Original article

On the cardinal number of the family of all invariant extensions of a nonzero σ-finite invariant measure

Alexander Kharazishvili
A. Razmadze Mathematical Institute I. Javakhishvili Tbilisi State University, 6 Tamarashvili st., Tbilisi 0177, Georgia

Available online 24 May 2016

Abstract

It is shown that, for any nonzero σ-finite translation invariant (translation quasi-invariant) measure μ on the real line \mathbf{R}, the cardinality of the family of all translation invariant (translation quasi-invariant) measures on \mathbf{R} extending μ is greater than or equal to $2^{\omega_{1}}$, where ω_{1} denotes the first uncountable cardinal number. Some related results are also considered. © 2016 Ivane Javakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Invariant measure; Quasi-invariant measure; Metrical transitivity; Nonseparable extension of measure; Ulam's transfinite matrix

Let E be a base (ground) set and let G be a group of transformations of E. The pair (E, G) is usually called a space equipped with a transformation group.

A measure μ defined on some G-invariant σ-algebra of subsets of E is called quasi-invariant with respect to G (briefly, G-quasi-invariant) if, for any μ-measurable set X and for any transformation g from G, the relation

$$
\mu(X)=0 \quad \Leftrightarrow \quad \mu(g(X))=0
$$

holds true. Moreover, if the equality $\mu(g(X))=\mu(X)$ is valid for any μ-measurable X and for any g from G, then μ is called an invariant measure with respect to G (briefly, G-invariant measure).

According to these definitions, the triplet of the form (E, G, μ) determines the structure of an invariant (quasiinvariant) measure on E.

Suppose that μ is a nonzero σ-finite G-invariant (G-quasi-invariant) measure on E. It is known that if a group G is uncountable and acts freely in E, then there always exist subsets of E nonmeasurable with respect to μ (see [1]; cf. also [2]). So the domain of μ differs from the family of all subsets of E, i.e., $\operatorname{dom}(\mu) \neq \mathcal{P}(E)$. In this connection, the natural question arises whether there exists a G-invariant (G-quasi-invariant) measure μ^{\prime} on E strongly extending μ. This question was studied for various types of spaces (E, G, μ). Undoubtedly, the most interesting case for classical Real Analysis is when E coincides with the n-dimensional Euclidean space \mathbf{R}^{n}, a group G is a subgroup of the group of all isometric transformations of \mathbf{R}^{n}, and μ is a G-invariant extension of the standard n-dimensional Lebesgue measure λ_{n} on \mathbf{R}^{n} (see, for instance, [3-8]).

[^0]Another important case is when $E=\Gamma$, where Γ is an uncountable σ-compact locally compact topological group, Γ coincides with the group of all left (right) translations of Γ, and μ is a G-invariant extension of the left (right) Haar measure on Γ (cf. [9,5,10,11]).

A more general form of the above question is as follows. For a given space (E, G, μ), denote by $\mathcal{M}_{G}(\mu)$ the family of all measures on E extending μ and invariant (quasi-invariant) with respect to G. It is natural to try to evaluate the cardinality of $\mathcal{M}_{G}(\mu)$ in terms of $\operatorname{card}(E)$ and $\operatorname{card}(G)$. In the present paper, we will be dealing with this problem for the case when E coincides with the real line \mathbf{R} and G is the group of all translations of \mathbf{R}. Notice that the method applied in our further considerations is primarily taken from [6].

Below, we will use the following standard notation:
$X \Delta Y=$ the symmetric difference of two sets X and Y;
$\omega=$ the least infinite cardinal (ordinal) number;
$\omega_{1}=$ the least uncountable cardinal (ordinal) number;
$\mathbf{c}=$ the cardinality of the continuum.
Let μ be a measure defined on some σ-algebra of subsets of E (here μ is not assumed to be invariant or quasiinvariant under a nontrivial group of transformations of E). The Hilbert space of all square μ-integrable real-valued functions on E is usually denoted by the symbol $L_{2}(\mu)$. If $L_{2}(\mu)$ is a separable Hilbert space, then μ is called a separable measure. Otherwise, μ is called a nonseparable measure.

