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Abstract

We consider some properties of those functions acting from the real line R into itself, whose graphs
are extremely thick subsets of the Euclidean plane RZ. The structure of sums of such functions is
studied and the obtained results are applied to certain measure extension problems.
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Let R (=R!) denote the real line and let A (=1;) be the standard Lebesgue measure on
R (we consider 4 only on the Borel o-algebra Z(R) of R). It is well known that there
exists a function f : R — R whose graph Gr(f) is thick in the plane R? with respect
to the two-dimensional Lebesgue measure 4, = 4 ® 4 on R2. In other words, for such an
f, the equality (12),(R*\Gr(f)) = 0 holds true, where (1), denotes, as usual, the inner
measure associated with 4;.

Recall that the first example of a function with A,-thick graph was constructed by
Sierpiriski with the aid of the method of transfinite recursion (see [1,10]). Functions of
this type should be treated as pathological ones from the measure-theoretical and
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topological viewpoint, because they are nonmeasurable with respect to the completion of
A and are discontinuous everywhere on R. Besides, the set Gr(f) C R? is nonmeasurable
with respect to the completion of ;.

However, even for such pathological functions certain positive properties can be es-
tablished. For instance, it turns out that any f : R — R with 1;-thick graph becomes
measurable with respect to an appropriate extension of 1. In this paper, we are going to
present a nontrivial application of functions with thick graphs to some particular versions
of the general measure extension problem.

The notation used in the paper is fairly standard.

If Eis aset and & is a family of subsets of E, then the symbol ¢(&’) denotes the g-algebra
in E generated by &.

If 1 is a measure on E, then dom() stands for the o-algebra of all y-measurable sets.

u* denotes the outer measure associated with a given measure u.

1, denotes the inner measure associated with a given measure p.

o stands for the first infinite cardinal number and ¢ stands for the cardinality of the
continuum.

Let E be a set and let & be a family of subsets of E. We shall say that a set G C E is
&-thickin Eif GNZ # (forevery Z € &.

Example 1. Let E be equipped with a o-finite measure y and let & = {Z € dom(w) :
w(Z)>0}. Then any &-thick set X is usually called a p-thick subset of E. Clearly, the
u-thickness of a set X C E is equivalent to the equality u, (E\X) =0.

If E =R and X is a Bernstein subset of E (see, e.g., [1]), then both sets X and E\ X are
u-thick for any nonzero o-finite continuous (i.e., vanishing at all singletons) Borel measure
u on E, whence it follows that both X and E\ X are nonmeasurable with respect to the
completion of p.

Example 2. Let E; and E, be two separable metric spaces equipped with their Borel
o-algebras #(E1) and #(E3), respectively. Consider the product space E = E| x Ej.
Obviously, we have Z(E) = #(E1) @ #(E>). Let us put

E=1{Z € B(E) : card(pr(2)) > w}.

We shall say that a set G C E is extremely thick if G is &-thick in E.

Let u be an arbitrary o-finite Borel measure on E such that the produced marginal measure
U defined by

p(X) = p(X x Ez) (X € B(E1)

is continuous. In this case, one can easily see that any extremely thick subset G of E is
u-thick as well.

Below, one important method of extending measures will be essentially used (cf., for
instance [7]).

Let (E1, o/1) and (E,, .o/2) be two measurable spaces,  be a o-finite measure on the
product g-algebra .o/ ® .o/ and let g : E{ — E3 be a mapping whose graph G = Gr(g)



A.B. Kharazishvili / Expo. Math. 27 (2009) 161—-169 163

is u-thick in the product space E = E| x E;. Foreach set Z € o/| ® .o/», we put
Zg, ={x € E;:(x,gix)) € Z)}

and introduce the class of sets
VQ//lz{Zig:Ze,sz/uXJ&/z}.

Further, we define
H(Zy) = u(Z) (Zy € ).

It is not difficult to verify the validity of the following relations:

(1) &//1 is a g-algebra of subsets of E| containing .o/ 1;

(2) the functional yt] is well defined on .2/ and is a measure extending the marginal measure
uy on 271 produced by y; in particular, if 4 = v; ® v and v, is a probability measure
on <7, then ,u’l turns out to be an extension of vy;

(3) the mapping g is (.22, .o/ )-measurable, i.e., for any Y € .75, we have g i) e .

Example 3. As in Example 2, let £ and E» be two separable metric spaces equipped with
their Borel g-algebras .&/1 = #(E1) and .«/» = #(E3), respectively. Consider the product
space E = E1 x E, equipped with its Borel g-algebra Z(E) = o/1 ® /.

