УДК 539.3

© 2018 г. О. М. Джохадзе, С. С. Харибегашвили, Н. Н. Шавлакадзе

ПРИБЛИЖЕННЫЕ И ТОЧНЫЕ РЕШЕНИЯ СИНГУЛЯРНОГО ИНТЕГРОДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ, СВЯЗАННОГО С КОНТАКТНОЙ ЗАДАЧЕЙ ТЕОРИИ УПРУГОСТИ

Рассматриваются задачи определения механического поля в однородной пластине, подкрепленной полубесконечной или конечной неоднородной накладкой. Формулировка задач содержит сингулярное интегродифференциальное уравнение. Проводится асимптотический анализ. При помощи метода ортогональных многочленов задача сводится к решению бесконечной системы линейных алгебраических уравнений, а методом интегрального преобразования редуцируется к граничной задаче со сдвигом или к задаче Римана. Соответственно получены приближенные и точные решения задач. На основе соответствующего численного анализа в зависимости от физических и геометрических параметров задачи можно сделать вывод, что искомое тангенциальное контактное напряжение в окрестности концов включения может иметь как особенность порядка не больше квадратного корня, так и может быть ограниченной.

Ранее были получены точные и приближенные решения статических и динамических контактных задач для разных областей, усиленных упругими тонкими накладками как постоянной, так и переменной жесткости, изучено поведение контактных напряжений в концах линии контакта в зависимости от закона изменения геометрических и физических параметров задачи [1–6]. Были решены контактные задачи для изотропной и ортотропной кусочно-однородной плоскости, а также для клиновидной анизотропной пластины с полубесконечной и конечной накладкой [7–9]. Ниже рассматривается одна из аналогичных задач, когда контакт между пластиной и накладкой осуществляется через тонкий слой клея, вследствие чего для определения искомого контактного напряжения получается интегродифференциальное уравнение специального типа.

1. Постановка задачи и сведение к сингулярному интегродифференциальному уравнению. Пусть упругая пластина с модулем упругости E_2 и коэффициентом Пуассона v_2 , представляющая собой неограниченную плоскость, в которой расположена декартова система координат x, y, на конечном отрезке [-1, 1] оси x усилена накладкой малой толщины $h_1(x)$ с модулем упругости $E_1(x)$ и коэффициентом Пуассона v_1 . Накладка загружена тангенциальной силой интенсивности $\tau_0(x)$, а на бесконечности пластина по направлению осей x и y подвержена равномерно растягивающим усилиям с интенсивностями p и q соответственно.

В условиях плоской деформации требуется определить контактные напряжения, действующие на отрезке соединения искривленной накладки с пластиной. Предполагается, что накладка растягивается или сжимается как стержень, находясь в одноосном напряженном состоянии, причем контакт между ней и пластиной осуществляется через тонкий слой клея, имеющий толщину h_0 и модуль сдвига G_0 .

Уравнение равновесия дифференциального элемента накладки имеет вид [1]

$$\frac{d}{dx} \left(E(x) \frac{du_1(x)}{dx} \right) = \tau(x) - \tau_0(x), \quad |x| < 1$$

$$\tau(x) := \tau_-(x) - \tau_+(x), \quad E(x) = \frac{E_1(x)}{1 - v_1^2} h_1(x)$$
(1.1)

где $\tau_{\pm}(x)$ — неизвестные тангенциальные контактные напряжения на верхнем и нижнем берегах накладки, $u_1(x)$ — горизонтальное перемещение ее точек по направлению оси x. Используя уравнение (1.1), деформацию накладки можно выразить в виде

$$\varepsilon_x^{(1)} = \frac{du_1(x)}{dx} = \frac{\varphi(x)}{E(x)}, \quad |x| < 1; \quad \varphi(x) = \int_{-1}^x [\tau(t) - \tau_0(t)] dt$$
 (1.2)

Предполагая, что каждый элемент слоя клея находится в условиях чистого сдвига, условие контакта запишем в виде [10]

$$u_1(x) - u_2(x, 0) = k_0 \tau(x), \quad |x| \le 1; \quad k_0 = h_0/G$$
 (1.3)

где $u_2(x, y)$ — перемещения точек пластины вдоль оси x.

Введем обозначение

$$\langle f(x,t)\rangle = \int_{-1}^{1} f(x,t) dt$$

На основе известных результатов (см., например, [11]), деформация пластины по оси x в ее плоскости, вызванное силовыми факторами $\tau(x)$, p и q, представляется в виде

$$\varepsilon_x^{(2)} := \frac{du_2(x,0)}{dx} = \frac{\lambda}{\pi} \left\langle \frac{\tau(t)}{t-x} \right\rangle + \frac{\aleph + 1}{8\mu_2} p + \frac{\aleph - 3}{8\mu_2} q
\lambda = \frac{\aleph(\aleph + 1)^{-1}}{2\mu_2}, \quad \aleph = 3 - 4\nu_2$$
(1.4)

где λ_2 и μ_2 — параметры Ламе.

