)T/2 ∈ N, and by the
preceding, when µ = 1, the homogeneous problem corresponding to (3.8)–(3.10) has an infinite number of
linearly independent solutions

up,q(x, t) =
[

C1 cos π
(

p2 + q2
)

t+ C2 sinπ
(

p2 + q2
)

t
]

sin
(

p2 − q2
)

πx1 · sin 2pqπx2

for any integer numbers p and q. Analogously, when µ = −1, the solutions of the homogeneous problem
corresponding to (3.8)–(3.10) in the case where p is an even number, whereas q and T odd numbers, are the
functions from (3.27).

4 The uniqueness of the solution of problem (1.1)–(1.4)

On the function f in Eq. (1.1), wevus impose the following additional requirements:

f, f ′u ∈ C(DT ×R),
∣

∣f ′u(x, t, u)
∣

∣ 6 a+ b|u|γ , (x, t, u) ∈ DT × R, (4.1)

where a, b, γ = const > 0.
It is obvious that from (4.1) we have condition (1.5) for α = γ + 1, and when γ < 2/(n − 1), we have

α = γ + 1 < (n+ 1)/(n − 1).

Theorem 2. Let λ > 0, |µ| < 1, F ∈ L2(DT ), let condition (4.1) be satisfied for γ < 2/(n − 1), and let also
conditions (2.2)–(2.4) be satisfied. Then there exists a positive number λ0 = λ0(F, f, µ,DT ) such that, for
0 < λ < λ0, problem (1.1)–(1.4) has no more than one generalized solution in the sense of Definition 1.

Proof. Indeed, suppose that problem (1.1)–(1.4) has two different generalized solutions u1 and u2. By Defi-
nition 1 there exist sequences of functions ujk ∈ C2

µ(DT ), j = 1, 2, such that

lim
k→∞

‖ujk − uj‖W̊2,µ1(DT )
= 0, j = 1, 2, lim

k→∞
‖Lλujk − F‖L2(DT ) = 0. (4.2)

Let
w := u2 − u1, wk := u2k − u1k, Fk := Lλu2k − Lλu1k, (4.3)

gk := λ
(

f(x, t, u2k)− f(x, t, u1k)
)

. (4.4)
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From (4.2) and (4.3) it easily follows that

lim
k→∞

‖wk − w‖W̊2,µ1(DT )
= 0, lim

k→∞
‖Fk‖L2(DT ) = 0. (4.5)

In view of (4.3) and (4.4), the functions wk ∈ C̊2
µ(DT ) satisfy the following equalities:

∂2wk

∂t2
−

n
∑

i=1

∂2wk

∂x2i
=
(

Fk + gk
)

(x, t), (x, t) ∈ DT , (4.6)

wk|Γ = 0, wk(x, 0) − µwk(x, T ) = 0, wkt(x, 0) − µwkt(x, T ) = 0, x ∈ Ω. (4.7)

First, let us estimate the function gk from (4.4). Using the obvious inequality

|d1 + d2|
γ 6 2γ max

(

|d1|
γ , |d2|

γ
) 6 2γ

(

|d1|
γ + |d2|

γ
)

for γ > 0,

by (4.1) we have

∣

∣f(x, t, u2k)− f(x, t, u1k)
∣

∣ =

∣

∣

∣

∣

∣

(u2k − u1k)

1
∫

0

f ′u
(

x, t, u1k + τ(u2k − u1k)
)

dτ

∣

∣

∣

∣

∣6 |u2k − u1k|

1
∫

0

(

a+ b
∣

∣(1− τ)u1k + τu2k
∣

∣

γ)
dτ6 a|u2k − u1k|+ 2γb|u2k − u1k|

(

|u1k|
γ + |u2k|

γ
)

= a|wk|+ 2γb|wk|
(

|u1k|
γ + |u2k|

γ
)

. (4.8)

By (4.4) from (4.8) we have

‖gk‖L2(DT ) 6 λa‖wk‖L2(DT ) + λ2γb
∥

∥|wk|
(

|u1k|
γ + |u2k|

γ
)
∥

∥

L2(DT )6 λa‖wk‖L2(DT ) + λ2γb‖wk‖Lp(DT )

∥

∥

(

|u1k|
γ + |u2k|

γ
)
∥

∥

Lq(DT )
, (4.9)

where we used the Hölder inequality [24]