Treating the real line \mathbf{R} as a vector space over the field \mathbf{Q} of all rational numbers and keeping in mind the existence of a Hamel basis in \mathbf{R}, it is not difficult to show that the additive group $(\mathbf{R},+)$ admits a representation in the form

$$
\mathbf{R}=G+H \quad(G \cap H=\{0\}),
$$

where G and H are some two subgroups of $(\mathbf{R},+)$ and

$$
\operatorname{card}(G)=\omega_{1}, \quad \operatorname{card}(H) \leq \mathbf{c} .
$$

We denote by \mathcal{I} the σ-ideal generated by all those subsets X of \mathbf{R} which are representable in the form $X=Y+H$, where $Y \subset G$ and $\operatorname{card}(Y) \leq \omega$.

It can readily be seen that \mathcal{I} is a translation invariant σ-ideal of sets in \mathbf{R}.
We begin with the following auxiliary statement.
Lemma 1. There exists a partition $\left\{X_{\xi}: \xi<\omega_{1}\right\}$ of \mathbf{R} satisfying these two relations:
(1) for any ordinal $\xi<\omega_{1}$, the set X_{ξ} belongs to the σ-ideal \mathcal{I};
(2) for each subset Ξ of ω_{1} and for any $r \in \mathbf{R}$, the relation

$$
\left(\cup\left\{X_{\xi}: \xi \in \Xi\right\}\right) \Delta\left(r+\cup\left\{X_{\xi}: \xi \in \Xi\right\}\right) \in \mathcal{I}
$$

holds true, i.e., the set $\cup\left\{X_{\xi}: \xi \in \Xi\right\}$ is \mathcal{I}-almost translation invariant in \mathbf{R}.
The proof of this lemma is given in [6].
By combining Lemma 1 with the well-known ($\omega \times \omega_{1}$)-matrix of Ulam (see, e.g., [12]), the next auxiliary statement can be deduced.

Lemma 2. Let $\left\{X_{\xi}: \xi<\omega_{1}\right\}$ be a partition of \mathbf{R} described in Lemma 1 and let μ be a nonzero σ-finite translation invariant (translation quasi-invariant) measure on \mathbf{R}.

There exists a disjoint family $\left\{\Xi_{j}: j \in J\right\}$ of subsets of ω_{1} such that:
(1) $\operatorname{card}(J)=\omega_{1}$;
(2) for each index $j \in J$, the set $Z_{j}=\cup\left\{X_{\xi}: \xi \in \Xi_{j}\right\}$ is nonmeasurable with respect to μ (where $\left\{X_{\xi}: \xi<\omega_{1}\right\}$ is a partition of \mathbf{R} described in Lemma 1);
(3) $\mu_{*}\left(\cup\left\{Z_{j}: j \in J\right\}\right)=0$ (where the symbol μ_{*} denotes the inner measure associated with μ).

Notice that the proof of Lemma 2 is similar to the argument presented in [6] (cf. also [7]).
Lemma 3. Let μ be a σ-finite translation invariant (translation quasi-invariant) measure on \mathbf{R}. There exists a measure μ^{\prime} on \mathbf{R} such that:
(1) μ^{\prime} is translation invariant (translation quasi-invariant);
(2) μ^{\prime} extends μ;
(3) $\mathcal{I} \subset \operatorname{dom}\left(\mu^{\prime}\right)$.

Proof. If X is any set belonging to \mathcal{I}, then the equality $\mu_{*}(X)=0$ is satisfied, because in \mathbf{R} there are uncountably many pairwise disjoint translates of X. So we may apply Marczewski's standard method to μ and \mathcal{I} for extending μ. Namely, introduce the σ-algebra \mathcal{S}^{\prime} of all those subsets Z of \mathbf{R} which admit a representation

$$
Z=\left(Y \cup X^{\prime}\right) \backslash X^{\prime \prime} \quad\left(Y \in \operatorname{dom}(\mu), X^{\prime} \in \mathcal{I}, X^{\prime \prime} \in \mathcal{I}\right)
$$

and define on \mathcal{S}^{\prime} the functional μ^{\prime} by the formula

$$
\mu^{\prime}(Z)=\mu(Y) \quad\left(Z \in \mathcal{S}^{\prime}\right)
$$

It is not hard to verify that the definition of μ^{\prime} is correct (i.e., the value $\mu^{\prime}(Z)$ does not depend on a representation of Z in the above-mentioned form), and μ^{\prime} satisfies the relations. (1), (2), and (3) of Lemma 3.

