ON THE GENERALIZED NONMEASURABILITY OF SOME CLASSICAL POINT SETS

ALEXANDER KHARAZISHVILI

Abstract. The generalized nonmeasurability of certain classical point sets (such as Vitali sets, Bernstein sets, and Hamel bases) is considered in connection with **CH** and **MA**.

This short note is a continuation of our paper [7]. It was shown in [7] that the nonmeasurability in Ulam's sense (i.e., the non-real-valued measurability) of the cardinality continuum is equivalent to some generalized nonmeasurability of Vitali subsets and Bernstein subsets of the real line **R**. Here it is demonstrated that, assuming the Continuum Hypothesis (**CH**), it becomes possible to essentially strengthen the result obtained in [7], concerning the generalized nonmeasurability of Vitali sets and Bernstein sets.

According to the classical theorem of Erdös and Kakutani [3], the Continuum Hypothesis is equivalent to the following assertion:

There exists a countable family $\{H_i : i \in I\}$ of Hamel bases of **R** such that

$$\cup \{H_i : i \in I\} = \mathbf{R} \setminus \{0\}.$$

Starting with this result and using the Banach-Kuratowski matrix [1] (or Ulam's $(\omega \times \omega_1)$ -matrix [12] or a countable base of a Luzin subspace of \mathbf{R}), one can prove the following statement.

Theorem 1. Under CH, there exists a countable family $\{H_j : j \in J\}$ of Hamel bases of \mathbf{R} such that, for every nonzero σ -finite diffused measure μ on \mathbf{R} , at least one member of $\{H_j : j \in J\}$ is nonmeasurable with respect to μ .

In fact, the existence of $\{H_j: j \in J\}$ with the above property implies **CH** (cf., [4], where an analogous result in terms of nonzero σ -finite translation invariant measures on **R** is formulated and proved).

It makes sense to examine analogues of Theorem 1 for some other classical point sets. First of all, we mean here the Vitali subsets and Bernstein subsets of \mathbf{R} .

Recall that a Vitali set in \mathbf{R} is any selector of the quotient group \mathbf{R}/\mathbf{Q} , where \mathbf{Q} denotes the rational subgroup of the additive group $(\mathbf{R}, +)$.

Recall also that a Bernstein set in **R** is any set $B \subset \mathbf{R}$ which has the property that, for every nonempty perfect set $P \subset \mathbf{R}$, the relations

$$P \cap B \neq \emptyset$$
, $P \cap (\mathbf{R} \setminus B) \neq \emptyset$

hold true.

In many works, the Vitali sets and Bernstein sets are discussed from the measure-theoretical and topological viewpoints (see, e.g., [2,5,6,8–11,13]). Usually, these sets are treated as pathological ones. In particular, it is well known within **ZFC** set theory that:

- (a) if μ is a measure on **R** extending the standard Lebesgue measure and invariant under all rational translations of **R**, then no Vitali set is measurable with respect to μ (cf., [13]);
- (b) if μ is the completion of a nonzero σ -finite diffused Borel measure on \mathbf{R} , then no Bernstein set is measurable with respect to μ .

Notice that μ in (a) carries some algebraic structure and μ in (b) carries some topological structure. At the same time, suppose that ν is an arbitrary σ -finite measure on \mathbf{R} without any additional structure, and let $\{V_k : k \in K\}$ (respectively, $\{B_k : k \in K\}$) be a finite family of Vitali sets

²⁰²⁰ Mathematics Subject Classification. 03E50, 28A05, 28E15.

Key words and phrases. Selector; Vitali set; Bernstein set; Hamel basis; Continuum Hypothesis, Martin's Axiom.

(respectively, Bernstein sets). Then there exists a measure ν' on \mathbf{R} extending ν and such that all sets V_k (respectively, all sets B_k) become ν' -measurable. Actually, the same fact remains valid for ν and for an arbitrary finite family $\{Z_k : k \in K\}$ of subsets of \mathbf{R} (see, for example, [5]).

Remark 1. There exists a Vitali set which is measurable with respect to some translation quasi-invariant extension of the Lebesgue measure on \mathbf{R} (see [5,6]).

Remark 2. If μ is a nonzero σ -finite diffused measure on \mathbf{R} containing in its domain some Bernstein set, then μ cannot be a Radon measure.

For the class $\mathcal{M}(\mathbf{R})$ of all nonzero σ -finite diffused measures on \mathbf{R} , we have the next two results (similar to Theorem 1) which show us the generalized nonmeasurability of Vitali sets and Bernstein sets with respect to $\mathcal{M}(\mathbf{R})$.