‖v1v2‖Lr(DT ) 6 ‖v1‖Lp(DT )‖v2‖Lq(DT )

(

1

p
+

1

q
=

1

r
, p, q, r > 1

)

with

p = 2
n + 1

n − 1
, q = n+ 1, r = 2. (4.10)

Since dimDT = n+ 1, by the Sobolev embedding theorem [19] for 1 6 p 6 2(n + 1)/(n − 1), we have

‖v‖Lp(DT ) 6 Cp‖v‖W 1
2 (DT ) ∀v ∈W 1

2 (DT ) (4.11)

with positive constant Cp independent of v ∈W 1
2 (DT ).

By the condition of the theorem, γ < 2/(n−1), and therefore γ(n+1) < 2(n+1)/(n−1). Thus, by (4.10)
from (4.11) we have

‖wk‖Lp(DT ) 6 Cp‖wk‖W 1
2 (DT ), p =

2(n + 1)

n− 1
, k > 1, (4.12)
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∥

∥

(

|u1k|
γ + |u2k|

γ
)
∥

∥

Lq(DT )
6 ∥∥|u1k|γ∥∥Lq(DT )

+
∥

∥|u2k|
γ
∥

∥

Lq(DT )

= ‖u1k‖
γ
Lγ(n+1)(DT )

+ ‖u2k‖
γ
Lγ(n+1)(DT )6 Cγ

γ(n+1)

(

‖u1k‖
γ
W 1

2 (DT ) + ‖u2k‖
γ
W 1

2 (DT )

)

. (4.13)

By the first equality of (4.2) there exists a natural number k0 such that, for k > k0, we have

‖uik‖
γ
W 1

2 (DT )
6 ‖ui‖

γ
W 1

2 (DT ) + 1, i = 1, 2, k > k0. (4.14)

Further, by (4.12), (4.13), and (4.14) from (4.9) we have

‖gk‖L2(DT ) 6 λa‖wk‖L2(DT ) + λ2γbCpC
γ
γ(n+1)

(

‖u1‖
γ
W 1

2 (DT ) + ‖u2‖
γ
W 1

2 (DT ) + 2
)

‖wk‖W 1
2 (DT ),6 λM5‖wk‖W 1

2 (DT ), (4.15)

where we have applied the inequality ‖wk‖L2(DT ) 6 ‖wk‖W 1
2 (DT ), and

M5 = a+ 2γbCpC
γ
γ(n+1)

(

‖u1‖
γ
W 1

2 (DT )
+ ‖u2‖

γ
W 1

2 (DT )
+ 2
)

, p = 2
n+ 1

n− 1
. (4.16)

Since a priori estimate (2.5) is also valid for λ = 0 and since, by (2.27), c2 = 0 in this estimate, for the
solution wk of problem (4.6)–(4.7), we get the estimate

‖wk‖W̊2,µ1(DT )
6 c01‖Fk + gk‖L2(DT ), (4.17)

where the constant c01 does not depend on λ, Fk, and gk.
Because of ‖wk‖W̊2,µ1(DT ) = ‖wk‖W 1

2 (DT ), by (4.15) from (4.17) we have

‖wk‖W̊2,µ1(DT ) 6 c01‖Fk‖L2(DT ) + λc01M5‖wk‖W̊2,µ1(DT )
. (4.18)

Note that since a priori estimate (2.5) is valid for u1 and u2, the constant M5 in (4.16) depends on F , f , µ,
DT , λ. Moreover, by (2.19), (2.23), and (2.27) the value of M5 continuously depends on λ > 0, and

0 6 lim
λ→0+

M5 =M0
5 < +∞. (4.19)

By (4.19) there exists a positive number λ0 = λ0(F, f, µ,DT ) such that λc01M5 < 1 for

0 < λ < λ0. (4.20)

Indeed, let us fix an arbitrary positive number ε1. Then, by (4.19) there exists a positive number λ1 such that
0 6 M5 < M0

5 + ε1 for 0 6 λ < λ1. It is obvious that, for λ0 = min(λ1, (c
0
1(M

0
5 + ε1))

−1), the condition
λc01M5 < 1 is satisfied fulfilled. Therefore, in case (4.20), from (4.18) we get

‖wk‖W̊2,µ1(DT ) 6 c01
(

1− λc01M5

)−1
‖Fk‖L2(DT ), k > k0. (4.21)

