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Abstract
The problem of extending partial functions is considered from the general viewpoint. Some as-

pects of this problem are illustrated by examples, which are concerned with typical real-valued partial
functions (e.g. semicontinuous, monotone, additive, measurable, possessing the Baire property).
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In this note we would like to consider several facts from mathematical analysis concerning
extensions of real-valued partial functions. Some of those facts are rather easy and are
accessible to average-level students. But some of them are much deeper, important and
have applications in various branches of mathematics. The best known example of this
type is the famous Tietze–Urysohn theorem, which states that every real-valued continuous
function defined on a closed subset of a normal topological space can be extended to a real-
valued continuous function defined on the whole space (see, for instance, [8], Chapter 1,
Section 14). Another example of this kind is the fundamental Hahn–Banach theorem on
extending a continuous linear functional defined on a vector subspace of a given normed
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vector space (see any text-book of functional analysis). Obviously, many other interesting
and important examples can be pointed out in this context.

Let R denote the real line and let X be an arbitrary subset of R. A function f : X → R is
called a partial function acting from R into R. We may write f : R → R simply saying that
f is a partial function whose domain is contained in R. As usual, we denote dom(f ) = X.
If Y is any subset of R, then the symbol f |Y stands for the restriction of f to Y. The symbol
cl(Y ) denotes the closure of Y.

Here we are interested in the following general question: does there exist an extension
f ∗ : R → R of f defined on the whole R and having some “nice” properties. In particular, we
may require that f ∗ would be continuous, semicontinuous, monotone, Borel measurable,
Lebesgue measurable, or would have the Baire property. An analogous question can be
posed for partial functions acting from a set E into R, where E is assumed to be endowed
with some additional structure. In such a case an extension f ∗ : E → R must preserve (in
an appropriate sense) that structure. It is clear that questions of this type frequently arise
in mathematical analysis, general topology and abstract algebra. Therefore, this topic is of
interest for large groups of mathematicians.

Below, we make a small list of results in this direction, comment on each of them or give
a necessary explanation, and refer the reader to other related works, in which extensions
of partial functions are considered more thoroughly (see, e.g., [8]). For our convenience,
we present the material in the form of examples of statements on extensions of real-valued
partial functions. We think that, in various lecture courses, it is useful to provide students
with additional information concerning extensions of partial functions. Such an approach
essentially helps them to see more vividly deep connections between different fields of
mathematics. Besides, the students should know that the general problem of extending
partial functions is important in all mathematics - it naturally appears in many branches of
this discipline and finds numerous applications.

We start with a very simple result that can be included in any lecture course of real
analysis, oriented to beginners.

Example 1. A partial function f : R → R admits a continuous extension f ∗ : R → R
defined on R if and only if, for each open interval ]a, b[⊂ R, the restriction of f to the set
dom(f )∩]a, b[ is uniformly continuous. More generally, let {]ai, bi[ : i ∈ I } be a family
of open intervals in R such that R = ⋃{]ai, bi[ : i ∈ I }. One can assert that a partial
function f : R → R admits a continuous extension f ∗ with dom(f ∗) = R if and only if
the restrictions of f to all sets dom(f )∩]ai, bi[ are uniformly continuous.

The proof of this fact is very easy: it suffices to take into account that any continuous
real-valued function defined on a closed bounded subinterval of R is uniformly continuous.
Also, it is not difficult to give an example of a partial function f : R → R for which there
exists a countable family {[ai, bi] : i ∈ I } of segments such that

⋃{[ai, bi] : i ∈ I } = R
and all restrictions f |(dom(f ) ∩ [ai, bi]) are uniformly continuous, but f does not admit a
continuous extension f ∗ with dom(f ∗) = R.

The second example is less trivial.

