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1 Introduction

In the space R"*! of variables = (1, ..., x,) and t, in the cylindrical domain Dy = §2 x (0, T'), where £2 is
an open Lipschitz domain in R”, we consider a nonlocal problem of finding a solution u(x, t) of the equation

Lyu = — Za 2 + Af(z,t,u) = F(z,t), (x,t) € Dy, (1.1)

satisfying the Dirichlet homogeneous boundary condition
ulp =0 (1.2)
on the lateral face I" := 0f2 x (0,T) of the cylinder D7 and the homogeneous nonlocal conditions

Kyu:=u(z,0) — pu(z,T) =0, x €2, (1.3)
Kyug = uy(x,0) — pug(x, T) =0, x €12, (1.4)

where f and F’ are given functions, A and p are given nonzero constants, and n > 2.
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Remark 1. Many papers are devoted to nonlocal problems for partial differential equations. Nonlocal problems
posed for abstract evolution equations and hyperbolic partial differential equations are considered in the works
[1,2,4,5,6,9,10,11,12,13,14,15,16,17,20,25] and the references therein. Note that, for |u| # 1, it suffices
to consider the case || < 1 since the case || > 1 can be reduced to the latter by passing from variable ¢
to variable ' = T — t. The case || = 1 is considered at the end of the work. Particularly, when p = 1,
problem (1.1)—(1.4) can be considered as a periodic problem.

We further impose the following requirements on the function f = f(x,t, u):

fe C(ET XR), |f(x,t,u)‘ < Ml—i—Mg\u]O‘, (x,t,u) EET x R, (1.5)
where

1
O<a=const<n+ . (1.6)

n—1

We consider the following functional spaces:

Co’i(ﬁT) = {v e C*(Dr): v|r =0, Kow=0, K,v, = 0}, (1.7)
Wy (Dr) == {v € W3(Dr): v|r =0, K,v =0}, (1.8)

where W} (D7) represents the known Sobolev space, and the equalities v| = 0, K »v = 0 must be understood
in the sense of the trace theory [19].

Remark 2. The embedding operator [ : W21 (D7) — Ly(Dr) represents a linear continuous compact operator
forl1 < ¢ <2(n+1)/(n—1) whenn > 1[19]. At the same time, the Nemitski operator N : L,(Dr) —
Lo(Dr), acting by the formula Nu = f(z,t,u), is continuous by (1.5) and bounded if ¢ > 2« [18]. Thus,
since by (1.6) we have 2« < 2(n + 1)/(n — 1), there exists a number ¢ such that 1 < ¢ < 2(n+1)/(n — 1)
and ¢ > 2a. Therefore, in this case the operator

No=NI: W3 ,(Dr) — La(Dr) (1.9)

is continuous and compact. Besides, from u € W2, ! (Dr) it follows that f(z,t,u) € Ly(Dr) and that
if u,, — win the space W2, u' (D7), then f(x,t,uy,) — f(x,t,u) in the space Lo(D7).

DEFINITION 1. Let function f satisfy conditions (1.5) and (1.6), and F' € Ly(Dr). We call a function u
a generalized solution of problem (1.1)—(1.4) if u € W21 u(DT) and there exists a sequence of functions

U € Cﬁ(DT) such that

lim fum —ullyy py =0, lm Lyt = Fllp,p,) = 0. (1.10)

Note that this definition of a generalized solution of problem (1.1)—(1.4) also remains in the linear case,
that is, for A = 0.

It is obvious that a classical solution v € C? (ET) of problem (1.1)—(1.4) represents a generalized solu-
tion of this problem. It is easy to verify that a generalized solution of problem (1.1)—(1.4) is a solution of
Eq. (1.1) in the sense of the theory of distributions. Indeed, let F;,, := Lyu,,. Multiplying both sides of the
equality Lyu,, = F,, by a test function w € V,, := {v € W)(Dr): v|p = 0, v(z,T) — pv(z,0) = 0,
x € 2} and integrating in the domain Dy, after simple transformations connected with integration by parts
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and the equality w|p = 0, we get

/ [tme (2, T)w(z,T) — (2, 0)w(z,0)] dz

Q+/

Dr

— Uy Wt + Zumzwz + )\f(:n,t,um)w] dzdt = /me dedt YweV,. (1.11)

i=1 Dr

Since Kt = 0 and w(z, T') — pw(x,0) = 0, x € {2, itis easy to see that w (x, T)w(z,T) — ume(x,0) x

w(z,0) = Upy(x, T)(w(x, T) — pw(zx,0)) — w(z,0)(tmt(z,0) — pume(x, T)) = 0. Therefore, Eq. (1.11)
takes the form

/ [—umtwt + Zumwwx + /\f(az,t,um)w] dzdt = /me dedt YweV,. (1.12)

Dr =1 Dr

In view of (1.5), (1.6), and Remark 2, we have f(z,t,umy) — f(z,t,u) in the space La(Dr) as uy, — win
the space W217M(DT). Therefore, by (1.10), passing to the limit in Eq. (1.12) as m — oo, we get

