
Proc. A. Razmadze Math. Inst. 145(2007), 95–99

A. Kharazishvili

ERGODIC COMPONENTS AND NONSEPARABLE EXTENSIONS OF
INVARIANT MEASURES

(Reported on 21.11.2007)

Let E be an uncountable set, G be a group of transformations of E and let µ be a
nonzero σ-finite G-invariant (or, more generally, G-quasiinvariant) measure on E. As
usual, we denote by dom(µ) the σ-algebra of all µ-measurable subsets of E.

One of the main questions in the theory of invariant (quasiinvariant) measures can be
formulated in the following general manner: how rich is the σ-algebra dom(µ)? In other
words, we are interested in the question: how many subsets of E can belong to dom(µ)?

There are several results, in connection with this general problem, for those cases
where the pair (E, G) satisfies some natural additional conditions. For instance, suppos-
ing that a transformation group G is uncountable and acts freely in E (or, more generally,
acts almost freely in E with respect to µ), it can be shown that dom(µ) differs from the
power-set P (E) of E (cf. [1], [4]). Note that a very particular case of this result gives a
solution to one problem posed by J. C. Oxtoby (see [1]).

We thus claim that, under rather natural assumptions, the relation dom(µ) 6= P (E)
holds true. At the same time, there are examples of nonzero σ-finite G-invariant measures
µ for which card(dom(µ)) = card(P (E)). Therefore, it makes sense to reformulate the
main question in other terms, e.g. in terms of the space L2(µ) canonically associated
with µ.

Recall that L2(µ) denotes the Hilbert space of all square integrable (with respect to
µ) real-valued functions on E. The Hilbert dimension of L2(µ) may be regarded as a
certain characteristic of µ. If L2(µ) is separable, then the original measure µ is called
separable; otherwise, µ is called nonseparable. It is not difficult to verify that, in general,
the Hilbert dimension of L2(µ) does not exceed card(P (E)).

The following more concrete problem seems to be important in the theory of invariant
measures (dynamical systems).

Problem 1. Let E be an uncountable set, G be a group of transformations of E and
let µ be a nonzero σ-finite G-invariant (or, more generally, G-quasiinvariant) measure on
E. Does there exist a G-invariant (respectively, G-quasiinvariant) extension µ′ of µ such
that the Hilbert dimension of L2(µ′) takes the maximum value?

Also, one can formulate the following weaker version of Problem 1.

Problem 2. Let E be an uncountable set, G be a group of transformations of E

and let µ be a nonzero σ-finite G-invariant (G-quasiinvariant) measure on E. Does there
exist a nonseparable G-invariant (G-quasiinvariant) extension of µ?

It is natural to suppose in the formulation of both these problems that the pair (E, G)
is a homogeneous space, i.e. the group G acts transitively in E.
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Here we are going to discuss some aspects of the above-mentioned problems and to
present the corresponding result. First, let us make several historical remarks concerning
nonseparable extensions of invariant measures.

Many years ago, E. Marczewski formulated the question whether there exists a non-
separable translation-invariant extension of the classical Lebesgue measure λ on the real
line R (see, e.g., [8] and comments therein). Some time later the papers [3] and [7] were
published in which this question was solved positively, i.e. it was shown in [3] and [7] that
λ admits various nonseparable translation-invariant extensions. However, the methods
applied in [3] and [7] essentially differ from each other. To explain it in more details,
denote by the symbol c the cardinality of the continuum. The extension λ′ of λ con-
structed in [3] is such that the Hilbert dimension of L2(λ′) is equal to 2c (i.e. the Hilbert
dimension of L2(λ′) is maximal) and the extension λ′′ of λ constructed in [7] is such that
the Hilbert dimension of L2(λ′′) is equal to c, hence is not maximal. The method of [3]
uses the techniques of σ-independent almost invariant thick sets. The method of [7] is
based on the existence of an everywhere discontinuous group homomorphism acting from
R into the infinite-dimensional torus Tc and having thick graph in the product space
R×Tc. Notice also that the construction presented in [3] admits a straightforward gener-
alization to the case of an uncountable commutative compact metrizable group equipped
with its Haar measure. This generalization is thoroughly considered in the well-known

monograph by E. Hewitt and K. Ross [2].
One may suppose that special topological properties of the Haar (respectively,