Example 2. Recall that a partial function f : R → R is upper (respectively, lower) semi-
continuous if, for each t ∈ R, the set {x ∈ dom(f ) : f (x) < t} (respectively, the set
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{x ∈ dom(f ) : f (x) > t}) is open in dom(f ). For f with dom(f ) = R, this definition is
equivalent to the following: f is upper (respectively, lower) semicontinuous if and only if
lim supy→x f (y) = f (x) (respectively, lim infy→x f (y) = f (x)) for all x ∈ R (see [8],
Chapter 1, Section 18). It is interesting to note that every bounded upper (lower) semicon-
tinuous partial function admits an upper (lower) semicontinuous extension defined on R.
Let us formulate a more precise result in this direction. First, recall that a partial function
g : R → R is locally bounded from above (from below) if, for each point x ∈ R, there
exists a neighborhood U(x) such that g|U(x) is bounded from above (from below).A partial
function g : R → R is locally bounded if it is locally bounded from above and from below
simultaneously.

We also recall that an upper semicontinuous function can take its values from the set
R ∪{−∞} and a lower semicontinuous function can take its values from the set R ∪{+∞}.

Now, let f : R → R ∪{−∞, +∞} be any partial function. The following two assertions
are equivalent:

(a) f admits an upper (lower) semicontinuous extension f ∗ with dom(f ∗) = cl(dom(f ));
(b) f is upper (lower) semicontinuous and locally bounded from above (from below).

The equivalence of (a) and (b) implies the validity of the next two statements.

(i) Let f : R → [a, b] be a partial upper semicontinuous function. Then there exists an
upper semicontinuous function f ∗ : R → [a, b] extending f.

(ii) Let f : R → [a, b] be a partial lower semicontinuous function. Then there exists a
lower semicontinuous function f ∗ : R → [a, b] extending f.

It should be mentioned that the same results hold true in a more general situation, e.g.,
for partial semicontinuous bounded functions acting from a normal topological space E into
the real line R (of course, in this generalized case, the Tietze–Urysohn theorem has to be
applied to E).

The next example deals with monotone extensions of partial functions acting from R
into R.

Example 3. Let f : R → R be a partial function increasing on its domain. It is easy to
show that f can always be extended to an increasing function f ∗ defined on some maximal
(with respect to inclusion) subinterval of R. Let us denote the above-mentioned maximal
subinterval by T and let a = inf T , b = sup T . If a = −∞ and b = +∞, then f ∗ is the
required increasing extension of f defined on the whole R.

If, for example, a 	= −∞, then in view of the maximality of T, we must have
inf t∈T f (t) = −∞ and, therefore, f cannot be extended to an increasing function acting
from R into R. Analogously, if b 	= +∞, then in view of the maximality of T, we must
have supt∈T f (t) = +∞ and, therefore, f cannot be extended to an increasing function
acting from R into R. We see that in both these cases our partial function f is not locally
bounded.
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A similar result holds true for a decreasing partial function f : R → R. We thus obtain
a necessary and sufficient condition for extending a given partial function to a monotone
function acting from R into R. Namely, the following two assertions are equivalent:

(a) f is extendable to a monotone function f ∗ with dom(f ∗) = R;
(b) f is monotone and locally bounded.

Of course, there is no problem connected with extending monotone partial functions if
we admit infinite values of functions under consideration (cf. Example 2). Indeed, in this
case any monotone partial function

f : R → R ∪ {−∞, +∞}
can be extended to a monotone function f ∗ with dom(f ∗) = R.

Example 4. Let f : R → R be a partial function. Suppose that f is Borel on its domain,
i.e., for every Borel set B ⊂ R, the preimage f −1(B) is a Borel subset of dom(f ). It
can be proved that f always admits a Borel extension f ∗ : R → R with dom(f ∗) = R.
However, the proof of this fact is not easy. It needs a certain classification of all Borel partial
functions acting from R into R. This classification is due to Baire and, according to it, each
Borel partial function f has its own Baire order �=�(f ), where � is some countable ordinal
number. For instance, the equality �(f )=0 means that f is continuous on its domain. Taking
into account the above-mentioned classification, the existence of f ∗ can be established by
using the method of transfinite induction on � (for more details, see, e.g., [8], Chapter 3,
Section 35).

Example 5. Let f : R → R be a partial function. The following two assertions are
equivalent:

(a) f admits an extension f ∗ defined on R and measurable in the Lebesgue sense;
(b) there exists a Lebesgue measure zero set A ⊂ R such that the restriction of f to

dom(f )\A is a Borel function on its domain.

This fact can be proved by using the well-known Luzin criterion for the Lebesgue
measurability of real-valued functions (see, e.g., [13]).

