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a b s t r a c t

It is proved that, for every natural number k ≥ 2, there exist k
subsets of the real line such that any k − 1 of them can be made
measurablewith respect to a translation-invariant extension of the
Lebesgue measure, but there is no nonzero σ -finite translation-
quasi-invariant measure for which all of these k subsets become
measurable. In connection with this result, a related open problem
is posed.

© 2010 Elsevier GmbH. All rights reserved.

Let E be a base set and let µ be a nonzero σ -finite measure defined on some σ -algebra of subsets
of E. The general measure extension problem is to extend the given µ to a maximally wide class of
subsets of E. If µ is continuous (i.e., µ({x}) = 0 for all x ∈ E), then this problem turns out to be closely
connected with the theory of large cardinals and additional set-theoretical axioms.

For example, suppose that E coincides with the real line R and µ coincides with the standard one-
dimensional Lebesgue measure λ on this line. Then, as is well known (see, e.g., [8,14]), the following
two assertions are equivalent:

(1) there exists an extension of λ defined on the family of all subsets of R;
(2) there exists a nonzero σ -finite continuous measure defined on the family of all subsets of R.
On the other hand, according to the classical result of Ulam [14], if the cardinality of the continuum

c = card(R) is strictly less than the first uncountable weakly inaccessible cardinal, then there exists
no nonzero σ -finite continuous measure defined on the family of all subsets of R. Moreover, under
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Martin’s Axiom, there are countably many sets {Z1, Z2, . . . , Zk, . . .} contained in R and such that no
nonzero σ -finite continuous measure ν on R can make all these sets to be measurable with respect
to ν.

Let E be a base set, µ be a σ -finite measure defined on some σ -algebra of subsets of E, and let
{X1, X2, . . . , Xk} be a finite family of subsets of E. It is well known that there always exists ameasureµ′

on E extending µ and such that all sets X1, X2, . . . , Xk are µ′-measurable. In contrast to this situation,
if the original measure µ is invariant under a group G of transformations of E, then we cannot assert,
in general, that there exists an extension µ′ of µ which also is invariant under G and for which all
given sets X1, X2, . . . , Xk areµ′-measurable. Even for k = 1, it may happen that the single set X1 turns
out to be nonmeasurable with respect to every G-invariant extension of µ.

For instance, if E again coincides with the real line R and µ = λ, then the classical construction
of Vitali [15] yields a set V ⊂ R which is nonmeasurable with respect to every translation-invariant
extension of λ (or, in other words, V turns out to be absolutely nonmeasurable with respect to the
class of all translation-invariant extensions of λ).

At the same time, it was established by several authors that there are many subsets of R which
become measurable with respect to certain translation-invariant extensions of λ (see, e.g., [1–7,9,13,
16]). Moreover, it was proved that there exists even a nonseparable translation-invariant extension ν
of λ (see [2,3,5,7]). Clearly, the domain of such a ν contains in itself a rich class of subsets of R which
are not measurable with respect to λ.

Some delicate problems of the theory of translation-invariant extensions of λ were discussed in
the literature (see, for instance, [1,5,6,9,13,16]). One of the problems of this type will be considered
below. It is of a certain combinatorial character.

We shall use the following fairly standard notation:
ω = the set of all natural numbers (and, simultaneously, the cardinality of this set);
ω1 = the least uncountable cardinal number;
Q = the field of all rational numbers;
R = the real line;
c = the cardinality of the continuum;
Rn

= the n-dimensional Euclidean space (so R = R1);
dom(µ) = the domain of a given σ -finite measure µ (i.e., the σ -algebra of all µ-measurable sets);
λ = the one-dimensional Lebesgue measure on R;
λn = the n-dimensional Lebesgue measure on Rn (so λ1 = λ).
First of all, we would like to recall the following fact.