Lebesgue) measure play an important role in the above-mentioned constructions. How-
ever, we will show in the sequel that the situation is absolutely different. Actually, it
turns out that topological concepts are inessential for constructing nonseparable invari-
ant extensions of an invariant measure, and the key role is played by so-called ergodic
components of this measure (see below the precise definition of ergodic components).

Let E be a set, G be a group of transformations of E and let µ be a nonzero σ-finite
G-invariant (more generally, G-quasiinvariant) measure on E. We may assume, without
loss of generality, that µ is also complete.

Recall that µ is metrically transitive (or ergodic) if, for every µ-measurable set X ⊂ E

with µ(X) > 0, there exists a countable family {gk : k ∈ K} ⊂ G such that

µ(E \ ∪{gk(X) : k ∈ K}) = 0.

It is well known that the metrical transitivity (or ergodicity) of an invariant measure µ is
closely connected with its uniqueness property. Indeed, if µ has the uniqueness property,
then µ is necessarily metrically transitive. Conversely, if µ is complete, G is uncountable
and acts almost freely in E with respect to µ, then the metrical transitivity of µ implies
the uniqueness property of µ (cf. [4], [5]).

Example 1. The left Haar measure µ on a σ-compact locally compact group G is
metrically transitive (ergodic). More precisely, let H be an everywhere dense subgroup
of G. Then the same µ considered as an invariant measure with respect to H (which acts
on G from the left) is also metrically transitive (see, for instance, [5]).

Example 2. It was shown in [5] that the nonseparable translation-invariant extension

λ′′ of λ, constructed in [7], is metrically transitive (ergodic).

A set Y ⊂ E is called to be almost G-invariant with respect to µ if the equality
µ(g(Y )△Y ) = 0 holds true for all transformations g ∈ G.

Clearly, Y ⊂ E is almost G-invariant with respect to µ if and only if E \ Y is almost
G-invariant with respect to µ. Moreover, the union of a countable family of almost G-
invariant sets with respect to µ is almost G-invariant with respect to µ. Therefore, the
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class of all almost G-invariant sets with respect to µ forms a G-invariant σ-algebra of
subsets of E.

Let Y be a µ-measurable almost G-invariant subset of E with µ(Y ) > 0. Then Y

determines a nonzero σ-finite G-invariant (G-quasiinvariant) measure µY by the formula:

µY (X) = µ(X ∩ Y ) (X ∈ dom(µ)).

If µY is metrically transitive (ergodic), then we say that µY is an ergodic component
of µ.

Obviously, µ is metrically transitive if and only if µE is an ergodic component of µ.

Example 3. It can be shown that the nonseparable translation-invariant measure λ′

on R does not have any ergodic component.

Below, the symbols µ∗ and µ∗ denote, as usual, the outer measure and the inner
measure associated with µ.

A set Z ⊂ E is called to be thick with respect to µ if µ∗(E \ Z) = 0.
We say that a family {Xi : i ∈ I} of subsets of E is admissible for µ if the following

relations are satisfied:
(1) {Xi : i ∈ I} is disjoint;
(2) µ∗(∪{Xi : i ∈ I}) > 0;
(3) for each index i ∈ I, we have µ(Xi) = 0;
(4) for any subset J of I, the set ∪{Xi : i ∈ J} is almost G-invariant with respect to

µ.
It is convenient to introduce the notation:

a(µ) = inf{card(I) : there exists an admissible family {Xi : i ∈ I} for µ}.

