

Expo. Math. 27 (2009) 161-169

On sums of real-valued functions with extremely thick graphs

A.B. Kharazishvili^{a, b,*}

^aA. Razmadze Mathematical Institute, M. Alexidze Street, 1, Tbilisi 0193, Republic of Georgia
^bI. Chavchavadze State University, I. Chavchavadze Street, 32, Tbilisi 0128, Republic of Georgia

Received 23 July 2008; received in revised form 8 September 2008

Abstract

We consider some properties of those functions acting from the real line \mathbf{R} into itself, whose graphs are extremely thick subsets of the Euclidean plane \mathbf{R}^2 . The structure of sums of such functions is studied and the obtained results are applied to certain measure extension problems. © 2008 Elsevier GmbH. All rights reserved.

MSC 2000: 28 A05; 28 D05

Keywords: Extremely thick set; Universally extendable σ -algebra; Universal measure zero set; Quasi-invariant measure

Let \mathbf{R} (= \mathbf{R}^1) denote the real line and let λ (= λ_1) be the standard Lebesgue measure on \mathbf{R} (we consider λ only on the Borel σ -algebra $\mathcal{B}(\mathbf{R})$ of \mathbf{R}). It is well known that there exists a function $f: \mathbf{R} \to \mathbf{R}$ whose graph Gr(f) is thick in the plane \mathbf{R}^2 with respect to the two-dimensional Lebesgue measure $\lambda_2 = \lambda \otimes \lambda$ on \mathbf{R}^2 . In other words, for such an f, the equality $(\lambda_2)_*(\mathbf{R}^2 \setminus Gr(f)) = 0$ holds true, where $(\lambda_2)_*$ denotes, as usual, the inner measure associated with λ_2 .

Recall that the first example of a function with λ_2 -thick graph was constructed by Sierpiński with the aid of the method of transfinite recursion (see [1,10]). Functions of this type should be treated as pathological ones from the measure-theoretical and

E-mail address: kharaz2@yahoo.com.

^{*}Corresponding author at: A. Razmadze Mathematical Institute, M. Alexidze Street, 1, Tbilisi 0193, Republic of Georgia.

topological viewpoint, because they are nonmeasurable with respect to the completion of λ and are discontinuous everywhere on **R**. Besides, the set $Gr(f) \subset \mathbf{R}^2$ is nonmeasurable with respect to the completion of λ_2 .

However, even for such pathological functions certain positive properties can be established. For instance, it turns out that any $f: \mathbf{R} \to \mathbf{R}$ with λ_2 -thick graph becomes measurable with respect to an appropriate extension of λ . In this paper, we are going to present a nontrivial application of functions with thick graphs to some particular versions of the general measure extension problem.

The notation used in the paper is fairly standard.

If *E* is a set and \mathscr{E} is a family of subsets of *E*, then the symbol $\sigma(\mathscr{E})$ denotes the σ -algebra in *E* generated by \mathscr{E} .

If μ is a measure on E, then $dom(\mu)$ stands for the σ -algebra of all μ -measurable sets.

 μ^* denotes the outer measure associated with a given measure μ .

 μ_* denotes the inner measure associated with a given measure μ .

 ω stands for the first infinite cardinal number and ${\bf c}$ stands for the cardinality of the continuum.

Let *E* be a set and let $\mathscr E$ be a family of subsets of *E*. We shall say that a set $G \subset E$ is $\mathscr E$ -thick in *E* if $G \cap Z \neq \emptyset$ for every $Z \in \mathscr E$.

Example 1. Let E be equipped with a σ -finite measure μ and let $\mathscr{E} = \{Z \in dom(\mu) : \mu(Z) > 0\}$. Then any \mathscr{E} -thick set X is usually called a μ -thick subset of E. Clearly, the μ -thickness of a set $X \subset E$ is equivalent to the equality $\mu_*(E \setminus X) = 0$.

If $E = \mathbf{R}$ and X is a Bernstein subset of E (see, e.g., [1]), then both sets X and $E \setminus X$ are μ -thick for any nonzero σ -finite continuous (i.e., vanishing at all singletons) Borel measure μ on E, whence it follows that both X and $E \setminus X$ are nonmeasurable with respect to the completion of μ .