The preceding lemmas enable us to establish the following statement.
Theorem 1. Let μ be a nonzero σ-finite translation invariant (translation quasi-invariant) measure on \mathbf{R}. Then the inequality $\operatorname{card}\left(\mathcal{M}_{\mathbf{R}}(\mu)\right) \geq 2^{\omega_{1}}$ holds true. In particular, there are measures on \mathbf{R} strictly extending μ and invariant (quasi-invariant) under the group of all translations of \mathbf{R}.
Proof. Taking into account Lemma 3, we may assume without loss of generality that the measure μ is complete and $\mathcal{I} \subset \operatorname{dom}(\mu)$.

Let $\left\{Z_{j}: j \in J\right\}$ be the disjoint family of subsets of \mathbf{R} described in Lemma 2. This family has the following properties:
(a) $\operatorname{card}(J)=\omega_{1}$ and the sets $Z_{j}(j \in J)$ are pairwise disjoint;
(b) every set $Z_{j}(j \in J)$ is nonmeasurable with respect to μ;
(c) for each set $J_{0} \subset J$ and for every $r \in \mathbf{R}$, the equality

$$
\mu\left(\left(\cup\left\{Z_{j}: j \in J_{0}\right\}\right) \Delta\left(r+\cup\left\{Z_{j}: j \in J_{0}\right\}\right)\right)=0
$$

is valid;
(d) $\mu_{*}\left(\cup\left\{Z_{j}: j \in J\right\}\right)=0$.

Further, take a subset J_{1} of J and associate to this J_{1} the set

$$
Z\left(J_{1}\right)=\cup\left\{Z_{j}: j \in J_{1}\right\}
$$

By virtue of (c) and (d), we get the relations:
(e) for every $r \in \mathbf{R}$, the set $Z\left(J_{1}\right)$ is μ-almost translation invariant, i.e.,

$$
\mu\left(Z\left(J_{1}\right) \Delta\left(r+Z\left(J_{1}\right)\right)\right)=0
$$

(f) $\mu_{*}\left(Z\left(J_{1}\right)\right)=0$.

Consequently, applying Marczewski's method of extending invariant and quasi-invariant measures (cf. the proof of Lemma 3), we obtain the measure $\mu_{J_{1}}$ on \mathbf{R} which extends μ, is invariant (quasi-invariant) under the group of all translations of \mathbf{R}, and satisfies the equality $\mu_{J_{1}}\left(Z\left(J_{1}\right)\right)=0$.

Now, let us establish that if J_{1} and J_{2} are any two distinct subsets of J, then the associated measures $\mu_{J_{1}}$ and $\mu_{J_{2}}$ differ from each other. Indeed, if $J_{1} \neq J_{2}$, then either $J_{1} \backslash J_{2} \neq \emptyset$ or $J_{2} \backslash J_{1} \neq \emptyset$. We may suppose that $J_{1} \backslash J_{2} \neq \emptyset$, so there is an index $j \in J_{1} \backslash J_{2}$. According to the definition of $\mu_{J_{1}}$, the set Z_{j} turns out to be of $\mu_{J_{1}}$-measure zero. On the other hand, the same set Z_{j} cannot be of $\mu_{J_{2}}$-measure zero. To see this circumstance, suppose to the contrary that $\mu_{J_{2}}\left(Z_{j}\right)=0$. Then, keeping in mind the construction of $\mu_{J_{2}}$, we must have

$$
Z_{j}=\left(T \cup T^{\prime}\right) \backslash T^{\prime \prime},
$$

where

$$
\mu(T)=0, \quad T^{\prime} \subset Z\left(J_{2}\right), \quad T^{\prime \prime} \subset Z\left(J_{2}\right) .
$$

However, it can easily be verified that the above relations imply the inclusion $Z_{j} \subset T$ and the equality $\mu\left(Z_{j}\right)=0$. In particular, we obtain that Z_{j} is a μ-measurable set, which contradicts (b).

Thus, we have an injective mapping from the power set $\mathcal{P}\left(\omega_{1}\right)$ into the family of all those measures on \mathbf{R} which extend μ and are translation invariant (translation quasi-invariant). The existence of such a mapping trivially yields the desired inequality $\operatorname{card}\left(\mathcal{M}_{\mathbf{R}}(\mu)\right) \geq 2^{\omega_{1}}$, and the proof of Theorem 1 is finished.

Remark 1. Consider the n-dimensional Euclidean space \mathbf{R}^{n}, where $n \geq 1$. Since there exists an isomorphism between the additive groups $(\mathbf{R},+)$ and $\left(\mathbf{R}^{n},+\right)$, the direct analogue of Theorem 1 is valid for the space \mathbf{R}^{n} (and, more generally, for any uncountable vector space over the field \mathbf{Q} of all rational numbers).