Приняв во внимание равенства (1.2) и (1.4), из условия контакта (1.3) получим

$$\frac{\varphi(x)}{E(x)} - \frac{\lambda}{\pi} \left\langle \frac{\varphi'(t)}{t - x} \right\rangle - k_0 \varphi''(x) = g(x), \quad |x| < 1$$

$$g(x) = \frac{\lambda}{\pi} \left\langle \frac{\tau_0(t)}{t - x} \right\rangle + k_0 \tau_0'(x) + \frac{\aleph + 1}{8\mu_2} p + \frac{\aleph - 3}{8\mu_2} q$$
(1.5)

Условие равновесия накладки имеет вид

$$\varphi(1) = 0 \tag{1.6}$$

Таким образом, гранично-контактная задача сведена к решению сингулярного интегродифференциального уравнения (1.5) с условием (1.6). Исходя из симметричности поставленной задачи и полагая функцию E(x) четной, а внешнюю нагрузку $\tau_0(x)$ — нечетной, решение уравнения (1.5) при условии (1.6) можно искать в классе четных функций. Кроме того, будем считать, что функция $\tau_0(x)$ непрерывная и имеет непрерывную производную первого порядка на отрезке [-1,1].

2. Асимптотическое исследование. В предположении, что

$$E(x) = (1 - x^2)^{\gamma} b_0(x), \quad \gamma \ge 0; \quad b_0(x) = b_0(-x) \ge c_0 = \text{conts} > 0, \quad b_0 \in C([-1, 1])$$
 (2.1)

решение задачи (1.5), (1.6) будем искать в классе четных функций, производные которых представимы в виде

$$\varphi'(x) = (1 - x^2)^{\alpha} g_0(x), \quad \alpha > -1
g_0(x) = -g_0(-x) \in C'([-1, 1]), \quad g_0(x) \neq 0, \quad x \in [-1, 1]$$
(2.2)

Вволя обозначение

$$\Phi_0(x) = \left\langle \frac{(1 - t^2)^{\alpha}}{t - x} g_0(t) \right\rangle$$

в силу известных асимптотических формул [12] имеем при $-1 < \alpha < 0$

$$\begin{split} &\Phi_0(x) = \mp\pi \mathrm{ctg}\pi\alpha\,g_0(\mp 1)2^\alpha(1\pm x)^\alpha + \Phi_\pm(x), \quad x \to \mp 1 \\ &\Phi_\pm(x) = \Phi_\pm^*(x)(1\pm x)^{\alpha_\pm}, \quad \alpha_\pm = \mathrm{const} > \alpha \end{split}$$

а при $\alpha = 0$

$$\Phi_0(x) = \mp g_0(\mp 1) \ln(1 \pm x) + \tilde{\Phi}_+(x), \quad x \to \mp 1$$

причем функции $\Phi_{\mp}^*(x)$ и $\tilde{\Phi}_{\mp}(x)$ удовлетворяют условию Гёльдера в окрестности точек $x=\mp 1$ соответственно.

В случае $\alpha > 0$ функция $\Phi_0(x)$ принадлежит классу Гёльдера в окрестности точек $x = \pm 1$. Кроме того, при $x \to \mp 1$ имеем [13]

$$\int_{-1}^{x} (1 - t^{2})^{\alpha} g_{0}(t) dt = \frac{2^{\alpha} (1 \pm x)^{\alpha + 1}}{\alpha + 1} g_{0}(\mp 1) F(\alpha + 1, -\alpha, 2 + \alpha, (1 \pm x)/2) + G_{\mp}(x)$$

$$\lim_{x \to \infty} G_{\pm}(x) (1 \mp x)^{\alpha + 1} = 0$$

где F(a, b, c, x) — гипергеометрическая функция.

Случай $-1 < \alpha < 0$ интереса не представляет, поскольку отрицательные значения показателя α противоречат физическому смыслу условия (1.3).