A similar fact holds true for partial functions having the Baire property. Recall that
the Baire property may be regarded as a certain topological analog of measurability (see
[8,10,13]). Let f : R → R be a partial function. The following two assertions are
equivalent:

(i) f admits an extension f ∗ defined on R and having the Baire property;
(ii) there exists a first category set B ⊂ R such that the restriction of f to dom(f )\B is a

Borel function on its domain.

In connection with the latter fact, let us remark that if X is a second category subset
of R, then there exists a function f : X → R, which cannot be extended to a function
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f ∗ : R → R having the Baire property. This deep result is due to Novikov (see [12]). It is
essentially based on the Axiom of Choice and some special facts from descriptive set theory
(e.g., the separation principle for analytic sets). A more detailed discussion of this result is
also given in Chapter 14 of [5].

Example 6. If g : R → R is a Lebesgue measurable function (respectively, function
having the Baire property), then there exists a nonempty perfect set C ⊂ R such that g|C
is monotone on its domain (see, e.g., [5], Chapter 4, Exercise 11).

Sierpiński and Zygmund proved in [15] (see also [8], Chapter 3, Section 35) that there
exists a real-valued function h defined on R and satisfying the following condition: for any
set X ⊂ R of cardinality continuum, the restriction h|X is not continuous. In particular, this
condition readily implies that, for any set X ⊂ R of cardinality continuum, the restriction
h|X is not monotone on X (indeed, it suffices to apply the fact that the set of all discontinuity
points of any monotone partial function is at most countable).

Assuming the Continuum Hypothesis (or, more generally, Martin’s Axiom), we have the
following two statements.

(a) If X ⊂ R is of second category, then h|X cannot be extended to a function on R having
the Baire property (cf. Novikov’s result mentioned above).

(b) If X ⊂ R is of strictly positive outer Lebesgue measure, then h|X cannot be extended
to a function on R measurable in the Lebesgue sense.

Note that the validity of (a) and (b) does not need the full power of Martin’s Axiom.
Actually, it suffices to assume that any subset of R of cardinality strictly less than the
cardinality continuum is of first category (respectively, of Lebesgue measure zero).

Statement (a) directly implies that no Sierpiński–Zygmund function has the Baire
property.

Statement (b) implies that no Sierpiński–Zygmund function is Lebesgue measurable.
Moreover, one can assert that a Sierpiński–Zygmund function is nonmeasurable with

respect to the completion of any nonzero �-finite diffused (i.e., vanishing at all singletons)
Borel measure on R. Sierpiński–Zygmund functions have other interesting and important
properties. Many works are devoted to these functions (see, e.g., [2,5,8]).

Example 7. Consider R as a vector space over the field Q of all rational numbers. Let
f : Q → Q denote the identical mapping. Since Q is a vector subspace of R and f is a
partial linear functional, it admits a linear extension f ∗ : R → Q with dom(f ∗) = R.
Of course, the construction of f ∗ is not effective: it is based on the Axiom of Choice or
the Zorn Lemma. Thus, the obtained extension f ∗ is a solution of the Cauchy functional
equation, i.e., we have

f ∗(x + y) = f ∗(x) + f ∗(y)

for all x ∈ R and y ∈ R. At the same time, taking into account the relation ran(f ∗)=Q, we
see that f ∗ is discontinuous at all points of R, i.e., f ∗ is a nontrivial solution of the Cauchy
functional equation (cf. [5,7,10]). It is well known that all nontrivial solutions of the Cauchy
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functional equation are nonmeasurable with respect to the Lebesgue measure and do not
possess the Baire property (see, for instance, [7] or [10]). In our case, it is easy to see that the
set {x ∈ R : f ∗(x) = 0} is not Lebesgue measurable and does not have the Baire property.
Note that, among nontrivial solutions of the Cauchy functional equation, one can meet some
Sierpiński–Zygmund functions (see Chapter 11 of [5]; cf. also [11]). In addition, it should
be pointed out that nontrivial solutions of the Cauchy functional equation are successfully
applied in some deep questions concerning equidecomposability of polyhedra lying in a
finite-dimensional Euclidean space (see, e.g., [3]).