Example 2. Let E_1 and E_2 be two separable metric spaces equipped with their Borel σ -algebras $\mathcal{B}(E_1)$ and $\mathcal{B}(E_2)$, respectively. Consider the product space $E = E_1 \times E_2$. Obviously, we have $\mathcal{B}(E) = \mathcal{B}(E_1) \otimes \mathcal{B}(E_2)$. Let us put

$$\mathscr{E} = \{Z \in \mathscr{B}(E) : card(pr_1(Z)) > \omega\}.$$

We shall say that a set $G \subset E$ is extremely thick if G is \mathscr{E} -thick in E.

Let μ be an arbitrary σ -finite Borel measure on E such that the produced marginal measure μ_1 defined by

$$\mu_1(X) = \mu(X \times E_2) \quad (X \in \mathcal{B}(E_1))$$

is continuous. In this case, one can easily see that any extremely thick subset G of E is μ -thick as well.

Below, one important method of extending measures will be essentially used (cf., for instance [7]).

Let (E_1, \mathscr{A}_1) and (E_2, \mathscr{A}_2) be two measurable spaces, μ be a σ -finite measure on the product σ -algebra $\mathscr{A}_1 \otimes \mathscr{A}_2$ and let $g: E_1 \to E_2$ be a mapping whose graph G = Gr(g)

is μ -thick in the product space $E = E_1 \times E_2$. For each set $Z \in \mathcal{A}_1 \otimes \mathcal{A}_2$, we put

$$Z'_{g} = \{x \in E_{1} : (x, g(x)) \in Z\}$$

and introduce the class of sets

$$\mathscr{A}'_1 = \{ Z'_g : Z \in \mathscr{A}_1 \otimes \mathscr{A}_2 \}.$$

Further, we define

$$\mu_1'(Z_g') = \mu(Z) \quad (Z_g' \in \mathcal{A}_1').$$

It is not difficult to verify the validity of the following relations:

- (1) \mathscr{A}'_1 is a σ -algebra of subsets of E_1 containing \mathscr{A}_1 ;
- (2) the functional μ'_1 is well defined on \mathscr{A}'_1 and is a measure extending the marginal measure μ_1 on \mathscr{A}_1 produced by μ ; in particular, if $\mu = v_1 \otimes v_2$ and v_2 is a probability measure on \mathscr{A}_2 , then μ'_1 turns out to be an extension of v_1 ;
- (3) the mapping g is $(\mathcal{A}_2, \mathcal{A}'_1)$ -measurable, i.e., for any $Y \in \mathcal{A}_2$, we have $g^{-1}(Y) \in \mathcal{A}'_1$.

Example 3. As in Example 2, let E_1 and E_2 be two separable metric spaces equipped with their Borel σ -algebras $\mathcal{A}_1 = \mathcal{B}(E_1)$ and $\mathcal{A}_2 = \mathcal{B}(E_2)$, respectively. Consider the product space $E = E_1 \times E_2$ equipped with its Borel σ -algebra $\mathcal{B}(E) = \mathcal{A}_1 \otimes \mathcal{A}_2$.

Let \mathscr{A} be a σ -algebra of subsets of E_1 such that $\mathscr{B}(E_1) \subset \mathscr{A}$. We shall say that \mathscr{A} is universally extendable if every σ -finite continuous Borel measure on E_1 can be extended to a measure defined on \mathscr{A} .

Let $g: E_1 \to E_2$ be a mapping. It directly follows from Example 2 and the above-mentioned relations (1)–(3) that if G = Gr(g) is extremely thick in E, then the σ -algebra \mathscr{A}'_1 is universally extendable.

The introduced concepts of an extremely thick set and of a universally extendable σ -algebra will be applied in the concrete situation where $E_1 = E_2 = \mathbf{R}$ and \mathbf{R} is equipped with its Borel σ -algebra $\mathcal{B}(\mathbf{R})$.

The following statement may be regarded as a far going generalization of Sierpiński's result which was pointed out in the beginning of the paper.

Theorem 1. Let $f : \mathbf{R} \to \mathbf{R}$ be an arbitrary function. There exist functions $f_1 : \mathbf{R} \to \mathbf{R}$ and $f_2 : \mathbf{R} \to \mathbf{R}$ such that $f = f_1 + f_2$ and both sets $Gr(f_1)$ and $Gr(f_2)$ are extremely thick in the plane \mathbf{R}^2 .