Пусть $0 \le \alpha \le 1$, тогда в окрестности точки x = -1 уравнение (1.5) запишется в виде

$$\begin{split} \Psi(x) + \frac{2^{\alpha}(1+x)^{2+\epsilon}g_0(-1)}{2^{\gamma}(\alpha+1)(1+x)^{\gamma}b_0(-1)} + G_{-}(x)(1+x)^{1+\epsilon-\alpha} - k_0 2^{\alpha}(1+x)^{\epsilon}\tilde{g}_0(-1) = \\ &= g(-1)(1+x)^{1+\epsilon-\alpha} \\ \Psi(x) = \begin{cases} \lambda g_0(-1)(1+x)^{1+\epsilon}\ln(1+x) - \frac{\lambda}{\pi}(1+x)^{1+\epsilon}\tilde{\Phi}_{-}(x) & \text{при } \alpha = 0 \\ -\frac{\lambda}{\pi}(1+x)^{1+\epsilon-\alpha}\Phi_0(x), & \text{при } \alpha \neq 0 \end{cases} \end{split} \tag{2.3}$$

где ϵ — сколь угодно малое положительное число. При переходе к пределу $x \to -1$ анализ полученных равенств приводит к необходимости выполнения неравенства $2 + \epsilon > \gamma$, т.е. $\gamma \le 2$.

В случае $\alpha > 1$ из соотношения (2.3) следует $\alpha = \gamma - 1$.

Аналогичный результат получается в окрестности точки x = 1.

Таким образом, доказано следующее утверждение: при выполнении условия (2.1), если задача (1.5) (1.6) имеет решение, производная которого представима в виде (2.2), то

$$\alpha = \gamma - 1$$
 ($\alpha > 1$), если $\gamma > 2$; $0 \le \alpha \le 1$, если $\gamma \le 2$

Из соотношения, полученного Трикоми [14] для ортогональных многочленов Якоби $P_m^{(\alpha,\,\beta)}(x)$, и из известного равенства (см., например, [15], формула (12)) получается следующее спектральное соотношение для сингулярного оператора Гильберта:

$$\left\langle \frac{(1-t^2)^{n-1/2}}{t-x} P_m^{(n-1/2, n-1/2)}(t) \right\rangle = (-1)^n 2^{2n-1} \pi P_{m+2n-1}^{(1/2-n, 1/2-n)}(x)$$
 (2.4)

Если жесткость накладки изменяется по закону

$$E(x) = (1-x^2)^{n+1/2}b_0(x);$$
 $b_0(x) > 0$ при $|x| \le 1$, $b_0(x) = b_0(-x)$

где $n \ge 0$ — целое число, исходя из приведенного асимптотического анализа получаем

$$\alpha = n - 1/2$$
 при $n = 2, 3, ...;$ $0 < \alpha < 1$ при $n = 0$ или $n = 1$

Такой же результат получается при $E(x) = b_0(x) > 0$ или $E(x) = \text{const}, |x| \le 1$.

3. Приближенное решение уравнения (1.5). На основе проведенного выше асимптотического анализа в случаях

$$n = 0, n = 1, E(x) = b_0(x) > 0, E(x) = \text{const}, |x| < 1$$

решение уравнения (1.5) будем искать в виде

$$\varphi'(x) = \sqrt{1 - x^2} \sum_{k=1}^{\infty} X_k P_k^{(1/2, 1/2)}(x)$$
(3.1)

в котором числа X_k ($k=1,\,2,\,...$) подлежат определению.

Применяя соотношения, вытекающие из равенства (2.4) при n=1 и из формулы Родрига (см. [16], гл.4, \$ 4.10, формула 4.10.1) для ортогональных многочленов Якоби, получим

$$\varphi(x) = -\frac{1}{2} (1 - x^2)^{3/2} \sum_{k=1}^{\infty} k^{-1} X_k P_{k-1}^{(3/2, 3/2)}(x)$$

$$\varphi''(x) = -2(1 - x^2)^{-1/2} \sum_{k=1}^{\infty} k X_k P_{k+1}^{(-1/2, -1/2)}(x)$$
(3.2)

Подставляя выражения (3.1) и (3.2) в уравнение (1.5), умножая обе части полученного равенства на $P_{m+1}^{(-1/2, -1/2)}(x)$ и интегрируя на интервале (-1, 1) получим бесконечную систему линейных алгебраических уравнений

$$k_0 \omega_m X_m - \sum_{k=1}^{\infty} \left(R_{mk}^{(1)} + k^{-1} R_{mk}^{(2)} \right) X_k = g_m, \quad m = 1, 2, \dots$$
 (3.3)

где

$$\omega_{m} = m \left(\frac{\Gamma(m+3/2)}{\Gamma(m+2)} \right)^{2}, \quad g_{m} = \int_{-1}^{1} g(x) P_{m+1}^{(-1/2, -1/2)}(x) dx$$

$$R_{mk}^{(1)} = -2\lambda \int_{-1}^{1} P_{k+1}^{(-1/2, -1/2)}(x) P_{m+1}^{(-1/2, -1/2)}(x) dx$$

$$R_{mk}^{(2)} = \frac{1}{2} \int_{-1}^{1} \frac{(1-x^{2})^{3/2}}{E(x)} P_{k-1}^{(3/2, 3/2)}(x) P_{m+1}^{(-1/2, -1/2)}(x) dx$$

 $\Gamma(z)$ — гамма-функция.