Example 1. In [4] two sets A1 ⊂ R and A2 ⊂ R were constructed, which satisfy the following
conditions:

(1) there exists a translation-invariant extension µ1 of λ such that µ1(A1) = 0;
(2) there exists a translation-invariant extension µ2 of λ such that µ2(A2) = 0;
(3) there exists no nonzero σ -finite translation-invariant measure ν on R such that both sets A1

and A2 are ν-measurable.
Actually, it was demonstrated in [4] that, for any nonzero σ -finite translation-invariant measure

µ on R, the set A1 ∪ A2 is nonmeasurable with respect to µ.

The natural question arises whether it is possible to generalize the above-mentioned Example 1 to
the case of several subsets of the real line. Themain goal of this paper is to establish an analogous result
for finitely many subsets A1, A2, . . . , Ak of R, where k is an arbitrary natural number greater than 2. In
fact, it will be shown below that by combining techniques of Hamel bases with the argument used in
the proof of an old theorem of Sierpiński [10] concerning a certain logical equivalent of the Continuum
Hypothesis, one can get a positive answer to this question.

Let E be a base set, G be a group of transformations of E, and let µ be a σ -finite measure defined
on some G-invariant σ -algebra of subsets of E. We recall that µ is G-quasi-invariant if, for any g ∈ G
and X ∈ dom(µ), the relation

µ(X) = 0 ⇔ µ(g(X)) = 0

holds true.
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Obviously, the quasi-invariance of measures is a much weaker property than the ordinary
invariance of measures.

In what follows, we need one notion from the theory of quasi-invariant measures.
Let E be again a base set and let G be a group of transformations of E. We recall (see, e.g., [5] or [6])

that a set X ⊂ E is G-negligible in E if the following two conditions are satisfied:
(a) there exists a nonzero σ -finite G-quasi-invariant measure µ0 on E such that X ∈ dom(µ0);
(b) for any σ -finite G-quasi-invariant measure µ on E, we have the implication

X ∈ dom(µ) ⇒ µ(X) = 0.

Some properties of G-negligible sets are discussed in [4–6]. In particular, the following auxiliary
proposition is formulated therein.

Lemma 1. Let (Γ1, +) and (Γ2, +) be two commutative groups and suppose that φ : Γ1 → Γ2 is a
surjective homomorphism. If Y is a Γ2-negligible subset of Γ2, then X = φ−1(Y ) is a Γ1-negligible subset
of Γ1.

The proof of Lemma 1 follows directly from the definition of negligible sets, so is omitted here
(cf. [6]). Notice by the way that the commutativity of the groups Γ1 and Γ2 is not essential in the
formulation of this lemma. However, below we will be dealing only with commutative groups (even
with vector spaces over Q), so the presented formulation is sufficient for our further purposes.

We also need some other auxiliary statements.

Lemma 2. Let (G, +) be a commutative group and let a nonempty set X ⊂ G be such that D + X ≠ G
for every countable set D ⊂ G. Denote by S the G-invariant σ -algebra of subsets of G, generated by X and
the family of all countable subsets of G. Then there exists a continuous G-invariant probability measure µ
on S satisfying the equality µ(X) = 0.

Further, let T be aσ -algebra of subsets of G and let ν be aσ -finitemeasure onT such that ν∗(D+X) =

0 for any countable set D ⊂ G. Let R denote the σ -algebra of subsets of G, generated by S ∪T . Then there
exists a unique σ -finite measure θ on R satisfying the relations:

(a) θ(Y ∩ Z) = µ(Y )ν(Z) for all Y ∈ S and Z ∈ T ;
(b) if T is G-invariant, then R is also G-invariant;
(c) if ν is G-invariant, then θ is also G-invariant;
(d) if ν is G-quasi-invariant, then θ is also G-quasi-invariant.

Proof. The first part of this lemma is almost trivial. Indeed, it immediately follows from the
assumption on X that the family of all those sets in G, which can be covered by countably many
translates of X , forms a G-invariant σ -ideal J. Each member of the σ -algebra S either belongs to J
or is the complement of a set belonging to J. Now, for any set Y ∈ S, put µ(Y ) = 0 if Y ∈ J, and
µ(Y ) = 1 if G \ Y ∈ J. It can easily be seen that the probability measure µ defined in this manner is
continuous and G-invariant.

