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MODULAR WEIGHTED INEQUALITIES FOR PARTIAL SUMS OF

FOURIER-VILENKIN SERIES

M. KHABAZI

Abstract. Some conditions for the convergence and boundedness of

partial sums of Fouurier-Vilenkin series in weighted Orlicz Classes are

derived.

Fourier-Vilenkin series is the generalization of Fourier-Walsh series. Let
(pi)i≥0 be any sequense of natural numbers, such that pi ≥ 2, i = 0, 1, . . .

By Zpi
we denote the cyclic group of order pi, by G–the direct product of

these groups: G =
∞∏

i=0

Zpi
and by µ–the Haar measure normalized µ(G) = 1.

The functions

φk(x) = exp
(
2πi

xk

pk

)
, x = (xk) ∈ G, k = 0, 1, . . .

represent an orthonormal system on G. It can be completed by the following
process: let m0 = 1, mk = p0p1 . . . pk−1; every nonnegative integer number

n can be represented by the unique way as a finite sum, n =
∞∑

k=0

αkmk,

0 ≤ αk < pk. Define the functions χn (n = 0, 1, . . . ):

χn(x) =

∞∏

k=0

φαk

k (x).

{χn} form the complete orthonormal system on G, known as a mulitiplica-
tive system or Vilenkin system. For the details see [1],[2].

The group G can be identified with the interval (0, 1), putting to each

{xi} ∈ G into correspondence the point
∞∑

i=0

xim
−1
i+1 ∈ (0, 1). If we will not

regard the countable set of pi-rational points, this mapping is one-to-one,
onto and measure-preserving.
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Wo-Sang Young [3] defined the Muckenhoupt classes for the group G.
Let {Gk} be the sequence of subgroups of G defined by

G0 = G, Gk =

k−1∏

i=0

{0} ×

∞∏

i=k

Zp, k = 1, 2, . . .

On the interval (0, 1), cosets of Gk are intervals of the form
(

i
mk

, i+1
mk

)
,

i = 0, 1, . . . , mk−1. For k = 0, 1, . . . , i = 1, . . . pk, let Iik be the set in Gk

corresponding to the interval
(
0, i

mk+1

)
. Let F denote the collection of all

translates of Iik in G, for all k = 0, 1, . . . , i = 1, . . . , pk.
A weight function w (a.e., positive integrable function on G) belongs to

the class Ap(G) (1 ≤ p < ∞) if

sup
I∈F

(
1

µI

∫

I

w− 1
p−1 dµ

)p−1

, 1 < p < ∞ (1)

and

1

µI

∫

I

w(x)dx ≤ cess inf
y∈I

w(y), p = 1, (2)

where c is independent of I ∈ F .
The Ap(G) classes have the main properties of classical Muckenhoupt

classes: if w ∈ Ap(G), then w ∈ Aq(G) for every q > p and when p > 1,
there exists an ε > 0, such that w ∈ Ap−ε(G). Also, if w ∈ Ap(G) (p > 1),

then w− 1
p−1 ∈ Ap′(G) and w, w− 1

p−1 ∈ L1(G) (p′ is defined by the equality
1
p

+ 1
p′

= 1).
Let Snf denote the n-th partial sum of the Fourier-Vilenkin series of a

function f . We will assume that Snf ≡ ∞ for n = 1, 2, . . . when f 6∈ L1. If
w is a weight on G, by Lp

w(G) we denote the class of all measurable functions
f , such that

∫
G
|f(x)|pw(x)dµ(x) < ∞. The following theorem belongs to

Wo-Sang Young:

Theorem A. Let w be a weight on G and 1 < p < ∞. The following

statements are equivalent:

(i) There is a constant c,independent of f ∈ Lp
w(G), such that

∫

G

|Snf |pwdµ ≤ c

∫

G

|f |pwdµ, n = 1, 2, . . . .

(ii) For every f ∈ Lp
w(G)

lim
n→∞

∫

G

|f − Snf |pwdµ = 0.

(iii) w ∈ Ap.
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Our goal was to investigate the same problem for the weighted Orlicz
classes. We need some definitions to formulate our results.