Let .7 be a o-algebra of subsets of E; such that Z#(E1) C .o/. We shall say that .7 is
universally extendable if every o-finite continuous Borel measure on E; can be extended
to a measure defined on .o7.

Let g : E1 — E; be a mapping. It directly follows from Example 2 and the above-
mentioned relations (1)—(3) that if G = Gr(g) is extremely thick in E, then the g-algebra
/'| is universally extendable.

The introduced concepts of an extremely thick set and of a universally extendable o-
algebra will be applied in the concrete situation where E1 = E; =R and R is equipped with
its Borel g-algebra Z(R).

The following statement may be regarded as a far going generalization of Sierpinski’s
result which was pointed out in the beginning of the paper.

Theorem 1. Let f : R — R be an arbitrary function. There exist functions fi : R — R
and fy : R — R such that f = fi + f» and both sets Gr( f1) and Gr(f2) are extremely
thick in the plane R?.

Proof. We argue by the method of transfinite induction. Let o be the least ordinal number
of cardinality ¢. Let {Z, =5, Z3} be a partition of [0, «[ such that

card(Z1) = card(Zy) = card(E3) = c.
Further, let {B: : £ € E1}, {B; : ¢ € &2} and {B; : { € E3} be three families of Borel

subsets of R? satisfying the following conditions:

(a) card(pry(B¢)) >  for all ordinals ¢ € 51 U &p;
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(b) any Borel set B C R? with card(pr 1(B)) > w belongs to the intersection {B: : ¢ €
EyN{Bs: L€ mk
(©) Bs = R? for every ordinal ¢ € Z3.

Let < be some well-ordering of R which is isomorphic to «.

We will construct by the method of transfinite recursion an a-sequence {x¢ : { <a} of
points of R and two corresponding a-sequences of values { f1(x¢) : ¢ <a)and { Saxe) -
E<al.

Suppose that, for an ordinal ¢ < «, the partial é-sequences

{xe: (<&} i) (<), {falxp): (<

have already been defined. Consider three possible cases.

1. £ € E;. In this case, taking into account that pr(B¢) is an uncountable analytic set
in R, we have card(pr(B;)) = c¢. So there exists a point x € pri(Bo)\{x; : { <}.
Consequently, (x, y) € B¢ for some point y € R. We put:

xg=x, fixa)=y, falxg)= flxe)— filxe).

2. ¢ € Ep. Similarly to the previous case, there exists a point x € pri(Be)\{x; : { <&}
and, consequently, (x, y) € B¢ for some point y € R. We put

xe=x, faxe)=y, [filxe)= flxe) — falxe).

3. ¢ € E3. In this case, let x be the least element (with respect to the well-ordering <) of
the nonempty set pri(Be)\{x; : { < &}. We put x¢ = x and define the values fi(x¢) and
Sf2(x¢) so that the equality

fxo) = filxe) + falxe)

is satisfied (obviously, there are many possibilities to do this).

Proceeding in such a manner, we come to the three a-sequences {x¢ : & <o}, {f1(x¢) :
¢ <o} and { Sa(xe) & <a}. In view of the described construction, the sets Gr(f;) and
Gr(f») are extremely thick in R?. It suffices only to show that R = {x¢ : <o But this
equality holds true because of the relations )

card(E3) = ¢, (Vx € R)(card({y : y=<x}) <c¢).
Theorem 1has thus been proved. [l

An analogous argument enables to establish the following statement.

Theorem 2. Suppose that f : R — R is an arbitrary additive function (i.e., f is a ho-
momorphism of the additive group R into itself). Then there exist two additive functions
fi:R—=Rand f» : R = Rsuch that f = f1 + f» and both sets Gr( f1) and Gr( f2) are
extremely thick in R2.
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The scheme of the proof remains essentially the same as before. Namely, we construct
by the method of transfinite recursion a linearly independent (over the field Q of all rational
numbers) a-sequence {x¢ : & <o} of points of R with two corresponding o-sequences
{f1(xe) : & <o} and { fo(x¢) @ £ < o} such that

fxe) = filxe) + falxg) (E<a)

and then conclude that the vector space (over Q) generated by {x¢ : { < a} coincides with
the whole R, whence it follows that the equality f(x) = fi(x) + f>(x) is valid for each
point x € R.

As a straightforward consequence of Theorem 2, we obtain that any standard linear
function f : R — R of the form

f(x)=ax (x eR),

where a € R, can be represented as the sum of two additive functions whose graphs are
extremely thick subsets of R2.