Example 8. One can expect that if a partial function f : R → R is defined on a small
(in an appropriate sense) subset of R, then f admits extensions with “nice” properties as
well as extensions with “bad” properties. Indeed, if dom(f ) is of Lebesgue measure zero
(respectively, is of first category), then f trivially can be extended to a Lebesgue measurable
function (respectively, to a function possessing the Baire property). Thus, in both these
cases, we come to extensions of functions with “nice” properties.

We are going to present an example of an extension of a partial function with an extremely
“bad” property from the measure-theoretic viewpoint. First, let us introduce two auxiliary
notions.

We recall that a set X ⊂ R is universal measure zero if there exists no nonzero �-finite
diffused Borel measure on X. For example, every Luzin subset of R is universal measure zero
(this property and various other properties of Luzin sets are considered in [5,7,8,10,13]).

We shall say that a function g : R → R is absolutely nonmeasurable if there exists no
nonzero �-finite diffused measure � on R such that g is measurable with respect to �. In
this definition, the domain of � may be an arbitrary �-algebra of subsets of R containing all
singletons. We thus see that absolutely nonmeasurable functions (if they exist) are of more
pathological nature than well-known examples of Lebesgue nonmeasurable real-valued
functions.

It is proved in [6] that the following two assertions are equivalent:

(a) a function g is absolutely nonmeasurable;
(b) the set ran(g) is universal measure zero and, for each t ∈ R, the set g−1(t) is at most

countable.

Starting with this result, it is not hard to show that an absolutely nonmeasurable function
acting from R into R exists if and only if there exists a universal measure zero subset of R
of cardinality continuum. Also, we infer the validity of the next statement.

Assume the Continuum Hypothesis (or, more generally, Martin’sAxiom). Let f : R → R
be a partial function. The following two assertions are equivalent:

(i) f admits an absolutely nonmeasurable extension f ∗ with dom(f ∗) = R;
(ii) the set ran(f ) is universal measure zero and the sets f −1(t) are countable for all t ∈ R.

From the equivalence of (i) and (ii) we obtain that any partial function f : R → R
defined on a countable subset of R admits an extension to an absolutely nonmeasurable
function defined on R.
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Let us remark that, according to the well-known Blumberg theorem, any function acting
from R into R can be regarded as an extension of some continuous partial function whose
domain is a countable everywhere dense subset of R (for the proof, see, e.g., [5], Chapter 7).
The existence of a Sierpiński–Zygmund function h : R → R shows that, under the Con-
tinuum Hypothesis, there is no uncountable set X ⊂ R such that h|X is continuous. Con-
sequently, h cannot be considered as an extension of a continuous partial function defined
on an uncountable set of points.

Let us also note that (under Martin’s Axiom) there exist additive absolutely nonmeasur-
able functions, which simultaneously are Sierpiński–Zygmund functions. The construction
of such functions is based on the fact that there exists a generalized Luzin subset of R being
a vector space over Q (recall once more that extensive information about Luzin subsets of
R is contained in [5,7,8,10,13]).

The next example is concerned with extensions of real-valued partial functions of two
variables.

Example 9. Let � denote the Lebesgue measure on the real line R. Consider a function of
two real variables G : R × [0, 1] → R. Recall that G satisfies the Carathéodory conditions
if the following two relations hold:

(i) for each x ∈ R, the function G(x, ·) : [0, 1] → R is continuous;
(ii) for each y ∈ [0, 1], the function G(·, y) : R → R is �-measurable.

Functions of this type play an important role in the theory of differential equations,
optimization, probability, etc.

It is well known that if G satisfies the Carathéodory conditions, then G is measurable with
respect to the product �-algebra dom(�)⊗B([0, 1]), where B([0, 1]) denotes the �-algebra
of all Borel subsets of [0, 1].

Now, take a partial function F : R×[0, 1] → R, i.e., suppose that dom(F ) ⊂ R×[0, 1].
Suppose, in addition, that F is measurable with respect to dom(�) ⊗ B([0, 1]). Then the
following two assertions are equivalent:

(a) F admits an extension F ∗ : R ×[0, 1] → R with dom(F ∗)= R ×[0, 1], satisfying the
Carathéodory conditions;

(b) for each x ∈ R, the partial function F(x, ·) is uniformly continuous on its domain.