From (4.2) and (4.3) it follows that limk→∞ ‖wk‖W̊2,µ1(DT )
= ‖u2 − u1‖W̊2,µ1(DT )

. On the other hand,
by (4.5) from (4.21) we have limk→∞ ‖wk‖W̊2,µ1(DT )

= 0. Thus ‖u2 − u1‖W̊2,µ1(DT )
= 0, that is, u2 = u1,

which leads to a contradiction. This proves Theorem 2. ⊓⊔
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5 The cases of absence of the solution of problem (1.1)–(1.4)

In this section, using the test-function method [23], we show that when condition (2.2) is violated, prob-
lem (1.1)–(1.4) may not have a generalized solution in the sense of Definition 1.

Lemma 2. Let u be a generalized solution of problem (1.1)–(1.4) in the sense of Definition 1, and let condi-
tions (1.5) and (1.6) be satisfied. Then

∫

DT

u✷v dxdt = −λ

∫

DT

f(x, t, u)v dxdt+

∫

DT

Fv dxdt (5.1)

for every test-function v satisfying the conditions

v ∈ C2(DT ), v|∂DT
= 0, ∇x,tv|∂DT

= 0, (5.2)

where ✷ := ∂2/∂t2 −
∑n

i=1 ∂
2/∂x2i , ∇x,t := (∂/∂x1, . . . , ∂/∂xn, ∂/∂t).

Proof. By the definition of a generalized solution of problem (1.1)–(1.4) there exists a sequence um ∈
C̊2
µ(DT ) such that Eqs. (1.10) and (2.8) are valid. Let us multiply both parts of Eq. (2.6) by the function v

and integrate the obtained equality in the domainDT . By (5.2) integration by parts of the left-hand side of this
equation yields

∫

DT

um✷v dxdt+ λ

∫

DT

f(x, t, um)v dxdt =

∫

DT

Fmv dxdt. (5.3)

Passing in Eq (5.3) to limit as m → ∞ and taking into account (2.6), the limit equalities (1.10), and
Remark 2, we obtain Eq. (5.2). Lemma 2 is proved. ⊓⊔

Consider the following condition imposed on the function f :

f(x, t, u) 6 −|u|p, (x, t, u) ∈ DT × R; p = const > 1. (5.4)

Note that when condition (5.4) is satisfied, condition (5.2) is violated.
Let us introduce a function v0 = v0(x, t) such that

v0 ∈ C2(DT ), v0|DT
> 0, v0|∂DT

= 0, ∇xv0|∂DT
= 0, (5.5)

and

æ0 :=

∫

DT

|✷v0|
p′

|v0|p
′−1

dxdt < +∞,
1

p
+

1

p′
= 1. (5.6)

We further assume that ∂Ω ∈ C2; then there exists a function ω ∈ C2(Rn) such that ∂Ω: ω(x) = 0,
∇xω|∂Ω 6= 0, and ω|Ω > 0 [8].

Simple verification shows that, as a function v0 satisfying conditions (5.5) and (5.6), we can take

v0(x, t) =
[

t(T − t)ω(x)
]k
, (x, t) ∈ DT ,

for sufficiently big k = const > 0.
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By (5.4) and (5.5) from (5.1), where v0 is taken instead of v, it follows that, when λ > 0,

λ

∫

DT

|u|pv0 dxdt 6 ∫

DT

|u||✷v0|dxdt−

∫

DT

Fv0 dxdt. (5.7)

Theorem 3. Let the function f ∈ C(DT × R) satisfy conditions (1.5), (1.6), and (5.4); let λ > 0, ∂Ω ∈ C2;
F 0 ∈ L2(DT ), F

0 > 0, and ‖F 0‖L2(DT ) 6= 0. Then there exists a number γ0 = γ0(F
0, α, p, λ) > 0 such that,

for γ > γ0, problem (1.1)–(1.4) has no generalized solution in the sense of Definition 1 for F = γF 0.