Proof. We argue by the method of transfinite induction. Let α be the least ordinal number of cardinality **c**. Let $\{\mathcal{Z}_1, \mathcal{Z}_2, \mathcal{Z}_3\}$ be a partition of $[0, \alpha]$ such that

$$card(\Xi_1) = card(\Xi_2) = card(\Xi_3) = \mathbf{c}.$$

Further, let $\{B_{\xi}: \xi \in \Xi_1\}$, $\{B_{\xi}: \xi \in \Xi_2\}$ and $\{B_{\xi}: \xi \in \Xi_3\}$ be three families of Borel subsets of \mathbb{R}^2 satisfying the following conditions:

(a) $card(pr_1(B_{\xi})) > \omega$ for all ordinals $\xi \in \Xi_1 \cup \Xi_2$;

- (b) any Borel set $B \subset \mathbf{R}^2$ with $card(pr_1(B)) > \omega$ belongs to the intersection $\{B_{\xi} : \xi \in \Xi_1\} \cap \{B_{\xi} : \xi \in \Xi_2\}$;
- (c) $B_{\xi} = \mathbf{R}^2$ for every ordinal $\xi \in \Xi_3$.

Let \leq be some well-ordering of **R** which is isomorphic to α .

We will construct by the method of transfinite recursion an α -sequence $\{x_{\xi}: \xi < \alpha\}$ of points of **R** and two corresponding α -sequences of values $\{f_1(x_{\xi}): \xi < \alpha\}$ and $\{f_2(x_{\xi}): \xi < \alpha\}$.

Suppose that, for an ordinal $\xi < \alpha$, the partial ξ -sequences

$$\{x_{\zeta}: \zeta < \xi\}, \{f_1(x_{\zeta}): \zeta < \xi\}, \{f_2(x_{\zeta}): \zeta < \xi\}$$

have already been defined. Consider three possible cases.

1. $\xi \in \Xi_1$. In this case, taking into account that $pr_1(B_{\xi})$ is an uncountable analytic set in **R**, we have $card(pr_1(B_{\xi})) = \mathbf{c}$. So there exists a point $x \in pr_1(B_{\xi}) \setminus \{x_{\zeta} : \zeta < \xi\}$. Consequently, $(x, y) \in B_{\xi}$ for some point $y \in \mathbf{R}$. We put:

$$x_{\xi} = x$$
, $f_1(x_{\xi}) = y$, $f_2(x_{\xi}) = f(x_{\xi}) - f_1(x_{\xi})$.

2. $\xi \in \Xi_2$. Similarly to the previous case, there exists a point $x \in pr_1(B_{\xi}) \setminus \{x_{\zeta} : \zeta < \xi\}$ and, consequently, $(x, y) \in B_{\xi}$ for some point $y \in \mathbf{R}$. We put

$$x_{\xi} = x$$
, $f_2(x_{\xi}) = y$, $f_1(x_{\xi}) = f(x_{\xi}) - f_2(x_{\xi})$.

3. $\xi \in \Xi_3$. In this case, let x be the least element (with respect to the well-ordering \preccurlyeq) of the nonempty set $pr_1(B_{\xi})\setminus\{x_{\zeta}:\zeta<\xi\}$. We put $x_{\xi}=x$ and define the values $f_1(x_{\xi})$ and $f_2(x_{\xi})$ so that the equality

$$f(x_{\xi}) = f_1(x_{\xi}) + f_2(x_{\xi})$$

is satisfied (obviously, there are many possibilities to do this).

Proceeding in such a manner, we come to the three α -sequences $\{x_{\xi}: \xi < \alpha\}$, $\{f_1(x_{\xi}): \xi < \alpha\}$ and $\{f_2(x_{\xi}): \xi < \alpha\}$. In view of the described construction, the sets $Gr(f_1)$ and $Gr(f_2)$ are extremely thick in \mathbf{R}^2 . It suffices only to show that $\mathbf{R} = \{x_{\xi}: \xi < \alpha\}$. But this equality holds true because of the relations

$$card(\Xi_3) = \mathbf{c}, (\forall x \in \mathbf{R})(card(\{y : y \leq x\}) < \mathbf{c}).$$

Theorem 1has thus been proved. \square

An analogous argument enables to establish the following statement.