/

Dy

—upwy + Zuwwx + /\f(aj,t,u)w] dx dt = /Fw dedt YweV,. (1.13)
i=1 Do

Since C§°(Dr) C V), from (1.13), integrating by parts, we have

/qud:Edt—l—)\/f(:E,t,u)wd:Edt:/Fwdxdt Yw € C§°(Dr), (1.14)
Dr

Dy Dr

where O = 9%/9t* — Y"1 | §%/022, and C§°(Dr) is the space of finite infinitely differentiable functions
in Dp. Equality (1.14), which is valid for any w € C§°(Dr), means that a generalized solution u of prob-
lem (1.1)—(1.4) is a solution of Eq. (1.1) in the sense of the theory of distributions. Besides, since the trace
operators u — u|—o and u — u|,—r are continuous operators acting from the space W4 (D7) into the spaces
Lo (2 x {t = 0}) and Lo(£2 x {t = T'}), respectively, then by (1.10) the generalized solution u of problem
(1.1)—(1.4) satisfies the nonlocal condition (1.3) in the sense of the trace theory. As for the nonlocal condition
(1.4), it is taken into account in the integral sense in Eq. (1.13), which is valid for all w € V),. Note also that
if a generalized solution u belongs to the class C?(Dr), then by the standard reasoning, combined with the
integral identity (1.13) [19], we have that u is a classical solution of problem (1.1)—(1.4), satisfying pointwise
Eq. (1.1), the boundary condition (1.2), and the nonlocal conditions (1.3) and (1.4).

Remark 3. Note that even in the linear case, that is, for A = 0, problem (1.1)—(1.4) is not always well posed.
For example, when A = 0 and |u| = 1, the corresponding to (1.1)—(1.4) homogeneous problem may have an
infinite number of linearly independent solutions (see Remark 6).

The work is organized in the following way. In Section 2, we single out the class of semilinear equa-
tions (1.1) when, for || < 1, an a priori estimate for the generalized solution of problem (1.1)—(1.4) is valid.
In Section 3, on the basis of the a priori estimate obtained in the previous section, we prove the solvability of
problem (1.1)—(1.4). In Section 4, we consider the conditions imposed on the data of the problem that ensure
the uniqueness of the solution of this problem. In Section 5, using the method of test functions, we show that
when the conditions imposed on the nonlinear term in Eq. (1.1) are violated, problem (1.1)-(1.4) may not have
a solution. Finally, in the last section, we consider the case |p| = 1 as an application of the results obtained in
the previous sections.
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2 A priori estimate of the solution of problem (1.1)—(1.4)

Let

g(x,t,u) = /f(ac,t, s)ds, (x,t,u) € Dr x R. 2.1

Consider the following conditions imposed on the function g = g(x,t, u):

g([L’,t,U) = 0, (ZL’,t,U) € ET xR, (2.2)
gt € C(ET X R)7 gt(l',t,U) < M37 (x,t,u) € ET X R, (23)
9(,0, pu) < pg(x, Tou),  (w,u) € 2 xR, 2.4)

where M3 = const > 0, and y is the fixed constant from (1.3)— (1.4).

Remark 4. Let us consider the class of functions f from (1.1) satisfying conditions (1.5), (2.2), (2.3), and
(2.4). For a = f + 1, consider the function f = fo(t)|u|’u, where fo € C1([0,T]), fo = 0, dfo/dt < 0,
fo(0)p? < fo(T), B = 0, and pu > 0 is the fixed constant from (1.3)-(1.4). In particular, these conditions
are satisfied if fy = const > 0 and 0 < p < 1. Indeed, with these conditions, by (2.1) we have: g =

Jo@)ulP*2/(8+2), g 2 0, g < 0, and g(z,0, ) = fo(0)|u|?*2/(B + 2) = p*(fo(0)u?)|v]"+2/
(B+2) <2 fo(T)(|0P2) /(B +2) = p2g(x,T,v).

(D1 x R), F € Ly(D7), and conditions (2.2)~(2.4) be satisfied. Then,
for a generalized solution u of problem (1.1)—(1.4), we have the a priori estimate

HUHWZ{H(DT) < allFlz,pr) +e2 (2.5)

with nonnegative constants ¢; = ¢;(\, u, 2, T, My, Mo, M3) not depending on w and F, ¢y > 0, whereas in the
linear case (\ = 0), the constant co = 0, and in this case, by (2.5) we have the uniqueness of the generalized
solution of problem (1.1)—(1.4).

Proof. Let u be a generalized solution of problem (1.1)-(1.4). By Definition 1 there exists a sequence of
functions u,, € C2 (D) such that the limit equalities (1.10) are satisfied.
Set

Lt = Fp, (2,t) € Dr. (2.6)

Multiplying both sides of Eq. (2.6) by 2u,,; and integrating in the domain D, := Dpn{t < 7},0 <7 < T,
by (2.1) we obtain

0 [ Oup, a2umaum
/E(W) dodt — 2 /Z —d dt

-

d
D,

DT
O,
DT
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Letw, := {(z,1) € Dr: x € Q2,t=71},0< 7 < T, where wy and wy are upper and lower bases of the
cylindrical domain D7, respectively. Denote by v := (vy,, Va,, - . . , Vs, , V) the unit vector of the outer normal
to dD.. Since

V:cinUwO:Q Zzla"'7n7

Vt|FT::Fﬂ{t<T} =0, Vtlw, = 1, Vilw, = —1,
taking into account that u,, € C’ﬁ(DT) and, therefore, by (1.7)
Um | =0, Ky, =0, Kt = 0, (2.8)

integrating by parts, we obtain

& [ Oum\* O\ 2
25w | ()
T DT
2
:/ufntdx—/ufmdx—2 %ag—:”dxdt (2.9)
wr wo DT !