Theorem 2. Under CH, there exists a countable family $\{V_j : j \in J\}$ of Vitali subsets of \mathbf{R} such that, for every nonzero σ -finite diffused measure μ on \mathbf{R} , at least one member of $\{V_j : j \in J\}$ is nonmeasurable with respect to μ .

Theorem 3. Under CH, there exists a countable family $\{B_j : j \in J\}$ of Bernstein subsets of \mathbf{R} such that, for every nonzero σ -finite diffused measure μ on \mathbf{R} , at least one member of $\{B_j : j \in J\}$ is nonmeasurable with respect to μ .

Both proofs of Theorems 2 and 3 are based on the following auxiliary statement.

Lemma 1. Let $\{X_i : i \in I\}$ be a partition of a ground set E such that

$$(\forall i \in I)(2 \leq \operatorname{card}(X_i) \leq \omega),$$

where ω denotes the least infinite cardinal number.

Then the union of any subfamily of $\{X_i : i \in I\}$ belongs to the σ -algebra generated by a countable family of selectors of $\{X_i : i \in I\}$.

Also, the following auxiliary statement is used in the proof of Theorem 3.

Lemma 2. There exists a partition $\{Y_t : t \in T\}$ of **R** such that:

- (1) $2 \leq \operatorname{card}(Y_t) \leq \omega$ for each index $t \in T$;
- (2) all selectors of $\{Y_t : t \in T\}$ are Bernstein subsets of \mathbf{R} .

Remark 3. The assertions of Theorems 2 and 3 can also be established under Martin's Axiom (MA). As widely known, MA is much weaker than the Continuum Hypothesis, because the conjunction MA & \neg CH is consistent with ZFC set theory. The proofs of the modified versions of Theorems 2 and 3 are based on Lemmas 1 and 2 and on some properties of so-called generalized Luzin subsets of R. As indicated after Theorem 1, CH is equivalent to the existence of a countable family $\{H_j: j \in J\}$ of Hamel bases of R such that, for every nonzero σ -finite diffused measure μ on R, at least one member of $\{H_j: j \in J\}$ is nonmeasurable with respect to μ . We thus see that the case of Hamel bases of R essentially differs from the cases of Vitali and Bernstein sets in R.

ACKNOWLEDGEMENT

This work was partially supported by the Shota Rustaveli National Science Foundation of Georgia, Grant FR-18-6190.

References

- 1. S. Banach, C. Kuratowski, Sur une généralisation du problème de la mesure. Fund. Math. 14 (1929), 127–131.
- F. Bernstein, Zur Theorie der trigonometrischen Reihen, Sitzungsber. Sächs. Akad. Wiss. Leipzig. Math.-Natur. Kl. 60 (1908), 325–338.
- 3. P. Erdös, S. Kakutani, On non-denumerable graphs. Bull. Amer. Math. Soc. 49 (1943), 457-461.
- 4. A. B. Kharazishvili, Nonmeasurable Hamel bases. (Russian) Dokl. Akad. Nauk SSSR 253 (1980), no. 5, 1068-1070.
- A. B. Kharazishvili, Nonmeasurable Sets and Functions. North-Holland Mathematics Studies, 195. Elsevier Science B.V., Amsterdam, 2004.
- 6. A. B. Kharazishvili, Measurability properties of Vitali sets. Amer. Math. Monthly 118 (2011), no. 8, 693-703.

- 7. A. Kharazishvili, On the generalized nonmeasurability of Vitali sets and Bernstein sets. Georg. Math. J. (to appear).
- 8. M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality. Uniwersytet Śalski, Katowice; Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1985.
- 9. K. Kuratowski, *Topology*. vol. I. New edition, revised and augmented. Translated from the French by J. Jaworowski Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw 1966.
- J. C. Morgan II, Point Set Theory. Monographs and Textbooks in Pure and Applied Mathematics, 131. Marcel Dekker, Inc., New York, 1990.
- 11. J. C. Oxtoby, *Measure and category*. A survey of the analogies between topological and measure spaces. Graduate Texts in Mathematics, Vol. 2. Springer-Verlag, New York-Berlin, 1971.
- 12. S. Ulam, Zur Masstheorie in der allgemeinen Mengenlehre. Fund. Math. 16 (1930), 140-150.
- 13. G. Vitali, Sul Problema Della Misura dei Gruppi di Punti di una Retta. Tip. Gamberini e Parmeggiani, Bologna, 1905

(Received 23.12.2020)

A. RAZMADZE MATHEMATICAL INSTITUTE OF I. JAVAKHISHVILI TBILISI STATE UNIVERSITY, 6 TAMARASHVILI STR., TBILISI 0177, Georgia

I. Vekua Institute of Applied Mathematics, 2 University Str., Tbilisi 0186, Georgia $E\text{-}mail\ address$: kharaz2@yahoo.com