Remark 2. As an immediate consequence of Theorem 1, we get the relation

$$
\operatorname{card}\left(\mathcal{M}_{\mathbf{R}}(\mu)\right) \geq 2^{\omega_{1}} \geq 2^{\omega}=\mathbf{c}
$$

This relation is a statement of ZFC set theory. Assuming the Continuum Hypothesis (CH), we directly come to the much stronger inequality

$$
\operatorname{card}\left(\mathcal{M}_{\mathbf{R}}(\mu)\right) \geq 2^{\mathbf{c}}
$$

We do not know whether the latter inequality can be proved within the framework of $\mathbf{Z F C}$ theory.
Let the symbol $\lambda\left(=\lambda_{1}\right)$ denote the standard Lebesgue measure on the real line R. Kakutani and Oxtoby demonstrated in 1950 that there exist nonseparable measures on \mathbf{R} belonging to the class $\mathcal{M}_{\mathbf{R}}(\lambda)$ (see [13]). Obviously, all those measures are strict extensions of λ. A radically different approach to the problem of the existence of nonseparable measures belonging to $\mathcal{M}_{\mathbf{R}}(\lambda)$ was given in the work by Kodaira and Kakutani (see again [13]).

The method of Kakutani and Oxtoby allows one to conclude that there exist at least $2^{2^{\text {c }}}$ nonseparable measures on \mathbf{R}, all of which extend λ and are translation invariant. Thus, for the concrete measure λ on \mathbf{R}, the inequality of Theorem 1 can be essentially strengthened and, in fact, we have the following equality:

$$
\operatorname{card}\left(\mathcal{M}_{\mathbf{R}}(\lambda)\right)=2^{2^{\mathrm{c}}}
$$

In this context, the natural question arises whether the analogous equality

$$
\operatorname{card}\left(\mathcal{M}_{\mathbf{R}}(\mu)\right)=2^{2^{\mathrm{c}}}
$$

is valid for any nonzero σ-finite translation invariant (translation quasi-invariant) measure μ on \mathbf{R}. We do not know the answer to this question. Nevertheless, assuming the Continuum Hypothesis (CH), for a sufficiently wide class of measures μ on \mathbf{R} it can be proved that the last equality holds true, too.

Let $(E, G, \mu$) be a space equipped with a σ-finite G-invariant (G-quasi-invariant) measure μ. Recall that μ is metrically transitive (or ergodic) if, for any μ-measurable set X with $\mu(X)>0$, there exists a countable family $\left\{g_{k}: k<\omega\right\}$ of transformations from G such that

$$
\mu\left(E \backslash \cup\left\{g_{k}(X): k<\omega\right\}\right)=0
$$

It is well known that metrically transitive (ergodic) measures play an important role in many topics of mathematical analysis and probability theory.

Lemma 4. Let (E, G) be a space equipped with a transformation group satisfying these two conditions:
(1) $\operatorname{card}(E)=\omega_{1}$;
(2) the group G acts freely and transitively in E.

If μ is a nonzero σ-finite ergodic G-invariant (G-quasi-invariant) measure on E, then there exists a partition $\left\{X_{\xi}: \xi<\omega_{1}\right\}$ of E such that:
(i) every set $X_{\xi}\left(\xi<\omega_{1}\right)$ is μ-thick in E, i.e., $\mu_{*}\left(E \backslash X_{\xi}\right)=0$;
(ii) for any set $\Xi \subset \omega_{1}$ and for each transformation $g \in G$, the inequality

$$
\operatorname{card}\left(\left(\cup\left\{X_{\xi}: \xi \in \Xi\right\}\right) \Delta\left(g\left(\cup\left\{X_{\xi}: \xi \in \Xi\right\}\right)\right)\right) \leq \omega
$$

is valid.

The proof of Lemma 4 is presented in [10].
Starting with the previous lemma and applying some modified version of the method of Kakutani and Oxtoby, we get the following statement.

Theorem 2. Assume CH and let (E, G) be a space equipped with a transformation group, satisfying the conditions (1) and (2) of Lemma 4.

Then, for every nonzero σ-finite ergodic G-invariant (G-quasi-invariant) measure μ on E, the class $\mathcal{M}_{G}(\mu)$ contains at least $2^{2^{c}}$ nonseparable measures.

As has already been mentioned, the proof of Theorem 2 is based on Lemma 4 and on the argument of Kakutani and Oxtoby [13] (cf. also [10]).