To establish the second part of the lemma, consider the product measure ν ⊗ µ, the diagonal
∆ = {(g, g) : g ∈ G} ⊂ G × G and the canonical bijection φ : G → ∆ given by

φ(g) = (g, g) (g ∈ G).

Obviously, we have R = φ−1(T ⊗ S). Since µ is a two-valued probability measure and ν∗(Z) = 0 for
each Z ∈ S with µ(Z) = 0, we easily infer that ∆ is (ν ⊗ µ)-thick in G × G. As is well known, in this
case there exists a unique σ -finite measure θ on R satisfying the equality

(ν ⊗ µ)(P) = θ(φ−1(P)) (P ∈ T ⊗ S).

This equality directly implies relation (a). The relations (b), (c), and (d) are also readily verified. �

Lemma 3. Let (H, +) be a commutative group equipped with a σ -finite H-quasi-invariant measure µ
and let X be a µ-measurable subset of H. Then there exists a countable subgroup H ′ of H such that the set

X ′
= ∪{h′

+ X : h′
∈ H ′

}

is µ-almost H-invariant, i.e., for any h ∈ H, we have µ((h + X ′)△X ′) = 0.
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Proof. If µ(X) = 0, then there is nothing to prove. So let us consider the case when µ(X) > 0 (only
this case is of interest to us in what follows). Suppose to the contrary that there exists no countable
subgroup H ′ of H with the required property and define by transfinite recursion an increasing ω1-
sequence of µ-measurable subsets of H . Namely, put X0 = X . Assume that, for an ordinal ξ < ω1, the
partial ξ -sequence {Xζ : ζ < ξ} has already been defined in such a way that every set Xζ is of the
form

Xζ = ∪{hk,ζ + X : k < ω}

for some countable family {hk,ζ : k < ω} ⊂ H . Consider the set

Yξ = ∪{Xζ : ζ < ξ}.

Clearly, Yξ can be represented in a similar form (because ξ is a countable ordinal). According to our
assumption, there exists an element h ∈ H such that

µ((h + Yξ )△Yξ ) > 0,

which implies that either µ((h + Yξ ) \ Yξ ) > 0 or µ((−h + Yξ ) \ Yξ ) > 0. Now, let us put

Xξ = Yξ ∪ (h + Yξ ) ∪ (−h + Yξ ).

Proceeding in this manner, we get the ω1-sequence {Xξ : ξ < ω1} of µ-measurable sets, which
increases by inclusion and µ(Xξ+1 \ Xξ ) > 0 for every ordinal ξ < ω1. But the latter contradicts the
σ -finiteness of µ. The obtained contradiction ends the proof. �

Obviously, the assertion of Lemma 3 remains true in a more general situation where a σ -finite
measureµ is given on a base set E and thisµ is quasi-invariant under some groupG of transformations
of E (in short, G-quasi-invariant). Moreover, the argument presented above shows that the assertion
of the lemma holds true for any G-quasi-invariant measureµ on E which satisfies the countable chain
condition (in general, such a measure does not need to be σ -finite).

Below, having two commutative groups (G, +) and (H, +), wewill consider their direct sum G+H
which, in fact, may be identified with the product group G×H . Naturally, under such an identification
(G, +) is regarded as the subgroup G×{0} of G×H and (H, +) is regarded as the subgroup {0}×H of
G×H . Analogously, having several commutative groups (G1, +), (G2, +), . . . , (Gk, +), we will identify
their direct sum G1 + G2 + · · · + Gk with the product group G1 × G2 × · · · × Gk.

Lemma 4. Let (G, +) and (H, +) be two commutative groups and let card(H) > ω. Consider the direct
sum G + H. Let X be a subset of G + H such that card((g + H) ∩ X) < ω for each element g ∈ G. Then
X is a (G + H)-negligible subset of G + H.

Proof. It readily follows from the described property of X that, for every countable family {gi + hi :

i < ω} ⊂ G + H , the inequality

card((G + H) \ ∪{gi + hi + X : i < ω}) > ω

is valid. In view of Lemma 2, this implies that there exists a probability continuous (G + H)-invariant
measure µ0 on G + H such that X ∈ dom(µ0) and µ0(X) = 0.