= w2 ), = 2(Umw, it ). | Az dt
mx;)t i i
D

-

:/u?mi da:—/u?mi de, i=1,...,n, (2.10)

W Wwo

2\ [ £ (ot taunet) dede =20 [ glostiun(e)uds
D, oD,

= 2)\/g($,t,um(:p,t)) dx — 2/\/g($,t,um(x,t)) dz. (2.11)

Wr
In view of (2.9)—(2.11), from (2.7) we get

n n
/ ugﬂzugm] dz — / ugﬁzugm] dz

wr =1 wo =1

—2)\/g(a:,t,um(x,t)) dw+2)\/g(x,t,um(a:,t)) dx

+2/\/gt($,t,um(aj,t)) d:ndt—|—2/qumt dax dt. (2.12)
DT DT
Let
Wy (T) := / ul, + Zu?m + 2/\g($,t,um(x,t))] dz. (2.13)
i=1

Wr
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Since 2F, < € LF2 4 eu?,, for any € = const > 0 and since A > 0, by (2.3) and (2.13) from (2.12) it
follows that

Wi (7) = Wi (0) + 2X [ ge (2, t, up (1)) dzdt + 2

Fop s da dt
D -

D

< wp(0) + 2AM37 mes 2 + ¢ / u?, dedt + e /Fﬁb dz dt. (2.14)

D, D,

Since A > 0, taking into account and (2.2) and the inequality

T

/ u?, dzdt = / / u?, d:n] ds
D, 0 ws
< / / [uznt + Zufm + 2Xg (2, t, um (2, 1)) ] dx] ds
0 lws =1

from (2.14) we obtain

T

Wi (1) < e/wm(s) ds + wy, (0) + 2A\M37 mes 2 4 ¢+ /F,i dedt, 0<7<T. (2.15)
0 D.

Because of D, C Dr, 0 < 7 < 7T, the right-hand side of inequality (2.15) is a nondecreasing function of
variable 7, and by Gronwall’s lemma [3] from (2.15) it follows that

Wy (T) < [wm(O) + 2A\M3T mes 2 + ¢ / F2 dx dt] e, 0<T<T. (2.16)

Dy

In view of A > 0, by (2.4) and (2.8) from (2.13) it follows that

Wi (0) = [ | (2,0) + Y ud, (2,0) + 229 (2,0, up (1, 0))] da
i=1

PPl (@, 1) + i) i, (2,7) + 229 (2,0, pium (2, 7)) | dar

i=1

[l
/

ufnt(:n,T) + Zu?m (x,T) + 2/\9(:E,T, um(x,T)) dz

i=1

<u2/

0
= 1wn(T). @.17)
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Using inequality (2.16) for 7 = T, from (2.17) we obtain

Wi (0) < p2win(T) < 12 |0 (0) + 2AM3T mes 2 + €1 /F% dzx dt} e
Dr
= 12wy (0) + My + pPe e || FnllZ, pyys (2.18)

where
My = p?2A\M3Te " mes 1. (2.19)
Since |p| < 1, a positive constant € = €(, T") can be chosen small enough so that

p1 = plet < 1. (2.20)

For example, we can set e = (1/7") In(1/|ul).
By (2.20) from (2.18) we have

w(0) < (1= )" Ma + (1= )~ 02 eT | Frall2 - 221)
From (2.16) and (2.21) it follows that
Wi (1) < [(1= 1) 7" Ma+ (1= ) " e e | Bl o
+ 2AM3T mes 2 + e_1|]FH%2(DT)]eET
<ollFnll iy + 02, 0<T<T, (2.22)
where

o= [(1—p) el +1]e e, op = [(1— ) " My + 2XM5T mes 2] (2.23)

Since, for fixed 7, the function u, (x, 7) belongs to the space W2!(£2) := {v € W2L(£2) : v|so = 0}, by
the Friedrichs inequality [19], taking into account (2.2) and A > 0, we have

n B n
/ u2m + ufm + Z ugnx] do < co/ ufnt + Zufm
L i=1

W =1

dx

Wr

n
< co/ ul, + Zufnm + )\g(w,t,um(x,t))] dx
o L i=1

= cowm(T), (2.24)

where the positive constant ¢ = ¢ ({2) does not depend on .
From (2.22) and (2.24) it follows

T n T
oy = | [ / <ua+uat+zuax>dx dr<a [wn(r)dr
0 wr i=1 0
T
< C()/ [Ul“F“%Q(DT) + 0'2] dr = Coo'lT”FmH%2(DT) + coooT. (2.25)
0

Lith. Math. J., 57(3):331-350, 2017.
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Taking the square root from the both sides of inequality (2.25) and using the inequality (a? + b2)1/ 2 <
la| + |b], we get
ot iy gy < 11 Fllzagor) + 2 (2.26)

where

c1 = (T [(1— p1)tp2e + 1]eteT) 12

(2.27)
cy = (cOT[(l — ,ul)_l,u22)\M3TeET mes {2 + 2AM3T mes Q] eET)

1/2

In view of the limit equalities (1.10), passing to the limit in inequality (2.26) as m — oo, we obtain (2.5).
This proves Lemma 1. O

3 The existence of the solution of problem (1.1)-(1.4)

For the existence of the solution of problem (1.1)—(1.4) in the case || < 1, we will use the well-known facts
on the solvability of the following linear mixed problem [19]:

82u 82
ulp =0, (ac,O) =p(x), w(z,0)=v¢(z), =z, (3.2)

where F', ¢, and ¢ are given functions.
For F' € Ly(D7), ¢ € W4 (£2),and ¢ € Ly(£2), the unique generalized solution u of problem (3.1), (3.2)
(in the sense of the integral identity