Theorem 2. Suppose that $f: \mathbf{R} \to \mathbf{R}$ is an arbitrary additive function (i.e., f is a homomorphism of the additive group \mathbf{R} into itself). Then there exist two additive functions $f_1: \mathbf{R} \to \mathbf{R}$ and $f_2: \mathbf{R} \to \mathbf{R}$ such that $f = f_1 + f_2$ and both sets $Gr(f_1)$ and $Gr(f_2)$ are extremely thick in \mathbf{R}^2 .

The scheme of the proof remains essentially the same as before. Namely, we construct by the method of transfinite recursion a linearly independent (over the field \mathbf{Q} of all rational numbers) α -sequence $\{x_{\xi}: \xi < \alpha\}$ of points of \mathbf{R} with two corresponding α -sequences $\{f_1(x_{\xi}): \xi < \alpha\}$ and $\{f_2(x_{\xi}): \xi < \alpha\}$ such that

$$f(x_{\xi}) = f_1(x_{\xi}) + f_2(x_{\xi}) \quad (\xi < \alpha)$$

and then conclude that the vector space (over **Q**) generated by $\{x_{\xi} : \xi < \alpha\}$ coincides with the whole **R**, whence it follows that the equality $f(x) = f_1(x) + f_2(x)$ is valid for each point $x \in \mathbf{R}$.

As a straightforward consequence of Theorem 2, we obtain that any standard linear function $f: \mathbf{R} \to \mathbf{R}$ of the form

$$f(x) = ax \quad (x \in \mathbf{R}),$$

where $a \in \mathbf{R}$, can be represented as the sum of two additive functions whose graphs are extremely thick subsets of \mathbf{R}^2 .

Theorems 1 and 2 are applicable to certain measure extension problems. The formulation of those problems goes back to Banach and Marczewski (see, e.g., [2–5,7,8,11,12]). Sometimes, it is more convenient to reformulate measure extension problems of this kind in terms of universally extendable σ -algebras (see Example 3). The next statement illustrates such an approach.

Theorem 3. Let $\{\mathcal{L}_i : i \in I\}$ be a family of σ -algebras of subsets of \mathbf{R} . Then the following three relations are equivalent:

- (1) there exists a function $f : \mathbf{R} \to \mathbf{R}$ which is absolutely nonmeasurable with respect to $\{\mathcal{L}_i : i \in I\}$, i.e., for each $i \in I$, this f is not \mathcal{L}_i -measurable;
- (2) there exist two countably generated and universally extendable σ -algebras \mathcal{G}_1 and \mathcal{G}_2 of subsets of **R** such that, for each $i \in I$, we have $\mathcal{G}_1 \cup \mathcal{G}_2 \not\subset \mathcal{L}_i$;
- (3) there exists a countably generated σ -algebra $\mathscr G$ of subsets of $\mathbf R$ such that $\mathscr B(\mathbf R) \subset \mathscr G$ and, for any $i \in I$, we have $\mathscr G \subset \mathscr L_i$.

Proof. (1) \Rightarrow (2). Let $f : \mathbf{R} \to \mathbf{R}$ satisfy relation (1). By virtue of Theorem 1, this f can be represented in the form $f = f_1 + f_2$, where both functions $f_1 : \mathbf{R} \to \mathbf{R}$ and $f_2 : \mathbf{R} \to \mathbf{R}$ have extremely thick graphs in \mathbf{R}^2 . Let us put:

$$\mathcal{S}_1 = \{ Z'_{f_1} : Z \in \mathcal{B}(\mathbf{R}^2) \}, \quad \mathcal{S}_2 = \{ Z'_{f_2} : Z \in \mathcal{B}(\mathbf{R}^2) \}.$$

Both σ -algebras \mathscr{S}_1 and \mathscr{S}_2 are countably generated and universally extendable (cf. Example 3). Consider now the σ -algebra $\mathscr{S} = \sigma(\mathscr{S}_1 \cup \mathscr{S}_2)$ which also is countably generated and contains $\mathscr{B}(\mathbf{R})$. Clearly, the functions f_1 and f_2 are \mathscr{S} -measurable. Therefore, $f = f_1 + f_2$ is \mathscr{S} -measurable, too. Consequently, we may write $f^{-1}(\mathscr{B}(\mathbf{R})) \subset \mathscr{S}$. But this inclusion immediately implies that $\mathscr{S}_1 \cup \mathscr{S}_2 \not\subset \mathscr{L}_i$ for any $i \in I$, i.e., relation (2) holds.