Now, let µ be any σ -finite (G + H)-quasi-invariant measure on G + H such that X ∈ dom(µ). We
have to show thatµ(X) = 0. Suppose to the contrary thatµ(X) > 0. Since ourµ isH-quasi-invariant,
by virtue of Lemma 3 we can find a countable subgroup H ′ of H for which the set

X ′
= H ′

+ X = ∪{h′
+ X : h′

∈ H ′
}

turns out to be almost H-invariant with respect to µ, i.e., the equality

µ(X ′
△(h + X ′)) = 0

holds true for every h ∈ H . Taking into account this equality, we infer that, for any countable family
{hj : j < ω} ⊂ H , the relation

µ(∩{hj + X ′
: j < ω}) = µ(X ′) > 0
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is valid and, consequently,

∩{hj + X ′
: j < ω} ≠ ∅.

But, if a countable family {hj : j < ω} ⊂ H is chosen satisfying the condition

hj − hr ∉ H ′ (j ∈ J, r ∈ J, j ≠ r),

then, keeping in mind the definition of X , it is not difficult to verify that

∩{hj + X ′
: j < ω} = ∅,

which yields a contradiction with the said above. The obtained contradiction finishes the proof. �

Lemma 5. Let (G, ‖ · ‖) be a normed vector space over Q with card(G) > 1 and let {Bm : m < ω} be
a countable family of balls in G. Then there exists a disjoint countable family {Pj : j ∈ J} of subsets of G
satisfying the following relations:

(1) each set Pj is a translate of some ball Bm;
(2) for any ball Bm, there are infinitely many indices j ∈ J such that the set Pj is a translate of Bm.

We omit a simple proof of the above assertion (the required disjoint family {Pj : j ∈ J} can easily
be constructed by ordinary recursion).

Lemma 6. Let G ≠ {0} and H be two vector spaces over Q and let G + H be their direct sum. Suppose
that a set X ⊂ G+H is given such that the inequality card(X ∩ (g +H)) ≤ ω holds for every g ∈ G. Then
there exists a set Y ⊂ G + H satisfying the following conditions:

(a) card(Y ∩ (g + H)) ≤ 1 for every g ∈ G;
(b) X ⊂ ∪{gi + Y : i ∈ I} for some countable family {gi : i ∈ I} ⊂ G.

Proof. We may treat G as a normed vector space over Q. Indeed, denote by {zξ : ξ ∈ Ξ} any Hamel
basis of G. Each element g ∈ G admits a unique representation in the form g =

∑
{qξ zξ : ξ ∈ Ξ},

where all coefficients qξ belong to Q and only finitely many of them differ from zero. Putting

‖g‖ =

−
{|qξ | : ξ ∈ Ξ},

we get a norm on G.
For every natural number m > 0, let Bm = {g ∈ G : ‖g‖ ≤ m} denote the ball in G with center at

zero and with radius m. According to Lemma 5, there exists a disjoint countable family {Pj : j ∈ J} of
subsets of G satisfying the following relations:

(1) each set Pj is a G-translate of some ball Bm;
(2) for any ball Bm, there are infinitely many indices j ∈ J such that the set Pj is a G-translate of Bm.
Let J(m) denote the family of all those indices j ∈ J for which Pj is a G-translate of Bm, i.e., j ∈ J(m) if

and only if there exists an element gm,j ∈ G such that Pj = gm,j+Bm. Clearly, the sets J(m) (0 < m < ω)
are countably infinite, pairwise disjoint and their union coincides with J .

Consider the family of sets {X ∩ (Bm + H) : 0 < m < ω}. Obviously, we have

X = ∪{X ∩ (Bm + H) : 0 < m < ω}.