As usual, for any cardinal number a, we denote by cf(a) the cofinality of a, i.e. the
least cardinal b such that a admits a representation a =

∑
{at : t ∈ b}, where all cardinals

at are strictly less than a. Recall that cf(a) is always a regular cardinal number.
It directly follows from the definition of a(µ) that a(µ) is an uncountable regular

cardinal.

Example 4. It can be proved that there exists a translation-invariant extension
ν of the Lebesgue measure λ such that a(ν) = ω1. Moreover, if E is a vector space
over the field Q of all rational numbers and card(E) ≥ c, then there exists a σ-finite
translation-invariant measure µ on E such that a(µ) = ω1.

We need two auxiliary propositions.

Lemma 1. Let a σ-finite G-quasiinvariant measure µ be complete and metrically

transitive (ergodic) and let a set Y ⊂ E be almost G-invariant with respect to µ. Then

at least one of the following three relations is valid:

1) µ(Y ) = 0;
2) µ(E \ Y ) = 0;
3) both sets Y and E \ Y are thick with respect to µ (consequently, both of them are

nonmeasurable with respect to µ).

Lemma 2. Suppose that card(E) = card(G) = a and G acts transitively in E. Let µ

be a nonzero σ-finite G-invariant (G-quasiinvariant) measure on E such that µ∗(Z) = 0
for all sets Z ⊂ E with card(Z) < a.

If cf(a) > ω, then µ can be extended to a G-invariant (G-quasiinvariant) measure

on E for which there exists at least one admissible family of subsets of E.

Using the lemmas formulated above, we can prove the following statement.
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Theorem 1. Assume that the Generalized Continuum Hypothesis holds. Let E be a

set, G be a group of transformations of E and let µ be a nonzero σ-finite G-invariant

measure on E. Suppose that these five conditions are satisfied:

1) cf(card(E)) > ω;

2) card(G) = card(E) and G acts transitively in E;

3) µ has at least one ergodic component;

4) a(µ) is less than the first strongly inaccessible cardinal;

5) µ∗(Z) = 0 for all sets Z ⊂ E with card(Z) < card(E).
Then there exists a G-invariant extension µ′ of µ such that the Hilbert dimension of

the space L2(µ′) is equal to 2a(µ).

The proof of Theorem 1 uses the technique of S. Ulam’s transfinite matrices (see [9])
and uncountable σ-independent families of almost invariant thick sets (cf.[2], [3]).

As a direct consequence of Theorem 1, we have the next statement.

Theorem 2. Assume the Generalized Continuum Hypothesis. Let E be a set, G be

a group of transformations of E and let µ be a nonzero σ-finite G-invariant measure on

E. Suppose also that:

(1) card(E) is less than the first strongly inaccessible cardinal and cf(card(E)) > ω;

(2) card(G) = card(E) and G acts transitively in E;

(3) µ has at least one ergodic component;

(4) µ∗(Z) = 0 for all sets Z ⊂ E with card(Z) < card(E).
Then there exists a G-invariant extension µ′ of µ such that the Hilbert dimension of

L2(µ′) is equal to 2c(in particular, µ′ is a nonseparable extension of µ).

Remark 1. Unfortunately, the G-invariant extensions of µ whose existence is stated
by Theorem 1 and Theorem 2 have no ergodic components, because the construction
of those extensions is essentially based on the existence of uncountable σ-independent
almost G-invariant thick subsets of E. In this connection, it would be interesting to
find a general method of extending measures by means of which a given nonzero σ-finite
G-invariant (respectively, G-quasiinvariant) measure µ with ergodic components can be
extended to a nonseparable G-invariant (respectively, G-quasiinvariant) measure µ′ with
ergodic components.

Remark 2. As mentioned in Example 2, the measure λ′′ constructed in [7] is metrically
transitive. It was proved that λ′′ can be extended to a translation-invariant measure λ′′′

on R such that the Hilbert dimension of L2(λ′′′) is equal to 2c (for more details, see [6]).
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