- $(2) \Rightarrow (3)$. This implication is trivial.
- $(3) \Rightarrow (1)$. Suppose that $\mathscr S$ satisfies relation (3). It is easy to see that there exists a countable family $\{X_n : n < \omega\} \subset \mathscr S$ separating the points of $\mathbf R$ and generating $\mathscr S$. For

any $n < \omega$ and for each point $x \in \mathbf{R}$, let us define: $f_n(x) = 1$ if $x \in X_n$ and $f_n(x) = 0$ if $x \in \mathbf{R} \setminus X_n$. So we get the injective Marczewski function

$$f: \mathbf{R} \to \{0, 1\}^{\omega}$$

where $f = \{f_n : n < \omega\}$. Since the Cantor space $\{0, 1\}^{\omega}$ is topologically contained in **R**, we may treat f as a function acting from **R** into **R**. This function has the property that

$$f^{-1}({t \in {0, 1}}^{\omega} : t_n = 1)) = X_n \quad (n < \omega),$$

whence it follows that $f^{-1}(\mathcal{B}(\mathbf{R})) = \mathcal{S}$ and, consequently, for any $i \in I$, the function f cannot be \mathcal{L}_i -measurable. This shows that relation (1) holds for f.

The theorem has thus been proved. \Box

Remark 1. Let \mathscr{L} be a σ -algebra of subsets of **R**. We shall say that \mathscr{L} is admissible if all singletons in **R** belong to \mathscr{L} and there exists at least one nonzero σ -finite continuous measure μ with $dom(\mu) = \mathscr{L}$.

Let $\{\mathscr{L}_i: i\in I\}$ denote the family of all admissible σ -algebras of subsets of \mathbf{R} . Then assertion (1) of Theorem 3 is not deducible within **ZFC** theory. Indeed, if \mathbf{c} is a real-valued measurable cardinal (i.e., is measurable in the Ulam sense [13]), then there exists a measure v on \mathbf{R} extending λ and defined on the power set $\mathscr{P}(\mathbf{R})$. In this case, we have $\mathscr{P}(\mathbf{R}) \in \{\mathscr{L}_i: i\in I\}$ and it is evident that there are no functions acting from \mathbf{R} into \mathbf{R} and absolutely nonmeasurable with respect to $\{\mathscr{L}_i: i\in I\}$. On the other hand, the existence of such functions is implied by certain additional set-theoretical assertions (e.g., the Continuum Hypothesis or Martin's Axiom).

By using Theorem 2, one can obtain (within **ZFC**) a result similar to Theorem 3, in terms of translation-invariant and translation-quasi-invariant extensions of λ .

Recall that a measure μ on **R** defined on some translation-invariant σ -algebra of subsets of **R** is translation-quasi-invariant if the family of all μ -measure zero sets is preserved under the action of the group of all translations of **R**. Clearly, this property of μ is much weaker than the standard translation-invariance property.

For our further purposes, three auxiliary propositions are needed.

Lemma 1. There exists an additive function $f: \mathbf{R} \to \mathbf{R}$ which is absolutely nonmeasurable with respect to the class of all nonzero σ -finite translation-quasi-invariant measures on \mathbf{R} . In other words, there is no nonzero σ -finite translation-quasi-invariant measure μ on \mathbf{R} such that f is μ -measurable.