Remark 3. Marczewski's method of extending σ-finite invariant (quasi-invariant) measures does not substantially change the structure of an initial measure. On the other hand, the method of Kakutani and Oxtoby allows one to obtain nonseparable translation invariant extensions of λ on \mathbf{R}, starting with the separable measure λ (however, those extensions are not ergodic). Further modifications of this method were applied to the Haar measure on an uncountable σ-compact locally compact Polish topological group (see, for instance, [9]). Notice that various properties of invariant and quasi-invariant measures given on algebraic-topological structures are thoroughly discussed in [14].

Theorem 3. Assume $\mathbf{C H}$ and let (E, G) be again a space equipped with a transformation group, satisfying the conditions (1) and (2) of Lemma 4.

Then, for every nonzero σ-finite ergodic G-invariant (G-quasi-invariant) measure μ on E, the class $\mathcal{M}_{G}(\mu)$ contains $2^{2^{\mathrm{C}}}$ ergodic measures.

The proof of Theorem 3 follows the method presented in [7] for a concrete space (E, G, μ). Namely, in [7] the role of (E, G, μ) is played by the triplet $\left(\mathbf{R}^{n}, D_{n}, \lambda_{n}\right)$, where $n \geq 1$ and D_{n} denotes the group of all isometric transformations of \mathbf{R}^{n}. Under $\mathbf{C H}$, the argument given in [7] for $\left(\mathbf{R}^{n}, D_{n}, \lambda_{n}\right)$ works also for a space ($\left.E, G, \mu\right)$ of Theorem 3.

Remark 4. Both Theorems 2 and 3 show that, supposing $\mathbf{C H}$, the cardinality of the class $\mathcal{M}_{G}(\mu)$ is equal to the cardinality of the class of all measures on E (where a space (E, G) satisfies (1) and (2) of Lemma 4 and μ is a nonzero σ-finite ergodic G-invariant or G-quasi-invariant measure on E).

References

[1] A.B. Kharazishvili, Certain types of invariant measures, Dokl. Akad. Nauk SSSR 222 (3) (1975) 538-540 (in Russian).
[2] P. Erdös, R.D. Mauldin, The nonexistence of certain invariant measures, Proc. Amer. Math. Soc. 59 (2) (1976) 321-322.
[3] K. Ciesielski, A. Pelc, Extensions of invariant measures on Euclidean spaces, Fund. Math. 125 (1) (1985) 1-10.
[4] H. Friedman, A definable nonseparable invariant extension of Lebesgue measure, Illinois J. Math. 21 (1) (1977) 140-147.
[5] A. Hulanicki, Invariant extensions of the Lebesgue measure, Fund. Math. 51 (1962-1963) 111-115.
[6] A.B. Kharazishvili, Some applications of Hamel bases, Sakharth. SSR Mecn. Akad. Moambe 85 (1) (1977) 17-20 (in Russian).
[7] A.B. Kharazishvili, Invariant Extensions of the Lebesgue Measure, Tbilis. Gos. Univ., Tbilisi, 1983 (in Russian).
[8] Sh.S. Pkhakadze, The theory of Lebesgue measure, Proc. A. Razmadze Math. Inst. 25 (1958) 3-272 (in Russian).
[9] E. Hewitt, K.A. Ross, Abstract Harmonic Analysis. Vol. I: Structure of Topological Groups, in: Integration Theory, Group Representations (Die Grundlehren der mathematischen Wissenschaften), Bd. 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963.
[10] A.B. Kharazishvili, Metrical transitivity and nonseparable extensions of invariant measures, Taiwanese J. Math. 13 (3) (2009) $943-949$.
[11] A. Pelc, Invariant measures and ideals on discrete groups, Dissertationes Math. (Rozprawy Mat.) 255 (1986).
[12] J.C. Oxtoby, Measure and Category. A Survey of the Analogies Between Topological and Measure Spaces, in: Graduate Texts in Mathematics, vol. 2, Springer-Verlag, New York, Berlin, 1971.
[13] S. Kakutani, in: Robert R. Kallman. (Ed.), Selected Papers. Vol. 2, in: Contemporary Mathematicians, Birkhäuser Boston, Inc., Boston, MA, 1986.
[14] P. Zakrzewski, Measures on algebraic-topological structures, in: Handbook of Measure Theory, Vols. I, II, North-Holland, Amsterdam, 2002, pp. 1091-1130.

[^0]: E-mail address: kharaz2@yahoo.com.
 Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.