Theorems 1 and 2 are applicable to certain measure extension problems. The formula-
tion of those problems goes back to Banach and Marczewski (see, e.g., [2-5,7,8,11,12]).
Sometimes, it is more convenient to reformulate measure extension problems of this kind in
terms of universally extendable g-algebras (see Example 3). The next statement illustrates
such an approach.

Theorem 3. Let {ZL; : i € I} be afamily of o-algebras of subsets of R. Then the following
three relations are equivalent:

(1) there exists a function f : R — R which is absolutely nonmeasurable with respect to
{&Li:iel},ie.,foreachi € I, this f is not ¥;-measurable;

(2) there exist two countably generated and universally extendable o-algebras &1 and 5>
of subsets of R such that, for eachi € I, we have 1 U %> ¢ Z;;

(3) there exists a countably generated c-algebra & of subsets of R such that #(R) C &
and, for any i € I, we have & ¢ ;.

Proof. (1) = (2). Let f : R — R satisfy relation (1). By virtue of Theorem 1, this f can be
represented in the form f = f1 + f>, where both functions f; : R - Rand /2 : R - R
have extremely thick graphs in R?. Let us put:

S\ =12} Z € BRD), Sr={Z},:Zc AR}

Both g-algebras %1 and .%; are countably generated and universally extendable (cf. Exam-
ple 3). Consider now the g-algebra & = (1 U.%,) which also is countably generated and
contains Z(R). Clearly, the functions f| and f, are &’-measurable. Therefore, f = f1 + f>
is .#-measurable, too. Consequently, we may write f~!(%4(R)) C .. But this inclusion
immediately implies that 1 U .%» ¢ ¥, foranyi € [, i.e., relation (2) holds.

(2) = (3). This implication is trivial.

(3) = (1). Suppose that & satisfies relation (3). It is easy to see that there exists a
countable family {X, : n <w} C .% separating the points of R and generating .. For
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any n < » and for each point x € R, let us define: f,(x) =1ifx € X,, and f,,(x) =0 if
x € R\ X,. So we get the injective Marczewski function

f:R = {0,1}%,

where f = {f, : n <w}. Since the Cantor space {0, 1}* is topologically contained in R,

we may treat f as a function acting from R into R. This function has the property that
e 0 =1 =Xy (n<o),

whence it follows that f~1(%(R)) = & and, consequently, for any i € I, the function f
cannot be #;-measurable. This shows that relation (1) holds for f.
The theorem has thus been proved. [l

Remark 1. Let # be a g-algebra of subsets of R. We shall say that % is admissible if
all singletons in R belong to .# and there exists at least one nonzero o-finite continuous
measure y with dom(u) = &.

Let {&; : i € I} denote the family of all admissible g-algebras of subsets of R. Then
assertion (1) of Theorem 3 is not deducible within ZFC theory. Indeed, if ¢ is a real-
valued measurable cardinal (i.e., is measurable in the Ulam sense [13]), then there exists
a measure v on R extending 4 and defined on the power set Z(R). In this case, we have
PR) € {&; i € I} and it is evident that there are no functions acting from R into
R and absolutely nonmeasurable with respect to {&; : i € I}. On the other hand, the
existence of such functions is implied by certain additional set-theoretical assertions (e.g.,
the Continuum Hypothesis or Martin’s Axiom).

By using Theorem 2, one can obtain (within ZFC) a result similar to Theorem 3, in terms
of translation-invariant and translation-quasi-invariant extensions of 4.

Recall that a measure u on R defined on some translation-invariant g-algebra of subsets
of R is translation-quasi-invariant if the family of all u-measure zero sets is preserved under
the action of the group of all translations of R. Clearly, this property of u is much weaker
than the standard translation-invariance property.

For our further purposes, three auxiliary propositions are needed.

Lemma 1. There exists an additive function f : R — R whichis absolutely nonmeasurable
with respect to the class of all nonzero o-finite translation-quasi-invariant measures on R.
In other words, there is no nonzero o-finite translation-quasi-invariant measure | on R
such that f is pu-measurable.