Исследуем систему (3.3) на регулярность в классе ограниченных последовательностей. Используя известные соотношения для полиномов Чебышева первого рода и для функции $\Gamma(z)$ (см. [13], гл. 6, \$ 6.1, формула 6.1.46 и гл. 22, \$ 22.5, формула 22.5.31), получаем

$$R_{mk}^{(1)} = \frac{2\lambda\alpha(k)\beta(k)}{\pi\sqrt{(k+1)(m+1)}} \begin{cases} \frac{1}{(2m+3)(2m+1)} - 1, & k = m \\ \frac{(-1)^{k+m} + 1}{2} \left[\frac{(k+m+1)^{-1}}{(k+m+3)} + \frac{(k-m-1)^{-1}}{(k-m+1)} \right], & k \neq m \end{cases} = \begin{cases} O(m^{-1}) & k = m, & m \to \infty \\ O(m^{-5/2}), & O(k^{-5/2}), & k \neq m, & m \to \infty, & k \to \infty \end{cases}$$

 $\alpha(k)$, $\beta(m)$, $\omega_m \to 1$ при $k, m \to \infty$.

В силу асимптотической формулы Дарбу (см. [16], гл. 8. \$ 8.21, формула 8.21.10) получаются аналогичные оценки и для $R_{mk}^{(2)}$, а правая часть g_m уравнения (3.3) по крайней мере удовлетворяет оценке

$$g_m = O(m^{-1/2}), \quad m \to \infty \tag{3.4}$$

Аналогичные результаты получаются таким же путем и для случая n=2.

Таким образом, система (3.3) и аналогичная ей система в случае n=2 квазивполне регулярны для любых положительных значений параметров k_0 и λ в классе ограниченных последовательностей.

На основе алтернатив Гильберта [17, 18], если определители соответствующих конечных систем линейных алгебраических уравнений отличны от нуля, то указанные системы будут иметь единственные решения в классе ограниченных последовательностей, поэтому, в силу эквивалентности каждой из указанной систем уравнению (1.5), оно также имеет единственное решение.

4. Точные решения уравнения (1.5).

Пример 1. Пусть свободная от внешних нагрузок пластина на полубесконечном отрезке усилена неоднородной накладкой, жесткость которой изменяется по закону

$$E(x) = hx^2, \quad h = \text{const} > 0$$

Накладка загружена тангенциальной силой интенсивности $\tau_0(x)$, где

$$\tau_0, \ \tau_0' \in H([0, \infty)), \quad \tau_0(0) = 0, \quad \tau_0'(x) = O(x^{-2}), \quad x \to \infty, \quad \int\limits_0^\infty \tau_0(t) \, dt = 0$$

Уравнение (1.5), граничное условие (1.6) и условие на бесконечности принимают вид

$$\frac{\varphi_1(x)}{hx^2} - \frac{\lambda}{\pi} \int_0^\infty \frac{\varphi_1'(t)}{t - x} dt - k_0 \varphi_1''(x) = g_1(x), \quad x > 0; \quad \varphi_1(0) = 0, \quad \varphi_1(\infty) = 0$$
 (4.1)

где

$$\phi_1(x) = \int_0^x [\tau(t) - \tau_0(t)] dt, \qquad g_1(x) = k_0 \tau_0'(x) + \frac{\lambda}{\pi} \int_0^\infty \frac{\tau_0(t)}{t - x} dt$$

Функция $g_1(x)$ будет удовлетворять следующим условиям:

$$g_1 \in H((0,\infty)), g_1(x) = O(1), x \to 0+, g_1(x) = O(x^{-2}), x \to \infty$$

Решение уравнения (4.1) ищется в классе функций $\varphi_1, \varphi_1' \in H([0, \infty)), \ \varphi_1'' \in H((0, \infty)).$ Замена переменных $x = e^{\xi}, \ t = e^{\varsigma}$ дает

$$\frac{\phi_{0}(\xi)}{he^{\xi}} - \frac{\lambda}{\pi} \int_{-\infty}^{\infty} \frac{\phi'_{0}(\varsigma)}{e^{\varsigma - \xi} - 1} d\varsigma - k_{0}e^{-\xi} [\phi''_{0}(\xi) - \phi'_{0}(\xi)] = e^{\xi} g_{0}(\xi), \quad |\xi| < \infty$$
(4.2)