This result is rather deep (compare with the simplest Example 1). Indeed, to estab-
lish the equivalence of (a) and (b), one has to apply the Choquet theorem on capacities
(see, e.g., [4]) and the theorem on measurable selectors due to Kuratowski and Ryll-
Nardzewski [9]. It should be mentioned that the same result remains true if we replace the
Lebesgue measure space (R, dom(�), �) by an arbitrary �-finite complete measure space
(�, dom(�), �) and consider partial functions of the form F : � × [0, 1] → R (cf. [5],
Chapter 15).

Note that the standard Wiener process W : R[0,1] × [0, 1] → R, which is regarded as a
mathematical model of the Brownian motion, yields a good example of a function of two
variables, satisfying the Carathéodory conditions. Here R[0,1] stands, as usual, for the space
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of all real-valued functions on the segment [0, 1] and this space is assumed to be equipped
with the completion of the Wiener probability measure �w. Actually, in this example we are
dealing with a certain set � ⊂ R[0,1] of full �w-measure such that, for any t ∈ [0, 1], the
partial function W(·, t) is measurable with respect to �w and, for any � ∈ �, the trajectory
W(�, ·) is continuous on [0, 1].

Our last example is concerned with extensions of real-valued partial set-functions.
We recall that a set-function is any function whose domain is some family of sets. Equiv-

alently, we may say that a set-function f is a function whose domain is a subset of the
power-set P(E) of some set E. Thus, f can be treated as a partial function acting from
P(E).

Example 10. The Lebesgue measure � is a real-valued function defined on some class of
subsets of R. It is well known that this class is proper, i.e., there are �-nonmeasurable sets in
R. Therefore, � may be regarded as a partial function acting from the power-set of R into R.
Several constructions of �-nonmeasurable subsets of R are widely presented in the literature
(Vitali sets, Bernstein sets, nontrivial ultrafilters in the set of all natural numbers, etc.).
Compare also Example 7 where a nonmeasurable set associated with a nontrivial solution
of the Cauchy functional equation is indicated. It is natural to ask whether there exists a
measure � on R extending � and defined on the family of all subsets of R. This problem
was originally posed by Banach. Under some additional set-theoretical assumptions (e.g.,
the Continuum Hypothesis or Martin’s Axiom), the answer is negative (see, for instance,
[5,8,13]). However, it seems that this question is undecidable within the standard system of
axioms of Zermelo–Fraenkel set theory.

It is not difficult to show that, for any countable disjoint family {Xi : i ∈ I } of subsets of
R, there exists a measure �′ on R extending � and such that {Xi : i ∈ I } ⊂ dom(�′) (see, e.g.,
[1]). We thus see that the countable additivity of � can be preserved under the assumption that
the “points” Xi (i ∈ I ), on which we extend �, are pairwise disjoint. Actually, it is shown
in [1] that the same result remains valid for any �-finite measure � given on an abstract
set E and for any disjoint family {Yj : j ∈ J } of subsets of E. In particular, we easily
obtain from this result that, for every finite family {Z1, Z2, . . . , Zn} of subsets of E, there
exists a measure �′ extending � and satisfying the relation {Z1, Z2, . . . , Zn} ⊂ dom(�′).
However, if we have an infinite sequence {Z1, Z2, . . . , Zn, . . .} of subsets of E, then we
cannot assert, in general, that � is extendable to a measure �′ for which all these subsets
become �′-measurable. In other words, sometimes there are countably many “points” in the
power-set of E, which do not admit further extension of a given nonzero �-finite measure
�. For instance, we always have such “bad” points Z1, Z2, . . . , Zn, . . . in the power-set of
E, where E is an arbitrary uncountable universal measure zero subset of R. Note that the
existence of an uncountable universal measure zero set E ⊂ R is well known (see, e.g.,
[8], Chapter 2, Section 24, where the classical Luzin-Sierpiński construction of such an E
is given, starting with a decomposition of an analytic non-Borel set into uncountably many
Borel components). In this context, the works [14,16] should also be mentioned, in which
a much stronger result is presented stating the existence of uncountable universally small
subsets of the real line.
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