/¢w:ﬂ0)dm+/

Dy

—utwt—l—Zuzww da dt = /Fwd:ndt Yw € Vp,

where Vy := {v € Wi(Dr): v|r =0, v(x,T) = 0, z € 2} and u|;—o = ) from the space E1(Dr) with
the norm

n
HUH%M(DT) = sup / v? —I—vf + Zvi] dz
i=1

sT<T

wr

is given by the formula [19]

o t
~ 1
U= Z (dk cos puxt + by sin pugt + — /Fk(T) sin p(t —7) dT) (), (3.3)
1 Mk /
where 5\k = —,uk (0 < py < pg < -0, limg 00 g = 00) and @y, € WQ (§2) are the eigenvalues and corre-

sponding eigenfunctions of the spectral problem Aw = \w, wlgn = 0in the domain 2 (A := S 9%/0x2),
simultaneously formlng an orthonormal basis in Ly((2) and an orthogonal basis in W2 (£2) with respect to the
scalar product (v, w) Wi = [ Yo vz, w,, da [19], that is,

— SR o N 3.4
((pkagol)Lg(Q) — Yk ((10/6790[)[/[/21(9) — T Ak, k — 0, l?é k. ( . )



One nonlocal problem for a semilinear wave equation

Here

dk = (@7 ‘Pk)Lg(Q)7 Z;k = M};l(dju on)Lg(_Qﬁ k= 17 27 )

F(z,t) =) Feee(x),  Fult) = (F k) aw)>  wri=Drnf{t=r}.
pst

Besides, for the solution w from (3.3), we have the following estimate
Hu”E2,1(DT) < ’Y(”F”L2(DT) + ”(10”W21(Q) + ”w”lzz(ﬂ))

with positive constant v independent of F’, ¢, and v [19,21].
Let us consider the linear problem corresponding to (1.1)—(1.4), that is, the case A = 0:

0%u 9%u
Lou = o5 — > = F(z,t), (,t)€ Dy,

u|lp =0,

’LL(QZ‘,O) - /LU(JL',T) =0, ’LLt(ZL',O) - Nut(gj7T) =0, zel

339

(3.5)

(3.6)

3.7)

(3.8)

(3.9)
(3.10)

Let us show that when || < 1, for any F' € Lo(Dr), there exists a unique generalized solution of
problem (3.8)—(3.10). Indeed, since the space of finite infinitely differentiable functions C§°(Dr) is dense in
the space Lo(Dr), for F' € Lo(Dr) and any natural number m, there exists a function F,,, € C§°(Dr) such

that

1
I1Em — Fllo, oy < ool

On the other hand, for a function F,,, in the space Lo(Dr), we have the following expansion [19]:

Fn(,t) = Frp®ep(),  Fan(t) = (Fins 0k La(0)-
pst

Therefore, there exists a natural number /,,, such that lim,,, .~ [,,, = 00 and, for

Im

Fm(‘ra t) = Z Fm,k(t)(pk(x)a
k=1
we have

1
”Fm - FmHLz(DT) <.
m
From (3.11) and (3.14) it follows
lim || F = Fl| 1,0,y = 0.
m—roo

The solution u = u,,, of problem (3.1)—(3.2) for

Lo Im
k=1 k=1

Lith. Math. J., 57(3):331-350, 2017.
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is given by formula (3.3), which by (3.4)—(3.6) and (3.13) can be rewritten as follows:

l t

u - 1

U = (dk cos jut + by sin pupt + — /ka(T) sin puy,(t — 7) dT) on(). (3.16)

K
k=1 0

_ By construction the function w,, from (3.16) satisfies Eq. (3.8) and the boundary condition (3.9) for I’ =
F,,, from (3.13). Let us define define unknown coefficients a; and by so that the function wu,, from (3.16)
would satisfy the nonlocal conditions (3.10) too. For this purpose, let us substitute the right-hand part of
expression (3.16) into Egs. (3.10). As a result, since the system of functions {(y,(x)} forms a basis in Ly({2),
for defining the coefficients a;, and by, we have the following system of linear algebraic equations:

(1 — pcos T — (psin Ty = -+ /Fm,k(T) sin (T — 7) d,
ik
0

T (3.17)
(ppare sin i T)aig, + (1 = o cos piT)by, = / E k(1) cos pi (T — 7) dr,
0
k=1,2,...,ly. Its solution is
ag = [digppun sin T — dog (1 — peos weD)] ALY, k=1,2,... 1, (3.18)
b = [dor(1 — pcos uiT) — dupupur sin e T]AY, b =1,2,... Ly, (3.19)
where
T
dip = 13 Fop (1) sin pg, (T — 7) d,
11k
0
T
doi, = u/Fm,k(T) cos (T — 7)dr.
0
Since |p| < 1, for the determinant Ay, of system (3.17), we have
. 2
A = e[ (1 = peos pyT)? + i sin® py,T] > puge (1 — [p])” > 0. (3.20)

We further assume that the Lipschitz domain 2 is such that the eigenfunctions ¢, € C?(2), k > 1. For
example, this will take place if 92 € C1"/21+3 [21]. This fact will also take place in the case of a piece-wise
smooth Lipschitz domain, for example, for the parallelepiped 2 = {x € R™: |z;| < a;, 1 = ,n},
the corresponding eigenfunctions ¢, € C‘X’( ) [22] (see also Remark 6). Therefore, since F,,, € C’O (DT)
by (3.12) the function F,, , € C?([0,77), and consequently the function u,, from (3. 16) belongs to the space
C2(Dr). Further, by construction the function ,, from (3.16) belongs to the space C2 (DT) defined in (1.7),
besides,

Lot = Fpy  Lo(ty, —ug) = E, — Fj. (3.21)