где

$$\phi_0(\xi)=\phi_1(e^\xi), \quad g_0(\xi)=g_1(e^\xi), \quad \left|g_0(\xi)\right|\leq ce^{-\left|\xi\right|}$$
 при $\left|\xi\right| o\infty$

Обобщенным преобразованием Фурье с применением теоремы о свертке [19] приходим к задаче типа Карлемана для полосы [20]

$$\Phi(s+i) + G(s)\Phi(s) = F_0(s), \quad |s| < \infty \tag{4.3}$$

$$G(z) = \frac{\lambda h z \operatorname{cth} \pi z}{\Delta(z)}, \quad F_0(z) = \frac{F(z)}{\Delta(z)}, \quad \Delta(z) = 1 + k_0 h z (z+i)$$

Функции $\Phi(s)$ и F(s) представляют собой преобразования Фурье функций $\varphi_0(\xi)$ и $g_0(\xi)$. Функция F(z) голоморфна в полосе $-1 < \operatorname{Im} z < 1$.

Задача типа Карлемана для полосы сформулируем так: найти функцию, аналитическую в полосе -1 < Im z < 1 (за исключением возможно конечного числа полюсов, находящихся в полосе -1 < Im z < 0), непрерывно продолжимую на границе полосы, исчезающую на бесконечности и удовлетворяющую условию (4.3).

Очевидно, что достаточно найти функцию $\Phi(z)$, голоморфную в полосе $0 < \operatorname{Im} z < 1$, непрерывно продолжимую на границе полосы и удовлетворяющую условию (4.3). Тогда решением сформулированной задачи будет функция

$$\Phi_0(z) = \begin{cases} \Phi(z), & 0 \le \operatorname{Im} z < 1 \\ \frac{-\Phi(z+i) + F_0(z)}{G(z)}, & -1 < \operatorname{Im} z < 0 \end{cases}$$

Коэффициент G(s) задачи (4.3) можно представить в виде

$$G(s) = \frac{\lambda}{ik_0(s^2 + 1)}G_0(s)\sinh\frac{\pi}{2}(s + i)\left(\sinh\frac{\pi}{2}s\right)^{-1}; \quad G_0(s) = \frac{k_0h(s^2 + 1)}{\Delta(s)}\coth\pi s \cdot \ln\frac{\pi}{2}s$$

Учитывая, что индекс функции $G_0(s)$ на $(-\infty,\infty)$ равен нулю и $G_0(s) \to 1$ при $s \to \pm \infty$, функция $\ln G_0(s)$ интегрируема на этой оси, то можно записать

$$G_0(s) = \frac{X_0(s+i)}{X_0(s)}, \quad |s| < \infty; \quad X_0(z) = \exp\left\{\frac{1}{2i} \int_{-\infty}^{\infty} \ln G_0(s) \operatorname{cth}\pi(s-z) \, ds\right\}$$
(4.4)

Очевидно, что функция $X_0(z)$ голоморфна в открытой полосе $0<{\rm Im}\,z<1$, непрерывна и ограничена в замкнутой полосе.

Подставляя выражение (4.4) в условие (4.3) и вводя обозначения

$$\Psi(z) = \frac{\Phi(z)}{\xi(z)}, \quad F_1(z) = \frac{F_0(z)}{\xi(z+i)}, \ \xi(z) = \frac{X(z)X_0(z)}{z} \operatorname{sh} \frac{\pi z}{2}, \ X(z) = \left(\frac{k_0}{\lambda}\right)^{iz} \Gamma(2+iz)$$

получим

$$\Psi(s+i) + \Psi(s) = F_1(s), \quad |s| < \infty \tag{4.5}$$

С применением формулы Стирлинга [13] для гамма-функции при достаточно большом |z| следует, что функции X(z) и $\xi(z)$ допускают оценку

$$|X(z)| = O(|s|^{3/2 - \omega})e^{-\pi |s|/2}, \quad |\xi(z)| = O(|s|^{1/2 - \omega}, \quad z = s + i\omega, \quad 0 \le \omega \le 1$$

Тогда решение поставленной граничной задачи (4.3) представляется в виде [20]

$$\Phi(z) = \frac{\xi(z)}{2i} \int_{-\infty}^{\infty} \frac{F_0(s)}{\xi(s+i) \operatorname{sh} \frac{\pi}{2}(s-z)} ds$$
(4.6)

В предположении, что функция F(z) (и соответственно функция $F_0(z)$) экспоненциально исчезает на бесконечности, заключаем, что функция $\Phi(z)$ также обладает этим свойством.