For any g ∈ Bm, the set X ∩ (g + H) is at most countable. This implies that X ∩ (Bm + H) can be
represented in the form

X ∩ (Bm + H) = ∪{Ym,j : j ∈ J(m)},

where card(Ym,j ∩ (g + H)) ≤ 1 for each j ∈ J(m) and for each g ∈ Bm. Now, we put

Y = ∪{gm,j + Ym,j : j ∈ J(m), 0 < m < ω}.

It is not difficult to check that the set Y satisfies the conditions (a) and (b) of the lemma, which
completes the proof. �
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Lemma 7. Let k ≥ 2 be a natural number and let (G, ‖ · ‖) be a vector space over Q representable in the
form of a direct sum

G = G1 + G2 + · · · + Gk,

where all Gi (i = 1, 2, . . . , k) are vector subspaces of G of cardinality ω1.
Then subsets Y1, Y2, . . . , Yk of G can be found such that:
(1) for each index i ∈ {1, 2, . . . , k}, the union Y1 ∪ · · · ∪ Yi−1 ∪ Yi+1 · · · ∪ Yk is a G-negligible set in G;
(2) there exists a countable family {gm : m < ω} of elements from G for which we have

∪{gm + (Y1 ∪ Y2 ∪ · · · ∪ Yk) : m < ω} = G.

Consequently, there is no nonzero σ -finite G-quasi-invariant measure ν on G such that all sets
Y1, Y2, . . . , Yk are ν-measurable.

Proof. The argument is based on some ideas of Sierpiński which he used in establishing the
equivalence of the Continuum Hypothesis to the existence of certain decompositions of R2 and R3

(see [10–12]).
Without loss of generality, we may suppose that the subspaces G1,G2, . . . ,Gk are well-ordered by

ordering relations which are isomorphic to ω1. So let

ξi : Gi → ω1 (i = 1, 2, . . . , k)

denote the corresponding isomorphisms. Consequently, if xi ∈ Gi, where i ∈ {1, 2, . . . , k}, then ξi(xi)
denotes the countable ordinal corresponding to xi with respect to the isomorphism ξi between Gi and
ω1.

In addition, we may assume that every Gi (i = 1, 2, . . . , k) is a normed vector space over Q (see
the proof of Lemma 6).

Now, let us consider the sets Xi (i = 1, 2, . . . , k) defined as follows:

Xi = {x1 + x2 + · · · + xk ∈ G : ξi(xi) = max(ξ1(x1), ξ2(x2), . . . , ξk(xk))}.

Clearly, we have

G = X1 ∪ X2 ∪ · · · ∪ Xk.

Furthermore, each set Xi possesses the following property: for any xi ∈ Gi, the set

Xi ∩ (G1 + · · · + Gi−1 + xi + Gi+1 + · · · + Gk)

is at most countable. Applying Lemma 6, we come to a family {Y1, Y2, . . . , Yk} of subsets of G such
that:

(a) each set Yi is uniform with respect to G1 + · · · + Gi−1 + Gi+1 + · · · + Gk, i.e., for any xi ∈ Gi, we
have

card(Yi ∩ (G1 + · · · + Gi−1 + xi + Gi+1 + · · · + Gk)) ≤ 1;

(b) each set Xi can be covered by a countable family of translates of Yi.
Notice now that relation (b) directly implies relation (2). It remains to show that relation (1) is also

true. Observe that, for each integer i ∈ [1, k] and for any element

x1 + · · · + xi−1 + xi+1 + · · · + xk ∈ G1 + · · · + Gi−1 + Gi+1 + · · · + Gk,

the set

(Y1 ∪ · · · ∪ Yi−1 ∪ Yi+1 ∪ · · · ∪ Yk) ∩ (x1 + · · · + xi−1 + Gi + xi+1 + · · · + xk)

consists of at most k − 1 elements. So, by virtue of Lemma 4, we conclude that the union Y1 ∪ · · · ∪

Yi−1 ∪ Yi+1 ∪ · · · ∪ Yk is G-negligible in G. Lemma 7 has thus been proved. �
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Lemma 8. For any natural numbers n ≥ 1 and k ≥ 2, the Euclidean space Rn can be represented in the
form of a direct sum

Rn
= G1 + G2 + · · · + Gk + H,

where all Gi (i = 1, 2, . . . , k) and H are vector spaces over Q and the following conditions are fulfilled:
(1) card(G1) = card(G2) = · · · = card(Gk) = ω1;
(2) card(H) = c;
(3) H is a λn-thick subset of Rn.