Let φ denote the set of all functions ϕ : R1 → R
1 which are nonnegative,

even, and increasing on (0,∞) such that ϕ(0+) = 0, limt→∞ ϕ(t) = ∞. If w

is a weight on G, by ϕw(L) we denote the class of all measurable functions
f , such that

∫
G

ϕ(f(x))w(x)dµ(x) < ∞.
A function ω is called a Young function on [0,∞) if ω is convex, ω(0) = 0,

and ω(∞) = ∞. A function ϕ is called quasiconvex if there exist a Young
function ω and a constant c > 1 such that ω(t) ≤ ϕ(t) ≤ ω(ct), t ≥ 0.
If these inequalities hold for t > t0 > 0 we say that ϕ is quasiconvex
in a neighborhood of ∞. The concept of quasiconvexity, as well as the
fundamental definition of the number p(ϕ), which follows, was introduced
by V. Kokilashvili and thoroughly investigated by him and his colleagues
(see e.g. [4], [5], [6]).

By definition the function ϕ satisfies ∆2 condition (ϕ ∈ ∆2) if there exist
numbers c > 0 and t0 > 0 such that ϕ(2t) ≤ cϕ(t), when t > t0. If this
inequality holds for every t > 0 then they say that ϕ satisfies the global ∆2

condition (ϕ ∈ ∆2).
For any quasiconvex function ϕ let us define numbers p(ϕ) and q(ϕ) as

1

p(ϕ)
= inf{β : β > 0, ϕβ is quasiconvex}

1

q(ϕ)
= inf{β : β > 0, ϕβ is quasiconvex in a neighborhood of ∞}.

To each quasiconvex function ϕ corresponds the complementary function
ϕ̃, defined by the equality ϕ̃(t) = sups≥0(st−ϕ(s)). It is easy to check that

ϕ̃ is Young function and ˜̃ϕ ≤ ϕ.
Now we can formulate our results. We suppose that sup{pi} < ∞.

Theorem 1. Let w be a weight and ϕ ∈ φ. The following statements are

equivalent:

(i) There is a constant c, independent of f ∈ ϕw(L), such that
∫

G

ϕ(Snf)wdµ ≤ c

∫

G

ϕ(f)wdµ, n = 1, 2, . . . . (3)

(ii) There exists a number α, 0 < α < 1, such that ϕα is quasiconvex, ϕ

satisfies global ∆2 condition and w ∈ Ap(ϕ)(G).

To prove this theorem we need some lemmas.

Lemma 1. Let ϕ ∈ φ. The following statements are equivalent:

(i) ϕ is quasiconvex.

(ii) There exists a constant c1 > 0, such that

ϕ(t1)

t1
≤ c1

ϕ(c1t2)

t2
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when t1 < t2.

(iii) There exists a constant c2 > 0, such that

ϕ(t) ≤ c2
˜̃ϕ(t), t > 0.

(iv) There exists a constant c3 > 0, such that

ϕ

(
1

|I|

∫

I

f(x)dx

)
≤

c3

|I|

∫

I

ϕ(c3f(x))dx.

Lemma 2. If ϕ ∈ φ is quasiconvex and satisfies global ∆2 condition, then

there exist a constant c > 0, such that

ϕ
( ϕ̃(t)

t

)
≤ cϕ̃(t), t > 0.

Lemma 3. Let ϕ ∈ φ. Then the following conditions are equivalent:

(i) ϕα is quasiconvex for some α, 0 < α < 1.

(ii) ϕ is quasiconvex and ϕ̃ ∈ ∆2.

(iii) There exists a constant c > 0, such that

t∫

0

ϕ(s)

s2
ds ≤ c

ϕ(ct)

t
,

for every t > 0.

Let ϕ ∈ φ, wi, i = 1, 2, 3, 4 be weights on G and fI = 1
µI

∫
I
fdµ for

I ∈ F . Let us suppose that there exists a positive number c such that for
every nonnegative measurable function f and I ∈ F the following inequality
holds:

∫

I

ϕ(fIw1)w2dµ ≤ c

∫

I

ϕ(cfw3)w4dµ. (4)

Lemma 4. The following statements are true:

(i) if w1 ≡ w3 ≡ 1 and w2 ≡ w4 ≡ w, the (4) condition holds then and

only then when ϕ is quasiconvex and w ∈ Ap(ϕ).