Таким образом, применяя обратное преобразование Фурье и формулу Коши, искомое контактное напряжение можно представить в виде

$$\tau(x) = \tau_0(x) + \varphi_1'(x) = \tau_0(x) + \frac{ix^{-1}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t\Phi(t)e^{-it\ln x} dt =$$

$$= \tau_0(x) + \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (t+i)\Phi(t+i)e^{-it\ln x} dt$$

Из последнего представления и выражения для функций $\Phi_0(z)$ следует, что контактное напряжение ограничено в точке x=0, а на бесконечности имеет поведение

$$\tau(x) = \tau_0(x) + O(x^{-1-\delta}), \quad \delta > 0$$

Пример 2. Пусть свободная от внешних нагрузок пластина на конечном интервале (0,1) усилена неоднородной накладкой, жесткость которой изменяется по закону E(x) = hx. Контакт между накладкой и пластиной осуществляется через неоднородный тонкий слой клея с жесткостью $k_0(x) = kx$. Задача заключается в определении контактных напряжений, когда к одному из концов накладки (в точке x=1) приложена горизонтальная сила P.

Уравнение (1.5) и граничные условия принимают вид

$$\frac{\varphi_{1}(x)}{E(x)} - \frac{\lambda}{\pi} \int_{0}^{1} \frac{\varphi'_{1}(t)}{t - x} dt - (k_{0}(x)\varphi'_{1}(x))' = 0; \quad 0 < x < 1$$

$$\varphi_{1}(0) = 0, \quad \varphi_{1}(1) = P, \quad \varphi_{1}(x) = \int_{0}^{x} \tau(t) dt$$

$$(4.7)$$

Решение уравнения (4.7) ищется в классе функций

$$\phi_1 \in H([0, 1)), \quad \phi_1' \in C((0, 1)), \quad \sup_{x \in (0, 1)} |\phi_1'(x)| < \infty$$

Как и в примере 1, делаем аналогичную замену переменных и применяем обобщенное преобразование Фурье. В результате приходим к задаче Римана

$$\Psi^{+}(s) = G_{1}(s)\Phi^{-}(s) + g_{01}(s), \quad -\infty < s < \infty$$
(4.8)

гле

$$G_1(s) = 1 + \lambda h \operatorname{scth} \pi s + k_0 h s^2$$

$$\Phi^{-}(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} \psi(\zeta) e^{is\zeta} d\zeta, \quad g_{01}(s) = \frac{1}{\sqrt{2\pi}} (Pi\lambda h(\text{cth}\pi s)_{-} + Pik_{0}hs - k_{0}h\psi'(0))$$
(4.9)

$$\psi^+(\xi) = \begin{cases} 0, & \xi < 0, \\ \frac{\lambda}{\pi} \int\limits_{-\infty}^0 \frac{\psi'(\varsigma)d\varsigma}{1 - e^{-(\xi - \varsigma)}} - k_0 \psi''(\xi), & \xi > 0 \end{cases}, \quad \Psi^+(s) = \frac{h}{\pi} \int\limits_0^\infty \psi^+(\varsigma) e^{is\varsigma} d\varsigma$$

Функции $\Psi^+(s)$ и $\Phi^-(s)$ в силу их определения представляют собой предельные значения функций, голоморфных соответственно в верхней и нижней полуплоскостях, причем нижний индекс минус означает, что при s=0 соответствующую функцию следует понимать в обобщенном смысле [19].

Таким образом, поставленную задачу можно сформулировать следующим образом. Найти: а) функцию $\Psi^+(z)$, голоморфную в полуплоскости ${\rm Im}\,z>0$ и исчезающую на бесконечности, б) функцию $\Phi^-(z)$, голоморфную в полуплоскости ${\rm Im}\,z<1$, кроме точек, являющихся корнями функции $G_1(z)$ и исчезающую на бесконечности, причем эти функции удовлетворяют условию (4.8).