Proof. We use the technique of Hamel bases and the standard argument based on the method of
transfinite induction. Namely, we identify c with the first ordinal number of cardinality continuum
and denote by B the family of all Borel subsets of Rn having strictly positive λn-measure. Since
card(B) = c, we can represent B in the form {Bξ : ξ < c} where Bξ = Bξ+1 for all ordinals ξ < c.
Further, for any set T ⊂ Rn, denote by spanQ(T ) the linear span (over the rationals) of T . Obviously, the
relation card(T ) < c implies the relation card(spanQ(T )) < c. Taking this circumstance into account
and applying transfinite recursion, we are able to construct a family of points {xξ : ξ < c} ⊂ Rn such
that

xξ ∈ Bξ \ spanQ({xζ : ζ < ξ}) (ξ < c).

Let Ξ denote the set of all even ordinals strictly less than c and let Ξ ′ stand for the set of all odd
ordinals strictly less than c. Since card(Ξ) = c, there are pairwise disjoint subsets Ξ1, Ξ2, . . . , Ξk of
Ξ such that

card(Ξ1) = card(Ξ2) = · · · = card(Ξk) = ω1.

Now, let us put G′
= spanQ({xξ : ξ ∈ Ξ ′

}) and

Gi = spanQ({xξ : ξ ∈ Ξi}) (i = 1, 2, . . . , k).

Then G′ and all Gi (i = 1, . . . , k) are vector spaces over Q and

card(G1) = card(G2) = · · · = card(Gk) = ω1.

Moreover, keeping in mind that the family of points {xξ : ξ < c} is linearly independent over Q, we
infer that the sum G′

+ G1 + · · · + Gk is direct. Further, there exists a vector space F ⊂ Rn over Q
satisfying the relations

F ∩ (G′
+ G1 + · · · + Gk) = {0}, F + (G′

+ G1 + · · · + Gk) = Rn.

Denote H = F + G′. So we come to a representation of Rn in the form of a direct sum:

Rn
= G1 + G2 + · · · + Gk + H.

Since Bξ = Bξ+1 for any ordinal ξ < c, the family of points {xξ : ξ ∈ Ξ ′
} is λn-thick in Rn. Taking into

account the relations

{xξ : ξ ∈ Ξ ′
} ⊂ G′

⊂ H,

we conclude that H is also λn-thick, which proves Lemma 8. �

With the aid of the above-mentioned lemmas, we are able to obtain the two main statements of
this paper.

Theorem 1. Let n > 0 and k ≥ 2 be two natural numbers. Then subsets A1, A2, . . . , Ak of the Euclidean
space Rn can be found such that:

(1) for each index i ∈ {1, 2, . . . , k}, the set

A1 ∪ · · · ∪ Ai−1 ∪ Ai+1 ∪ · · · ∪ Ak

is Rn-negligible in Rn;



A.B. Kharazishvili / Expositiones Mathematicae 29 (2011) 150–158 157

(2) for each index i ∈ {1, 2, . . . , k}, there is a complete translation-invariant extension µi of λn
satisfying the equality

µi(A1 ∪ · · · ∪ Ai−1 ∪ Ai+1 ∪ · · · ∪ Ak) = 0

and, consequently, all sets A1, . . . , Ai−1, Ai+1, . . . , Ak turn out to be measurable with respect to µi;
(3) there exists no nonzero σ -finite translation-quasi-invariant measure µ on Rn for which all sets

A1, A2, . . . , Ak are µ-measurable.

Proof. Consider a representation of Rn in the form of a direct sum

Rn
= G1 + G2 + · · · + Gk + H,

where Gi (i = 1, 2, . . . , k) and H are as in Lemma 8. Denote

G = G1 + G2 + · · · + Gk

and let Y1, Y2, . . . , Yk be subsets of G as in Lemma 7. Further, define the sets

Ai = Yi + H (i = 1, 2, . . . , k).