Proof. We recall that a subset X of \mathbf{R} is universal measure zero if, for any σ -finite continuous Borel measure μ on \mathbf{R} , the equality $\mu^*(X) = 0$ holds true. It is well known that there exist uncountable universal measure zero subsets of \mathbf{R} (see, e.g., [3,9,11,12]). Moreover, there are uncountable universal measure zero vector subspaces (over \mathbf{Q}) of \mathbf{R} (see, for instance [9] where a much stronger result is presented). Let V be an uncountable vector subspace (over \mathbf{Q}) of \mathbf{R} which simultaneously is universal measure zero. Obviously, there exists a surjective homomorphism $f: \mathbf{R} \to V$, which can be regarded as an additive function acting from \mathbf{R} into itself. We assert that f is absolutely nonmeasurable with respect to the class

of all nonzero σ -finite translation-quasi-invariant measures on **R**. To show this, suppose otherwise, i.e., suppose that f is μ -measurable for some nonzero σ -finite translation-quasi-invariant measure μ on **R**. We may assume, without loss of generality, that μ is a probability measure. Let us put

$$v(Y) = \mu(f^{-1}(Y)) \quad (Y \in \mathcal{B}(\mathbf{R})).$$

Clearly, v is a Borel probability measure on \mathbf{R} such that $v^*(V) = 1$. The uncountability of V and the translation-quasi-invariance of μ imply $\mu(f^{-1}(y)) = 0$ for each $y \in \mathbf{R}$ and, consequently, v is a continuous measure. But V is universal measure zero, so we must have $v^*(V) = 0$ contradicting the equality $v^*(V) = 1$. The obtained contradiction ends the proof. \square

Below, the symbol $T (=S_1 \subset \mathbb{R}^2)$ denotes the one-dimensional unit torus regarded as a compact commutative group equipped with its probability Haar measure.

Lemma 2. Let $\phi : \mathbf{R} \to \mathbf{T}$ be the canonical surjective homomorphism defined by the formula

$$\phi(x) = (\cos(x), \sin(x)) \quad (x \in \mathbf{R}).$$

The following two assertions are valid:

- (1) if the graph of a function $g : \mathbf{R} \to \mathbf{R}$ is extremely thick in \mathbf{R}^2 , then the graph of $\phi \circ g$ is extremely thick in $\mathbf{R} \times \mathbf{T}$;
- (2) if $f: \mathbf{R} \to \mathbf{R}$ is as in the proof of Lemma 1, then $\phi \circ f$ is absolutely nonmeasurable with respect to the class of all nonzero σ -finite translation-quasi-invariant measures on \mathbf{R} .

Lemma 3. Let \mathcal{S}_1 and \mathcal{S}_2 be any two translation-invariant σ -algebras of subsets of \mathbf{R} . Then the σ -algebra $\mathcal{S} = \sigma(\mathcal{S}_1 \cup \mathcal{S}_2)$ is also translation-invariant.

We omit easy proofs of Lemmas 2 and 3.

Theorem 4. There exist two countably generated, universally extendable, translation-invariant σ -algebras \mathcal{G}_1 and \mathcal{G}_2 of subsets of **R** satisfying the following relations:

- (1) there is a translation-invariant measure μ_1 which extends λ and whose domain coincides with \mathcal{L}_1 ;
- (2) there is a translation-invariant measure μ_2 which extends λ and whose domain coincides with \mathcal{L}_2 ;
- (3) there exists no translation-quasi-invariant measure extending λ and defined on the σ -algebra $\mathcal{S} = \sigma(\mathcal{S}_1 \cup \mathcal{S}_2)$.

Proof. Let $f : \mathbf{R} \to \mathbf{R}$ be as in the proof of Lemma 1. According to Theorem 2, f can be represented in the form $f = f_1 + f_2$, where $f_1 : \mathbf{R} \to \mathbf{R}$ and $f_2 : \mathbf{R} \to \mathbf{R}$ are additive

functions whose graphs are extremely thick in ${\bf R}^2$. Let $\phi:{\bf R}\to{\bf T}$ be as in Lemma 2. We define:

$$h = \phi \circ f$$
, $h_1 = \phi \circ f_1$, $h_2 = \phi \circ f_2$.