Условие (4.8) можно представить в виде

$$\frac{\Psi^{+}(s)}{s+i} = \frac{G_1(s)}{1+s^2} \Phi^{-}(s)(s-i) + \frac{g_{01}(s)}{s+i}$$
(4.10)

Вводя обозначение

$$G_{01}(s) = \frac{G_1(s)}{k_0 h(1+s^2)}$$

можно показать, что $\operatorname{Re} G_{01}(s) > 0$ и $G_{01}(\infty) = G_{01}(-\infty) = 1$, поэтому $\operatorname{Ind} G_{01}(s) = 0$. Единственное решение задачи (4.10) имеет вид [12]

$$\Phi^{-}(z) = \frac{\tilde{X}(z)}{k_0 h(z-i)}, \quad \text{Im } z \le 0; \quad \Psi^{+}(z) = \tilde{X}(z)(z+i), \quad \text{Im } z > 0$$
(4.11)

$$\Phi^{-}(z) = (\Psi^{+}(z) - g_{01}(z))G_{1}^{-1}(z), \quad 0 < \operatorname{Im} z < 1$$
(4.12)

где

$$\tilde{X}(z) = \frac{X(z)}{2\pi i} \int_{-\infty}^{\infty} \frac{g_{01}(t)}{X^{+}(t)(t+i)(t-z)} dt, \quad X(z) = \exp\left\{\frac{1}{2\pi i} \int_{-\infty}^{+\infty} \frac{\ln G_{01}(t)}{t-z} dt\right\}$$

Можно показать, что $\Phi^-(s+i0) = \Phi^-(s-i0)$, следовательно, функция $\Phi^-(z)$ голоморфна в полуплоскости Im z < 1, кроме точек, являющихся нулями функции $G_1(z)$ в полосе 0 < Im z < 1. Кроме того, заключаем, что функция

$$K(z) = \frac{P}{2\sqrt{2\pi}} - iz\Phi(z), \quad \text{Im } z < 0$$

голоморфная в полуплоскости ${\rm Im}\,z<0$, исчезает на бесконечности как величина порядка $|z|^{-(1-\varepsilon)}$, ее граничное значение — преобразование Фурье функции $\phi'(e^\xi)$, которая непрерывна на полуоси $\xi\leq 0$, кроме, быть может, точки $\xi=0$, в которой она может иметь разрыв первого рода. Отсюда обратным преобразованием Фурье получаем выражение для искомой функции

$$\tau(x) = \varphi_1'(x) = \frac{1}{\sqrt{2\pi}x} \int_{-\infty}^{\infty} K^{-}(t)e^{-it\ln x} dt$$
 (4.13)

причем ее поведение в окрестности точки x = 1 имеет вид

$$\varphi_1'(x) = O(1), \quad x \to 1 -$$
 (4.14)

Теперь изучим поведение функции $\tau(x)$ в окрестности точки x=0. Из равенства (4.12) при 0 < Im z < 1 заключаем, что граничное значение функции

$$K_0(z) = \frac{P}{2\sqrt{2\pi}} - iz \frac{\Psi^+(z) - g_{01}(z)}{G_1(z)}$$

является преобразованием Фурье функции $\psi'(e^{\xi})$, а функция $K_0(z)$ голоморфна в полосе $0 < \operatorname{Im} z < 1$, кроме точек, являющихся нулями функции $G_1(z)$ в этой полосе, и исчезает на бесконечности как величина порядка не ниже $|z|^{-1}$. Функция $g_{01}(z)$ имеет полюс первого порядка в точке z = i.

Доказывается, что функции $G_1(z)$ не имеет нулей в полосе $0<\operatorname{Im} z<1/\sqrt{k_0h}$. Поэтому, применяя к функции $e^{-i\xi z}K_0(z)$ теорему Коши о вычетах [21], для прямоугольника D(N) ($z_0\in D(N)$) с границей L(N), которая состоит из четырех отрезков

$$[-N,N],\ [N+i0,N+i\beta_0],\ [N+i\beta_0,-N+i\beta_0],\ [-N+i\beta_0,-N+i0];\ \beta_0>y_0$$

 $(z_0 = x_0 + i y_0 -$ нуль функции $G_1(z)$ с наименьшей мнимой частью, $y_0 > 1/\sqrt{k_0 h}$), получим

$$\int_{L(N)} K_0^-(t)e^{-it\xi}dt = \int_{-N}^N K_0^-(t)e^{-it\xi}dt - e^{\beta_0\xi} \int_{-N}^N K_0^-(t+i\beta_0)e^{-it\xi}dt + \rho(N,\xi) = K_0e^{\gamma_0\xi}$$

где $\rho(N,\xi) \to 0$ при $N \to \infty$. Переходя к пределу в последнем равенстве и возвращаясь к старым переменным, будем иметь

$$\tau(x) = \varphi_1'(x) = O(x^{y_0 - 1}), \quad x \to 0 +$$
(4.15)

Если $k_0h \le 1$, то $\tau(x) = \varphi_1'(x) = O(1)$, а если $k_0h = 4$, то $G_1(i/2) = 0$ и $\tau(x) = \varphi_1'(x) = O(x^{-1/2})$ при $x \to 0+$.