In view of Lemmas 1 and 7, all sets

Bi = A1 ∪ · · · ∪ Ai−1 ∪ Ai+1 ∪ · · · ∪ Ak (i = 1, 2, . . . , k)

are Rn-negligible. Moreover, keeping in mind the λn-thickness of H , we readily derive that, for any
countable family {gm : m < ω} ⊂ Rn, the set∪{gm +Bi : m < ω} has inner λn-measure zero. Then the
standard construction of extending invariant measures (see, e.g., [1,2,5,9,13] or Lemma 2) enables us
to conclude that there exists a translation-invariant complete extensionµi of λn such thatµi(Bi) = 0,
so all sets A1, . . . , Ai−1, Ai+1, . . . , Ak become measurable with respect to µi. On the other hand, since
G can be covered by countably many G-translates of the set Y1 ∪ Y2 ∪ · · · ∪ Yk, the whole space Rn can
also be covered by countably many G-translates of the set A1 ∪ A2 ∪ · · · ∪ Ak. It easily follows from
the above-mentioned circumstance that there exists no nonzero σ -finite translation-quasi-invariant
measure µ on Rn such that

{A1, A2, . . . , Ak} ⊂ dom(µ).

This ends the proof of Theorem 1. �

Theorem 2. Let n > 0 and k ≥ 2 be two natural numbers. Then subsets C1, C2, . . . , Ck of the Euclidean
space Rn can be found such that:

(1) for each index i ∈ {1, 2, . . . , k}, the set Ci is Rn-negligible in Rn;
(2) for each index i ∈ {1, 2, . . . , k}, there is a complete translation-invariant extension µi of λn

satisfying the relation Ci ∈ dom(µi) and, consequently, the relation µi(Ci) = 0;
(3) if i and j are any two distinct indices from {1, 2, . . . , k}, then there exists no nonzero σ -finite

translation-quasi-invariant measure µ on Rn for which the sets Ci and Cj are µ-measurable.

Proof. We preserve the notation used in the proof of Theorem 1. Let us put

Ci = Bi (i ∈ {1, 2, . . . , k}).

We already know that each set Ci is Rn-negligible in Rn and there exists a complete translation-
invariant extension µi of λn such that µi(Ci) = 0. Further, for any two distinct indices i and j from
{1, 2, . . . , k}, we have

Ci ∪ Cj = A1 ∪ A2 ∪ · · · ∪ Ak.

Since the whole space Rn can be covered by countably many translates of the set A1 ∪ A2 ∪ · · · ∪ Ak,
we readily deduce that there is no nonzero σ -finite translation-quasi-invariant measure µ on Rn

satisfying the relation {Ci, Cj} ⊂ dom(µ). Theorem 2 has thus been proved. �

In connection with the obtained results, the following open combinatorial problem seems to be of
some interest.
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Problem. Let n ≥ 1, k > 2 and 0 < l < k be natural numbers. Prove (or disprove) that there is a
family {A1, A2, . . . , Ak} of subsets of Rn satisfying the following conditions:

(a) for any l-element subfamily of {A1, A2, . . . , Ak}, there exists a translation-invariant extension
of λn such that all members from the subfamily are measurable with respect to this extension;

(b) for any (l + 1)-element subfamily of {A1, A2, . . . , Ak}, there exists no nonzero σ -finite
translation-quasi-invariant measure on Rn whose domain contains this subfamily.

Example 2. Let us consider the Euclidean plane R2
= R × R and let a set X ⊂ R2 be such that

card(X ∩ ({t} × R)) < ω for all t ∈ R. Then, according to Lemma 4, X is R2-negligible in R2. At
the same time, there exists a set Z ⊂ R2 which satisfies the relation card(Z ∩ ({t}×R)) ≤ ω for every
t ∈ R, but which is not R2-negligible in R2 (see, for instance, [4] or [6] where a much stronger result
is presented).
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