Obviously, $h = h_1 + h_2$. In view of assertion (1) of Lemma 2, the homomorphisms h_1 and h_2 have extremely thick graphs in the product space $\mathbf{R} \times \mathbf{T}$. Denoting by $\mathcal{B}(\mathbf{R} \times \mathbf{T})$ the Borel σ -algebra of $\mathbf{R} \times \mathbf{T}$, let us put:

$$\mathcal{S}_1 = \{Z'_{h_1} : Z \in \mathcal{B}(\mathbf{R} \times \mathbf{T})\}, \quad \mathcal{S}_2 = \{Z'_{h_2} : Z \in \mathcal{B}(\mathbf{R} \times \mathbf{T})\}.$$

The σ -algebras \mathcal{S}_1 and \mathcal{S}_2 are the required ones. Indeed, applying the measure extension construction to $\lambda \otimes v$, where v is the Haar probability measure on \mathbf{T} , we infer that h_1 and h_2 become measurable with respect to appropriate translation-invariant extensions μ_1 and μ_2 of λ such that $dom(\mu_1) = \mathcal{S}_1$ and $dom(\mu_2) = \mathcal{S}_2$ (cf. [7]). It suffices only to verify that $\mathcal{S} = \sigma(\mathcal{S}_1 \cup \mathcal{S}_2)$ does not admit a translation-quasi-invariant extension of λ (note that, by virtue of Lemma 3, \mathcal{S} is a translation-invariant σ -algebra of subsets of \mathbf{R}). Suppose otherwise, i.e., suppose that there exists a translation-quasi-invariant measure μ on \mathbf{R} extending λ and satisfying the equality $dom(\mu) = \mathcal{S}$. Then the homomorphism $h = h_1 + h_2$ becomes measurable with respect to μ . But this yields a contradiction with assertion (2) of Lemma 2. The contradiction obtained completes the proof. \square

Remark 2. Under some additional set-theoretical assumptions (e.g., assuming that there exists a generalized Luzin subset of **R**), Theorem 4 can be essentially strengthened. Namely, the countably generated σ -algebras \mathcal{S}_1 and \mathcal{S}_2 can be chosen so that both of them admit translation-invariant extensions of λ but the σ -algebra $\mathcal{S} = \sigma(\mathcal{S}_1 \cup \mathcal{S}_2)$ does not admit a nonzero σ -finite continuous measure. For more details, see [6].

The main results of the first version of this paper were formulated and proved in terms of functions with λ_2 -thick graphs and extensions of λ . The referee kindly informed the author that the corresponding proofs work in a more general situation, in terms of functions with extremely thick graphs and universally extendable σ -algebras. The author is very grateful to the referee for his valuable remarks and suggestions.

References

- [1] B.R. Gelbaum, J.M.H. Olmsted, Counterexamples in Analysis, Holden-Day, San Francisco, 1964.
- [2] E. Grzegorek, Remarks on σ -fields without continuous measures, Colloq. Math. 39 (1978) 73–75.
- [3] E. Grzegorek, Solution of a problem of Banach on σ-fields without continuous measures, Bull. Acad. Polon. Sci., Ser. Sci. Math. 28 (1980) 7–10.
- [4] S. Kakutani, J.C. Oxtoby, Construction of a non-separable invariant extension of the Lebesgue measure space, Ann. Math. 52 (1950) 580–590.
- [5] A.B. Kharazishvili, Invariant Extensions of the Lebesgue Measure, Izd. Tbil. Gos. Univ., Tbilisi, 1983 (Russian).
- [6] A.B. Kharazishvili, On absolutely nonmeasurable additive functions, Georgian Math. J. 11 (2) (2004) 301–306.
- [7] K. Kodaira, S. Kakutani, A non-separable translation-invariant extension of the Lebesgue measure space, Ann. Math. 52 (1950) 574–579.

- [8] A. Pelc, K. Prikry, On a problem of Banach, Proc. Amer. Math. Soc. 89 (4) (1983) 608-610.
- [9] W.F. Pfeffer, K. Prikry, Small spaces, Proc. London Math. Soc. 58 (3) (1989) 417–438.
- [10] W. Sierpiński, Sur un probléme concernant les ensembles mesurables superficiellement, Fund. Math. 1 (1920) 112–115.
- [11] E. Szpilrajn (Marczewski), Sur l'extension de la mesure lebesguienne, Fund. Math. 25 (1935) 551–558.
- [12] E. Szpilrajn (Marczewski), On problems of the theory of measure, Usp. Mat. Nauk 1 (2(12)) (1946) 179–188 (Russian).
- [13] S. Ulam, Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math. 16 (1930) 140–150.