From (3.21) and a priori estimate (2.5) we have

|t — Uk”Wzly”(DT) < allFm — Fillyon) (3.22)
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since by Lemma 1 the coefficient c; = 0 when A = 0. In view of (3.15), from (3.22) it follows that the
sequence Uy, € CH(DT) is fundamental in the complete space W2 (D). Therefore, there exists a function
u € W2 (D7) such that by (3.15) and (3.21) the limit equalities (1 10) are valid for A = 0. This means that
the functlon u is a generalized solution of problem (3.8)—(3.10). The uniqueness of this solution follows from
a priori estimate (2.5), where the constant co = 0 for A = 0, that is,

lellyig oy < LlF zaor)- (3.23)

Therefore, for the solution u of problem (3.8)—(3.10), we have u = L, 1 (F'), where Ly Ly (D7) — W21 u(DT)
is a linear continuous operator with norm that by (2.23) can be estimated as follows:

L6 ¢ < e (3.24)

DT —>W2 N (DT)

Remark 5. Note that When conditions (1.5) and (1.6) are satisfied and F' € Lo(Dr), by (3.24) and Remark 2
the function v € W2 , (DT) is a generalized solution of problem (1.1)—(1.4) in the sense of Definition 1 if
andonly if u is a solutlon of the functional equation

u= Ly (=Mf(z,t,u)) + Ly (F) (3.25)
in the space W2, u!(Dy).

Rewrite Eq. (3.25) in the form

u = Agu := —ALy ' (Nou) + Ly *(F), (3.26)

where the operator Ny : I/V2 u(DT) — LZ(DT) from (1 9) by Remark 2 is continuous and compact operator.
Therefore, by (3.24) the operator Ay : W2 (Dr) — VV2 u(DT) from (3.26) is also continuous and compact
when0 < a < (n+1)/(n —1). At the same time, by Lemma 1 and (2.27), for any parameter 7 € [0, 1] and
for any solution u of the equation v = 7Agu with the parameter 7, we have the same a priori estimate (2.5)
with nonnegative constants ¢; independent of u, F, and 7. Therefore, by the Schaefer fixed pomt theorem [7],
Eq. (3.26), and therefore by Remark 5 problem (1.1)—(1.4) has at least one solution u € W2 u(DT) Thus, we
have proved the following theorem.

Theorem 1. Let A > 0 and |p| < 1, and let conditions (1.5), (1.6), and (2.2)—(2. 4) be satisfied. Then, for
any F' € Lo(Dr), problem (1.1)—~(1.4) has at least one generalized solution u € W2 M(DT) in the sense of
Definition 1.

Remark 6. Note that, for || = 1, even in the linear case, that is, for f = 0, the homogeneous problem corre-
sponding to (1.1)-(1.4) may have a finite or even infinite number of linearly independent solutions, whereas
for solvability of this problem, the function F' € Lo( D7) must satisfy a finite or infinite number of conditions
of the form [(F) = 0, respectively, where [ is a continuous functional in Lo(D7). Indeed, in the case u = 1,
denote by A(1) the set of those numbers 11, from (3.3) for which the ratio 414, 7'/(2) is a natural number, that
is, A(1) = {ug: w1/ (27) € N}. Formulas (3.18)—(3.19) for determination of unknown coefficients a, and by,
in representation (3.16) are obtained from the system of linear algebraic equations (3.17). In the case A(1) # ()
and pp € A(1) with 4 = 1, the determinant Ay, of system (3.17), given by (3.20), equals zero. Moreover,
in this case, all coefficients in front of unknown a; and by in the left-hand side part of system (3.17) equal
zero. Therefore, by (3.16) the homogeneous problem corresponding to (3.8), (3.9), and (3.10) is satisfied by
the function

up(x,t) = (Cl cos gt + Cy sin ,ukt) (), (3.27)

Lith. Math. J., 57(3):331-350, 2017.



342 S. Kharibegashvili and B. Midodashvili

where C' and Cs are arbitrary constant numbers; besides, by (3.17) the necessary conditions of solvability of
nonhomogeneous problem (3.8)—(3.10) corresponding yx, € A(1) are the following:

L1 (F /Fl’t(pk( )sin pg (T — t)daedt = 0,
b (3.28)
lo(F /Fl’t(pk( ) cos pug (T —t) daxdt = 0.
Dy
Analogously, in the case p = —1, denote by A(—1) the set of points p from (3.3) for which the ratio
uxT' /7 is an odd integer number. For py, € A(—1) with u = —1, the function uy, from (3.27) also is a solu-

tion of the homogenous problem corresponding to (3.8)—(3.10), and conditions (3.28) are the corresponding
necessary conditions for solvability of this problem. For example, when n = 2 and £2 = (0,1) x (0, 1), the
eigenvalues and eigenfunctions of the Laplace operator A are [22]

A = —7T2(k% + k%), (,Dk(l'l,wg) = 28inkywxy - sinkomxs, k= (k}l,kg),

that is, u, = w(k% + k‘%)l/Q. For k1 = p? — ¢® and ko = 2pq, where p and ¢ are any integer numbers, we
obtain yy, = m(p? + ¢*). In this case, for T/2 € N, we have uxT/(27) = (p® + ¢*)T/2 € N, and by the
preceding, when . = 1, the homogeneous problem corresponding to (3.8)—(3.10) has an infinite number of
linearly independent solutions

upqg(x,t) = [Cl COS 7T(p2 + qz)t + Oy Sin7r(p2 + q2)t] sin (p2 — q2)7rac1 - 8in 2pqmao
for any integer numbers p and ¢q. Analogously, when ;¢ = —1, the solutions of the homogeneous problem

corresponding to (3.8)—(3.10) in the case where p is an even number, whereas ¢ and 7' odd numbers, are the
functions from (3.27).