(ii) w1 ≡ w3 ≡ w and w2 ≡ w4 ≡ 1, the (4) condition holds then and

only then when ϕ is quasiconvex, wp(ϕ) ∈ Ap(ϕ)(G) and w−p(ϕ̃) ∈ A
p(ϕ̃)

(G).

(iii) if w1 ≡ w3 ≡ w and w2 ≡ w4 ≡ 1
w

, the (4) condition holds then and

only then when ϕ is quasiconvex and w ∈ A
p(ϕ̃)

.

The following interpolation theorem belongs to V. Kokilashvili and A.
Gogatishvili [7]:
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Lemma 5. Let (M, S, ν) and (M1, S1, ν1) be measure spaces, T : L0(M) →
L0(M1)-semilinear operator, ϕ ∈ φ-quasiconvex function and 1 ≤ r <

p(ϕ) ≤ p′(ϕ̃) < s < ∞ and in the every λ > 0 and f ∈ Lr(ν) + Ls(ν)
∫

{x∈M1:|Tf(x)|>λ}

≤ c1λ
−r

∫

M

|f(x)|rdν,

∫

{x∈M1:|Tf(x)|>λ}

≤ c2λ
−s

∫

M

|f(x)|sdν,

and in the case s = ∞

‖Tf‖∞ ≤ c2‖f‖∞,

then there exists a positive constant c3, independent of T , such that
∫

M1

ϕ(Tf)dν1 ≤ c3

∫

M

ϕ(f)dν, f ∈ ϕ(L, M).

These lemmas and its proofs can be found in [6], [7].

Proof of Theorem 1. (i)⇒(ii). As ϕ is quasiconvex, by Lemma 1 ˜̃ϕ ∼ ϕ,
and as ϕ ∈ ∆2, by Lemma 3 ϕ̃β is quasiconvex for some β, 0 < β < 1. In
this case p′(ϕ̃) < ∞. Let p′(ϕ̃) < s < ∞ and r < p(ϕ) be such a number
that w ∈ Ar. By lemma 5, where M = M1 and dν = dν1 = wdµ and also
by Theorem A we obtain (ii).

(ii)⇒(i). As sup{pi} < ∞, is enough to show that (1) holds for the

intervals
(

i
mk

, i+1
mk

)
, k = 0, 1, . . . , mk − 1. Let I be one of those intervals,

f ∈ L1(G), f ≥ 0 and supp f ⊂ I. As it is known

Smk
f(x) =

1

µI

∫

I

fdµ, x ∈ I.

Then, by (3) we get

ϕ

(
1

µI

∫

I

fdµ

)
≤

c

wI

∫

I

ϕ(f)wdµ.

By Lemma 4 this means that ϕ is quasiconvex and w ∈ Ap(ϕ)(G).

Now we are going to show that ϕ, ϕ̃ ∈ ∆2.

Lemma 6. Let E ⊂ G be any set of positive measure and there exists a

constant c > 0, such that for any measurable function f , with supp f ⊂ E,
∫

E

ϕ(Snf)dµ ≤ c

∫

E

ϕ(cf)dµ, n = 1, 2, . . . . (5)

Then ϕ satisfies ∆2 condition.
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Proof. Suppose that x = 0 is a density point of E. We are going to construct
a bounded and measurable function f , such that ‖f‖∞ ≤ 1, supp f ⊂ E

and lim sup
n→∞

|Snf(0)| = ∞.

Define ns numbers in the following manner:

ns = 1 + m2 + · · · + m2s, s = 0, 1, . . .

It can be easily seen that n3 < 4
3m2s. Let (sk) be a sequense of natural

numbers, which we will define later, and β be a real number, 0 < β < 1.
Let Dn denote the Dirichlet kernel for the multiplicative system and define
the function f ,

f(x) =





|Dnsk
(x)|

Dnsk
(x) , x ∈ E ∩ (G2sk−1

\G2sk
),

0, x ∈ G\ ∩k (G2sk−1
\G2sk

),

where the ratio is considered to be 1, if Dnsk
(x) = 0, We want to estimate

Jk = Snsk
f(0), representing it as a sum of the following terms:

Jk =

∫

G

f(x)Dnsk
(x)dµ(x) =

∫

G2sk

+

∫

G2sk−1
\G2sk

+

∫

G\G2sk−1

= J ′
k +J ′′

k +J ′′′
k .