Proof. In Young’s inequality with the parameter ε > 0

ab 6 ε

p
ap +

1

p′εp′−1
bp

′

; a, b > 0,
1

p
+

1

p′
= 1, p > 1,

let us take a = |u|v
1/p
0 , b = |✷v0|/v

1/p. Then, taking into account the equality p′/p = p′ − 1, we have

|u||✷v0| = |u|v
1/p
0

|✷v0|

v
1/p
0

6 ε

p
|u|pv0 +

1

p′εp′−1

|✷v0|
p′

vp
′−1

0

. (5.8)

Since F = γF 0, by (5.8) from (5.7) we have

(

λ−
ε

p

)
∫

DT

|u|pv0 dxdt 6 1

p′εp′−1

∫

DT

|✷v0|
p′

vp
′−1

0

dxdt− γ

∫

DT

F 0v0 dxdt,

whence, for ε < λp, we obtain

∫

DT

|u|pv0 dxdt 6 p

(λp − ε)p′εp′−1

∫

DT

|✷v0|
p′

vp
′−1

0

dxdt−
pγ

λp− ε

∫

DT

F 0v0 dxdt. (5.9)

Since p′ = p/(p− 1), p = p′/(p′ − 1), and

min
0<ε<λp

p

(λp− ε)p′εp′−1
=

1

λp
,

which is reached at ε = λ, from (5.9) it follows that

∫

DT

|u|pv0 dxdt 6 1

λp′

∫

DT

|✷v0|
p′

vp
′−1

0

dxdt−
p′γ

λ

∫

DT

F 0v0 dxdt. (5.10)

Because of the conditions imposed on the function F 0 and v0|DT
> 0, we have

0 < æ1 :=

∫

DT

F 0v0 dxdt < +∞. (5.11)

Denoting by χ = χ(γ) the right-hand side of inequality (5.10), which is a linear function with respect to
the parameter γ, by (5.6) and (5.11) we have

χ(γ) < 0 for γ > γ0 and χ(γ) > 0 for γ < γ0, (5.12)
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where

χ(γ) =
æ0

λp
′
−
p′γ

λ
æ1, γ0 =

æ0

λp′−1p′æ1
.

It remains only to note that the left-hand side of inequality (5.10) is nonnegative, whereas its right-hand
side by (5.12) is negative for γ > γ0. Thus, for γ > γ0, problem (1.1)–(1.4) has no generalized solution in the
sense of Definition 1. Theorem 3 is proved. ⊓⊔

6 The case |µ| = 1|µ| = 1|µ| = 1

As it was mentioned at the end of Section 3, for |µ| = 1, problem (1.1)–(1.4) may turn out to be ill-posed. We
further show that in the presence of additional terms 2aut and cu in the left-hand side of Eq. (1.1) the problem
is solvable for any F ∈ L2(DT ). Consider the equation

∂2u

∂t2
−

n
∑

i=1

∂2u

∂x2i
+ 2aut + cu+ f1(x, t, u) = F (x, t), (x, t) ∈ DT , (6.1)

with constant real coefficients a and c, where f1 and F are given real functions.
For Eq. (6.1), consider the problem of finding u in the domain DT satisfying the boundary condition (1.2)

and nonlocal conditions (1.3)–(1.4) for |µ| = 1. For problem (6.1), (1.2)–(1.4), when f1 ∈ C(DT × R) and
F ∈ L2(DT ), analogously to Definition 1, let us introduce the notion of a generalized solution u ∈ W̊ 1

2,µ(DT ).
With respect to the new unknown function

v := σ−1(t)u, where σ(t) := exp(−at), 0 6 t 6 T, (6.2)

problem (6.1), (1.2)–(1.4) can be rewritten as follows:

∂2v

∂t2
−

n
∑

i=1

∂2v

∂x2i
+
(

c− a2
)

v + σ−1(t)f1
(

x, t, σ(t)v(x, t)
)

= σ−1(t)F (x, t), (x, t) ∈ DT , (6.3)

v|Γ = 0, (6.4)
(

Kµ1
v
)

(x) = 0,
(

Kµ1
vt
)

(x) = 0, x ∈ Ω, (6.5)

where µ1 = µσ(T ), |µ| = 1.
In the case a > 0, from (6.2) and |µ| = 1 it follows that |µ1| < 1.
It is easy to see that, for c−a2 > 0, the functions f(x, t, u) = (c−a2)u and g(x, t, u) =

∫ u
0 f(x, t, s) ds =

(c− a2)u2/2 satisfy (1.5) and (2.2)–(2.4).
For f(x, t, u) = σ−1(t)f1(x, t, σ(t)u), we have

g(x, t, u) =

u
∫

0

f(x, t, s) ds =

u
∫

0

σ−1(t)f1
(

x, t, σ(t)s
)

ds

= σ−1(t)