4 The uniqueness of the solution of problem (1.1)—(1.4)
On the function f in Eq. (1.1), wevus impose the following additional requirements:
f,f, € C(Dr x R), !f x,t,u) ‘ a+blul’, (z,t,u) € Dy x R, 4.1)
where a, b, v = const > 0.

It is obvious that from (4.1) we have condition (1.5) for &« =  + 1, and when v < 2/(n — 1), we have
a=v+1<(n+1)/(n—1).

(Dr), let condition (4.1) be satisfied for v < 2/(n — 1), and let also
conditions (2.2)—(2.4) be satisfied. Then there exists a positive number Ao = \o(F, f, i, D) such that, for
0 < A < Ag, problem (1.1)—(1.4) has no more than one generalized solution in the sense of Definition 1.

Proof. Indeed, suppose that problem (1.1)—(1.4) has two different generalized solutions u; and us. By Defi-
nition 1 there exist sequences of functions u;; € CZ(DT), j = 1,2, such that

dm gk = willypg oo,y =00 F=120 lim [[Lauje = Fllz, 0, = 0. (4.2)
Let
w = Uy — uq, W 1= Uk — Uik, F, := Lyugp — Lyuqg, 4.3)

gk = )\(f(x,t,ugk) — f(x,t,ulk)). 4.4)
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From (4.2) and (4.3) it easily follows that

kh—>n;o Hwk — wHW27H1(DT) = O, klinolo ”FkHLz(DT) = 0. (45)

In view of (4.3) and (4.4), the functions wy, € C’ﬁ(ﬁT) satisfy the following equalities:

2
Z 0 wk = (Fx +gx)(x,t), (x,t) € Dr, (4.6)

wg|r =0, wi(z,0) — pwi(x, T) =0, wi(z,0) — pwpe(x,T) =0, =€ (2. 4.7)
First, let us estimate the function g, from (4.4). Using the obvious inequality
|dy + da|” < 27 max(!dlp, ’dg‘ﬂy) < 27(‘d1‘7 + ’dg"y) for v > 0,

by (4.1) we have

|t uz) — flz,t,u)| =

1
(ugr — u1x) /fﬁ (2, t,urk + 7(ugp — ugg)) dr
0

1
< ’u2k — ulk] / (CL + b|(1 — T)ulk + TUQ]CP) dr
< alugr — urg] + 27blugk — wrg| (Jurk]” + [ugk|”)
= alwy| + 27b|wg| (|urk|” + |uak|?). (4.8)
By (4.4) from (4.8) we have

gkl z(Dr) < AallwllLur) + A270]|wgl (lure™ + w2k )] 1, o,

< Aallwell Ly (pry + A2l 1wkl L, (|| (lukl” + Tuz ") ||,y (4.9)

where we used the Holder inequality [24]

1 1 1
lvivellz, (pry < 01l o0 llv2ll, 00y | =+ === pgsr =1
p oq T
with
1
p=2t i1 r=2 4.10)
n—1

Since dim Dy = n + 1, by the Sobolev embedding theorem [19] for 1 < p < 2(n + 1)/(n — 1), we have
lollz,pr) < Cpllvllwypry Yo € Wy (Dr) (4.11)

with positive constant C), independent of v € W3 (Dr).
By the condition of the theorem, v < 2/(n — 1), and therefore y(n+1) < 2(n+1)/(n—1). Thus, by (4.10)
from (4.11) we have

2(n+1)

, k>1, 4.12)
n—1

lwillz,(pr) < Cpllwkllwipry, p=
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| (Jurre” + |u2k|’y)HLq(DT) < [l Lq(Dr) )

_ g 1
= HuUCHL—y("+1)(DT) + Huzk”wal)(DT)

< C iy (el oy + N2kl s o, )- (4.13)
By the first equality of (4.2) there exists a natural number kg such that, for k& > kg, we have
Hulkle (Dr) < Hu,-HZV;(DT) +1, +1=1,2, k> k. (4.14)
Further, by (4.12), (4.13), and (4.14) from (4.9) we have

gkl 22Dy < AallwpllLypry +X270C,C Ly (s p,y + 12l p,y +2) lwkllwg (o),
< AMs|lwi|lwi (g (4.15)

where we have applied the inequality ||wy| 7, (p,) < [[wk|lw; (D). and

n+1
n—1

Ms = a+270C,C o (Il o,y + w2l p,y +2), p=2 (4.16)

Since a priori estimate (2.5) is also valid for A = 0 and since, by (2.27), co = 0 in this estimate, for the
solution wy, of problem (4.6)—(4.7), we get the estimate

|’wkHﬁ/27Ml(DT) < C(l]”Fk + gk”L2(DT)7 (4.17)

where the constant ¢ does not depend on )\, F},, and gy
Because of ||[wp|ly-g 1 (D) = |lwk|lw (Dy)> by (4.15) from (4.17) we have

|’wkHﬁ/27Ml(DT) < C(l]”Fk”L2(DT) + )‘C(l]MSHwkHWQ,MI(DT)- (4.18)

Note that since a priori estimate (2.5) is valid for u; and wus, the constant M35 in (4.16) depends on F, f, u,
Dr, \. Moreover, by (2.19), (2.23), and (2.27) the value of M5 continuously depends on A > 0, and

0< lim Ms= M < +o0. (4.19)
A—0+

By (4.19) there exists a positive number A\g = A\o(F,, f, i1, D7) such that /\c?M5 < 1 for
0 <A< Ao (4.20)

Indeed, let us fix an arbitrary positive number 1. Then, by (4.19) there exists a positive number A\ such that
0 < Ms < M? + &1 for 0 < A < Ay It is obvious that, for \g = min(\y, (¢{(M? + £1))7!), the condition
/\c?M5 < 11s satisfied fulfilled. Therefore, in case (4.20), from (4.18) we get

-1
willyirg i (ppy < AL = AAMs) " N EllLypny: k= ko (4.21)
From (4.2) and (4.3) it follows that lim_,~, HwkHW2 '(Dr) = |Jug — u1|’W2,u1(DT)‘ On the.other hand,
by (4.5) from (4.21) we have limy o [|wi|lyir5 1 A(Dr) = 0 Thus [|ug — uy W (Dr) = 0, that is, uy = uq,
which leads to a contradiction. This proves Theorem 2. O
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S The cases of absence of the solution of problem (1.1)—-(1.4)

In this section, using the test-function method [23], we show that when condition (2.2) is violated, prob-
lem (1.1)—(1.4) may not have a generalized solution in the sense of Definition 1.