Таким образом, доказано, что интегродифференциальное уравнение (4.7) имеет единственное решение, которое представляется в явном виде формулой (4.13) и удовлетворяет оценкам (4.14) и (4.15).

Работа выполнена при финансовой поддержке Национального научного фонда им. Ш. Руставели (FR/86/5-109/14).

ЛИТЕРАТУРА

- 1. *Александров В.М.*, *Мхитарян С.М.* Контактные задачи для тел с тонкими покрытиями и прослойками. М.: Наука, 1983. 487 с.
- 2. *Попов Г.Я.* Концентрация упругих напряжений возле штампов, разрезов, тонких включений и подкреплений. М.: Наука, 1982. 342 с.
- 3. *Банцури Р.Д.* Контактная задача для анизотропного клина с упругим креплением // Докл. AH СССР. 1975. Т. 222. № 3. С. 568—571.
- 4. *Нуллер Б.М.* О деформации упругой клиновидной пластинки, подкрепленной стержнем переменной жесткости и об одном методе решения смешанных задач // ПММ. 1976. Т. 40. Вып. 2. С. 306—316.
- 5. Shavlakadze N. On singularities of contact stress upon tension and bending of plates with elastic inclusion //Proc. A. Razmadze Math. Inst. 1999. V. 120. P. 135–147.
- 6. Shavlakadze N. The contact problems of the mathematical theory of elasticity for plates with an elastic inclusion // Acta Appl. Math. 2007. V. 99. № 1. P. 29–51.
- 7. *Банцури Р.Д.*, *Шавлакадзе Н.Н.* Контактная задача для анизотропной клиновидной пластинки с упругим креплением переменной жесткости // ПММ. 2002. Т. 66. Вып. 4. С. 663—669.
- 8. *Банцури Р.Д.*, *Шавлакадзе Н.Н.* Контактная задача для кусочно-однородной плоскости с полубесконечным включением // ПММ. 2009. Т. 73. Вып. 4. С. 655–662.
- 9. *Банцури Р.Д.*, *Шавлакадзе Н.Н*. Контактная задача для кусочно-однородной плоскости с конечным включением // ПММ. 2011. Т. 75. Вып. 1. С. 133—139.
- 10. Lubkin J.I., Lewis I.C. Adhesive shear flow for an axially loaded finite stringer bonded to an infinite sheet // Quart. J. Mech. Appl. Math. 1970. V. 33. № 4. P. 521–533.
- 11. *Мусхелишвили Н.И*. Некоторые основные задачи математической теории упругости. М.: Наука, 1966. 707 с.
- 12. Мусхелишвили Н.И. Сингулярные интегральные уравнения. М.: Наука, 1968. 511 с.
- 13. Abramowitz M., Stegun I.A. Handbook of Mathematical Functions: with Formulas, Graphs and Mathematical Tables. N.Y.: National Bureau of Standards, Appl. Math. Series 55, 1964 = Абрамовиц М., Стиган И. Справочник по специальным функциям с формулами, графиками и математическими таблицами. М.: Наука, 1979. 832 с.
- 14. Tricomi F. On the finite Hilbert transformation // Quart. J. Math. 1951. № 2. P. 199–211.
- 15. *Попов Г.Я.* Некоторие новые соотношения для многочленов Якоби // Сиб. матем. ж. 1967. Т. 8. № 6. С. 1399—1404.
- 16. *Szegö G.* Orthogonal Polynomials. Providence, RI: Amer. Math. Soc., 1975 = *Сегё Г.* Ортогональные многочлены. М.: Физматлит, 1962. 500 с.

- 17. *Канторович Л., Крылов В.* Приближенные методы высшего анализа. М.; Л.: Физматгиз, 1962. 708 с.
- 18. *Канторович Л., Акилов Г.* Функциональный анализ. М.: Наука, 1977. 357 с.
- 19. *Гахов Ф.Д.*, *Черский Ю.И*. Уравнения типа свертки. М.: Наука, 1978. 295 с.
- 20. *Банцури Р.Д.* Об одной граничной задаче теории аналитических функций //Сообщ. AH ГрузССР. 1974. Т. 73. № 3. С. 549—552.
- 21. *Лаврентыев М.А.*, *Шабат Б.В.* Методы теории функций комплексного переменного. М.: Наука, 1973. 736 с.

Тбилисский государственный университет, Математический институт им. А. Размадзе, Тбилиси e-mail: nusha@rmi.ge,

nusha1961@yahoo.com

Поступила в редакцию 16.X.2016