σ(t)u
∫

0

f1(x, t, s
′) ds′ = σ−2(t)g1

(

x, t, σ(t)u
)

, (6.6)
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where

g1(x, t, u) =

u
∫

0

f1(x, t, s) ds. (6.7)

Let us show that if the function g1(x, t, u) from (6.7) satisfies the condition

g1(x, 0, µ1u) 6 g1
(

x, T, |µ1|u
)

, (x, u) ∈ Ω ×R, (6.8)

for the fixed constant number µ1 from (6.5), then the function g(x, t, u) from (6.6) satisfies condition (2.4) for
µ = µ1. Indeed, by (6.2), (6.6), and (6.8), since µ1 = µσ(T ), |µ| = 1, and σ(T ) = |µ1|, we have

g(x, 0, µ1u) = σ−2(0)g1
(

x, 0, σ(0)µ1u
)

= g1(x, 0, µ1u),

µ21g(x, T, u) = µ21σ
−2(T )g1

(

x, T, σ(T )u
)

= g1
(

x, T, |µ1|u
)

,

whence, by (6.8), (2.4) follows for µ = µ1.
Since σ′(t) = −aσ(t) and (σ−2(t))′ = 2aσ−2(t), according to (6.6) and supposing that f1, f1t, f1u ∈

C(DT × R), we have

gt(x, t, u) = 2aσ−2(t)g1
(

x, t, σ(t)u
)

+ σ−2(t)g1t
(

x, t, σ(t)u
)

− aσ−1(t)g1u
(

x, t, σ(t)u
)

.

Therefore, condition (2.3) follows from the condition

2aσ−2(t)g1(x, t, σ(t)u) + σ−2(t)g1t
(

x, t, σ(t)u
)

− aσ−1(t)g1u
(

x, t, σ(t)u
) 6M3, (x, t, u) ∈ DT × R.

Note that, due to (6.6), condition (2.2) follows from the condition

g1(x, t, u) > 0, (x, t, u) ∈ DT × R. (6.9)

It is easy to see that if the function f1(x, t, u) satisfies the condition of type (1.5), that is,

∣

∣f1(x, t, u)
∣

∣ 6 M̃1 + M̃2|u|
α, (x, t, u) ∈ DT × R, M̃i = const > 0, (6.10)

then the function f(x, t, u) = σ−1(t)f1(x, t, σ(t)u) from the left-hand side of Eq. (6.3) satisfies condition (1.5)
for some nonnegative constants M1 and M2.

Note that in the concrete case f1(x, t, u) = |u|βu with β = const > 0, the function g1(x, t, u) =
|u|β+2/(β + 2), and

f(x, t, u) = σ−1(t)f1
(

x, t, σ(t)u
)

= σβ(t)|u|βu, (6.11)

g(x, t, u) =

u
∫

0

f(x, t, s) ds = σβ(t)
|u|β+2

β + 2
. (6.12)

Therefore, since σ′(t) 6 0, g(x, 0, µ1u) = |µ1|
β+2|u|β+2/(β + 2), µ21g(x, T, u) = µ21σ

β(T )|u|β+2/(β + 2),
and σ(T ) = |µ1|, it is easy to see that the functions f(x, t, u) and g(x, t, u) from (6.11) and (6.12) satisfy
conditions (1.5) and (2.2)–(2.4) for µ = µ1, α = β + 1, M3 = 0.

Further, since problems (6.1), (1.2)–(1.4) and (6.3)–(6.5) are equivalent, from Theorem 1 there follows the
following theorem on the existence of a solution of problem (6.1), (1.2)–(1.4).
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Theorem 4. Let |µ| = 1, a > 0, c− a2 > 0, and let the function f1(x, t, u) from the left-hand side of Eq. (6.1)
and the function g1(x, t, u) from (6.7) satisfy the conditions f1, f1t, f1u ∈ C(DT ×R) and (6.8)–(6.10). Then
if in condition (6.10) the order of nonlinearity α satisfies the inequality α < (n + 1)/(n − 1), then, for any
F ∈ L2(DT ), problem (6.1), (1.2)–(1.4) has at least one generalized solution.
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