Lemma 2. Let u be a generalized solution of problem (1.1)—(1.4) in the sense of Definition 1, and let condi-
tions (1.5) and (1.6) be satisfied. Then

/uDvdmdt:—)\/f(:n,t,u)vdwdt—l—/dexdt (5.1)
Dy Dr Dy
for every test-function v satisfying the conditions
veC*Dr),  vlop, =0,  Vauwlop, =0, (5.2)
where O := 0% /0t> — Y | 8% /022, V4 := (0/0x1,...,0/0xy,0/00).
Proof. By the definition of a generalized solution of problem (1.1)-(1.4) there exists a sequence u,, €
C’ﬁ(DT) such that Eqgs. (1.10) and (2.8) are valid. Let us multiply both parts of Eq. (2.6) by the function v

and integrate the obtained equality in the domain Dr. By (5.2) integration by parts of the left-hand side of this
equation yields

/um Dvdazdt+/\/f(3:,t,um)vdxdt: /Fmvdwdt. (5.3)
DT DT DT

Passing in Eq (5.3) to limit as m — oo and taking into account (2.6), the limit equalities (1.10), and
Remark 2, we obtain Eq. (5.2). Lemma 2 is proved. O

Consider the following condition imposed on the function f:
f(z,t,u) < —|ulP, (x,t,u) € Dy x R; p = const > 1. (5.4)

Note that when condition (5.4) is satisfied, condition (5.2) is violated.
Let us introduce a function vy = vy (x,t) such that

vy € C*(Dr), vo|py >0, volopy =0, Vzvolap, =0, (5.5)
and
Oup|P’ 1 1
&y = / | U()/‘_l dzdt < 400, -+ =1 (5.6)
|voP PP

T

We further assume that 92 € C?; then there exists a function w € C?(R") such that 962: w(x) = 0,
wa‘ag 75 0, and w’g > 0 [8].
Simple verification shows that, as a function vy satisfying conditions (5.5) and (5.6), we can take

vo(a,t) = (T = w(@)]", (a,1) € Dr,
for sufficiently big £ = const > 0.
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By (5.4) and (5.5) from (5.1), where vy is taken instead of v, it follows that, when A > 0,

)\/\u]pvodwdtg /\uHDvo\dxdt—/FUOdwdt.
DT DT DT

5.7

Theorem 3. Let thefunctzon f € C(Dr x R) satisfy conditions (1.5), (1.6), and (5.4); let \ >0, 002 € C?%;
FY € Ly(Dr), F° > 0, and |[F°|| 1, (p,) # 0. Then there exists a number vy = yo(F°, o, p, X) > 0 such that,

for v > o, problem (1.1)~(1.4) has no generalized solution in the sense of Definition 1 for F = v F©,

Proof.  In Young’s inequality with the parameter € > 0

€ 1 ,
ab < —af + ——b";

11
- a,b>20, —-+—=1,p>1
p pler’ 1 ’ pop ’

let us take a = |u|vy/?, b = |Jvg|/v}/P. Then, taking into account the equality p/ /p = p/ — 1, we have

1/p‘ Vo P 1 ‘DUOFD,
W\AMW*——Tﬁi

| Soo] = ulug o

0

Since F' = VFO, by (5.8) from (5.7) we have

1 D |P’
</\—E> /|u|pv0dazdt< yp— /| 1f0|1 dlEdt—V/FOUOdiﬂdt,
p p'eP 2)0

Dr Dy Dr

whence, for ¢ < Ap, we obtain

P |Dvo py 0
/\u’ondxdtg ()\p—g)p/gp/_l/ Up,_l dl’dt—m F 'U()dfl'dt.

DT 0 DT

Sincep’ =p/(p—1),p=p'/(p — 1), and

: P 1
min ————— = —
0<e<xp (Ap — g)ple?’ =1 AP’

which is reached at ¢ = ), from (5.9) it follows that

Oon |2
/|u|pv0dxdt< = /‘ ”0’ dz dt—T/Fovodxdt.
Uo

DT DT DT

Because of the conditions imposed on the function F¥ and vg|p, > 0, we have

0< @ := /F0v0d$dt< ~+00.
Dr

(5.8)

(5.9

(5.10)

(5.11)

Denoting by x = x(7) the right-hand side of inequality (5.10), which is a linear function with respect to

the parameter -, by (5.6) and (5.11) we have

x(7) <0 fory>~ and x(y) >0 forvy <o,

(5.12)
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where

& py &0
x(7) =

= — —& =
\P 2 1, 0 )\p/flplgel

It remains only to note that the left-hand side of inequality (5.10) is nonnegative, whereas its right-hand

side by (5.12) is negative for v > 7g. Thus, for v > 7, problem (1.1)—(1.4) has no generalized solution in the
sense of Definition 1. Theorem 3 is proved. O

6 The case |u| =1
As it was mentioned at the end of Section 3, for |u| = 1, problem (1.1)—(1.4) may turn out to be ill-posed. We

further show that in the presence of additional terms 2au; and cu in the left-hand side of Eq. (1.1) the problem
is solvable for any F' € Lo(D7). Consider the equation

2 " 92
?; - Z 8—:;; + 2aus + cu + fi(z,t,u) = F(x,t), (x,t) € Dr, (6.1)
i=1

with constant real coefficients a and ¢, where f; and F' are given real functions.