Proof. We recall that a subset X of R is universal measure zero if, for any g-finite continuous
Borel measure ;1 on R, the equality p*(X) = 0 holds true. It is well known that there exist
uncountable universal measure zero subsets of R (see, e.g., [3,9,11,12]). Moreover, there
are uncountable universal measure zero vector subspaces (over Q) of R (see, for instance
[9] where a much stronger result is presented). Let V be an uncountable vector subspace
(over Q) of R which simultaneously is universal measure zero. Obviously, there exists a
surjective homomorphism f : R — V, which can be regarded as an additive function acting
from R into itself. We assert that f is absolutely nonmeasurable with respect to the class
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of all nonzero o-finite translation-quasi-invariant measures on R. To show this, suppose
otherwise, i.e., suppose that fis u-measurable for some nonzero o-finite translation-quasi-
invariant measure ¢ on R. We may assume, without loss of generality, that u is a probability
measure. Let us put

v(Y)=p(f7'(Y) (Y € BR)).

Clearly, v is a Borel probability measure on R such that v*(V) = 1. The uncountability
of V and the translation-quasi-invariance of x imply u(f~'(y)) = 0 for each y € R and,
consequently, v is a continuous measure. But V is universal measure zero, so we must
have v*(V) = 0 contradicting the equality v*(V) = 1. The obtained contradiction ends the
proof. O

Below, the symbol T (=S; C R?) denotes the one-dimensional unit torus regarded as a
compact commutative group equipped with its probability Haar measure.

Lemma 2. Let ¢ : R — T be the canonical surjective homomorphism defined by the
formula

¢(x) = (cos(x), sin(x)) (x € R).

The following two assertions are valid:

(1) if the graph of a function g : R — R is extremely thick in R?, then the graph of ¢ o g
is extremely thick in R x T;

(2) if f : R — Ris as in the proof of Lemma 1, then ¢ o f is absolutely nonmeasurable
with respect to the class of all nonzero o-finite translation-quasi-invariant measures on
R.

Lemma 3. Ler &1 and 9 be any two translation-invariant c-algebras of subsets of R.
Then the g-algebra & = a(S1 U ¥») is also translation-invariant.

We omit easy proofs of Lemmas 2 and 3.

Theorem 4. There exist two countably generated, universally extendable, translation-
invariant g-algebras 1 and %> of subsets of R satisfying the following relations:

(1) thereis a translation-invariant measure u; which extends ). and whose domain coincides
with ¥ 1;

(2) there is a translation-invariant measure [, which extends /. and whose domain coincides
with &»;

(3) there exists no translation-quasi-invariant measure extending A and defined on the o-
algebra & = o(S1 U S).

Proof. Let f : R — R be as in the proof of Lemma 1. According to Theorem 2, f can be
represented in the form f = f; + f>, where f; : R - Rand f> : R — R are additive
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functions whose graphs are extremely thick in R?. Let ¢ : R — T be as in Lemma 2. We
define:

h=¢of, hi=¢ofi, ha=¢o fr

Obviously, h = h1 + h»>. In view of assertion (1) of Lemma 2, the homomorphisms /1 and
h> have extremely thick graphs in the product space R x T. Denoting by Z(R x T) the
Borel g-algebra of R x T, let us put:

S =12, Ze BRXT)), S2=1{Z}, :Zc BRxT).

The g-algebras .1 and .9, are the required ones. Indeed, applying the measure extension
construction to A ® v, where v is the Haar probability measure on T, we infer that /| and A5
become measurable with respect to appropriate translation-invariant extensions y; and i,
of A such that dom(u,) = &1 and dom(p,) = % (cf. [7]). It suffices only to verify that & =
(%1 U S,) does not admit a translation-quasi-invariant extension of 4 (note that, by virtue
of Lemma 3, .% is a translation-invariant g-algebra of subsets of R). Suppose otherwise,
i.e., suppose that there exists a translation-quasi-invariant measure x4 on R extending 4
and satisfying the equality dom(u) = .%°. Then the homomorphism # = A1 4 hy becomes
measurable with respect to u. But this yields a contradiction with assertion (2) of Lemma
2. The contradiction obtained completes the proof. [

Remark 2. Under some additional set-theoretical assumptions (e.g., assuming that there
exists a generalized Luzin subset of R), Theorem 4 can be essentially strengthened. Namely,
the countably generated g-algebras %’ and %, can be chosen so that both of them admit
translation-invariant extensions of 4 but the g-algebra & = o(¥1 U %») does not admit a
nonzero o-finite continuous measure. For more details, see [6].

The main results of the first version of this paper were formulated and proved in terms of
functions with A;-thick graphs and extensions of 4. The referee kindly informed the author
that the corresponding proofs work in a more general situation, in terms of functions with
extremely thick graphs and universally extendable g-algebras. The author is very grateful
to the referee for his valuable remarks and suggestions.
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