For Eq. (6.1), consider the problem of finding « in the domain D satisfying the boundary condition (1.2)
and nonlocal conditions (1.3)—(1.4) for || = 1. For problem (6.1), (1.2)—(1.4), when f; € C (DT x R) and
F € Ly(Dr), analogously to Definition 1, let us introduce the notion of a generalized solution u € W2 (D).

With respect to the new unknown function

v:=0"1(t)u, whereo(t):=exp(—at), 0<t<T, (6.2)

problem (6.1), (1.2)—(1.4) can be rewritten as follows:

0%v 0?v a2 1
. Z 52 * (=@ WAt oW, )

— a‘l(t>F(w,t>, (z,t) € Dy, (6.3)
vlp =0, (6.4)
(Kpv)(z) =0, (Kuuv)(®)=0, =z¢c, (6.5)

where 1 = po(T), |u| = 1.

In the case a > 0, from (6.2) and |u| = 1 it follows that |p;| < 1.

It is easy to see that, for c—a® > 0, the functions f(z,t,u) = (c—a?)uand g(z,t,u) = [ f(z,t,s)ds =
(c — a?)u?/2 satisfy (1.5) and (2.2)—~(2.4).

For f(z,t,u) = o~ (t) f1(x,t,0(t)u), we have

g(z, t,u) = /f(:n,t, s)ds = /O'_l(t)fl (:E,t,o*(t)s) ds
0 0

=0 1(1) / fi(z,t,s")ds' = o7 2(t)g (x, t, a(t)u), (6.6)
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where

u

g1(x,t,u) :/fl(x,t,s)ds. 6.7)

0

Let us show that if the function g; (x, t, u) from (6.7) satisfies the condition
91(2,0, pru) < g1 (2, T, [ fu),  (z,u) € 2 xR, (6.8)

for the fixed constant number p; from (6.5), then the function g(x, ¢, u) from (6.6) satisfies condition (2.4) for
i = p1. Indeed, by (6.2), (6.6), and (6.8), since p11 = po(T'), |p| = 1, and o(T") = |p1|, we have

g(:E, 07 :ulu) = 0_2(0)91 (337 07 0(0)#1’“) =91 (337 07 /Llu)7
1ig(x, Tou) = pio~(T)gi (2, T,0(T)u) = g1 (2, T, | |u),
whence, by (6.8), (2.4) follows for ;1 = 1.

Since ¢’/(t) = —ao(t) and (072(t))’ = 2a0~2(t), according to (6.6) and supposing that f1, fir, fiu €
C(Dr x R), we have

gi(z,t,u) = 2a0 (g1 (z, t,o(t)u) + o 2(t) g1 (2, t, o(t)u) — ao™ ' (t)giu (2, . o (t)u).
Therefore, condition (2.3) follows from the condition
2a0 2 (t)g1 (2, t,0(t)u) + o *(t)gu (2, t, o(t)u) — ao ' () giu (2, t.o(t)u) < M3, (z,t,u) € Dy x R.
Note that, due to (6.6), condition (2.2) follows from the condition
gi(z,t,u) =0, (x,t,u) € Dy x R. (6.9)
It is easy to see that if the function f(z, ¢, u) satisfies the condition of type (1.5), that is,
|f1(3:,t,u)‘ < My + My|u|®,  (x,t,u) € Dy x R, M; = const > 0, (6.10)
then the function f(x,t,u) = o~ 1(t) f1(x,t, o(t)u) from the left-hand side of Eq. (6.3) satisfies condition (1.5)
for some nonnegative constants M; and Ms.
Note that in the concrete case fi(z,t,u) = |u[’u with 3 = const > 0, the function g;(x,t,u) =

|ul™*2/(5 +2), and

flatou) =o' (t) fi(2,t,0(t)u) = o? (1) u)’u, (6.11)
|u|5+2
B+2°

glw,t,u) = / fla,t,s)ds =0 (t) (6.12)
0

Therefore, since o’ (t) < 0, g(z,0, prw) = | |[PF2|ul?T2/(B + 2), ©3g(x, T, u) = pio?(T)|ul’+2/(B + 2),
and o(T) = |u1], it is easy to see that the functions f(z,¢,u) and g(x,t,u) from (6.11) and (6.12) satisfy
conditions (1.5) and (2.2)-(2.4) for p = p, a = 8+ 1, M3 = 0.

Further, since problems (6.1), (1.2)—(1.4) and (6.3)—(6.5) are equivalent, from Theorem 1 there follows the
following theorem on the existence of a solution of problem (6.1), (1.2)—(1.4).
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Theorem 4. Let || = 1, a > 0, ¢ — a® > 0, and let the function fi(z,t,u) from the lefi-hand side of Eq. (6.1)
and the function gy (x,t,w) from (6.7) satisfy the conditions f1, f1t, f1, € C(Dr X R) and (6.8)—(6.10). Then
if in condition (6.10) the order of nonlinearity « satisfies the inequality o < (n + 1)/(n — 1), then, for any

F

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.
20.

€ Lo(Dr), problem (6.1), (1.2)~(1.4) has at least one generalized solution.
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