For |Dnsk
(x)| ≤ nsk

< 4
3m2sk

,

|J ′
k| ≤ max |f(t)|m2sk

4

m2sk

≤
4

3
. (6)

It is known that ([1], [2])

Dnsk
= Dm2sk

+ χm2sk
Dnsk−1

(7)

so

|J ′′′
k | =

∣∣∣∣
∫

G\G2sk−1

f(x)Dnsk
(x)dµ(x)

∣∣∣∣ =

=

∣∣∣∣
∫

G\G2sk−1

f(x)(Dm2sk
(x) + χm2sk

(x)Dnsk−1
(x))dµ(x)

∣∣∣∣,

but Dm2sk
(x) = 0 when x ∈ G2sk

([3] and)

|J ′′′
k | =

∣∣∣∣
∫

G\G2sk−1

f(x)χm2sk
(x)Dnsk−1

(x)dµ(x)

∣∣∣∣.

We will construct the equense (sk) by induction. Put s1 = 2 and suppose
that s1, . . . , sk−1 are already constructed. Then f is defined on G2sk−1

and
f(x)Dnsk−1

(x) is bounded there. As the Fourier-Vilenkin coefficients of a
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bounded function tend to zero, we can shose such a big sk, that sk > sk−1

and

|J ′′′
k | < 1. (8)

Now we will estimate J ′′
k :

J ′′
k =

∫

E∩(G2sk−1
\G2sk

)

|Dnsk
(x)|dµ(x) ≥

∫

E∩G2sk−1

|Dnsk
(x)|dµ(x) −

−

∫

G2sk

|Dnsk
(x)|dµ(x) ≥

∫

E∩G2sk−1

|Dnsk
(x)|dµ(x) −

4

3
. (9)

We can chose sk numbers so, that

µE ∩ G2sk−1
>

β

m2sk−1

(10)

From (7) easily follows

|Dnsk
(x)| >

c

x
, x ∈ (0, 1),

and taking into consideration that the function 1
x

is decreasing on (0, 1),
from (9) and (10) we get

J ′′
k ≥ c

∫

E∩G2sk−1

dµ(x)

x
−

4

3
≥ c

∫

( 1−β

m2sk−1

, 1
m2sk−1

)

dt

t
−

4

3
= c ln

1

1 − β
−

4

3
,

and, as β was arbitrarily taken in (0,1), we have lim sup
k→∞

Jk = ∞, which

means, that

lim sup
n→∞

Snf(0) = ∞.

From this follows that there exists a number n ∈ N , such that |Snf(0)| > 2c.
Then there exists a neighbourhood I0 of zero, such that |Snf(0)| > 2c for
every x ∈ I0. Now let t be any positive number and a function g is defined
by the equality: g(x) = t

c
f(x). It is obvious that |Sng(x)| > 2t when x ∈ I0.

Applying (5) for g, we get

ϕ(2t)µI0 ∩ E ≤ c

∫

E

ϕ(cg(x))dµ(x) ≤ cϕ(t)µE.

Thus,

ϕ(2t) ≤
cµE

µI0 ∩ E
ϕ(t),

which means that ϕ satisfy global ∆2 condition. In the case when x = 0 is
not a point of density of E, but x = x0 is it, the proof is the same.
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Let us continue the proof of theorem. suppose that k is such a number

that the set E =
{
x : 1

k
≤ w(x) ≤ k

}
has a positive measure. Let f ∈ ϕw(L)

and supp f ⊂ E. Then from (3) follows

∫

E

ϕ(Snf(x))dµ(x) ≤ c1

∫

E

ϕ(f(x))dµ(x), n = 1, 2, . . . , (11)

where c1 = ck2. By lemma 6 then ϕ ∈ ∆2. According to Lemma 2, there
exists a c2 > 0, such that

ϕ
( ϕ̃(t)

t

)
≤ c2ϕ̃(t), t > 0. (12)

Using Young’s inequality, (12) and (11) we get

∫

E

ϕ̃(Snf(x))dµ(x) =

∫

E

ϕ̃(Snf(x))

Snf(x)
Snf(x)dµ(x) =

=

∫

E

Sn

( ϕ̃(Snf)

Snf
χE

)
(x)f(x)dµ(x) ≤

≤
1

2c1c2

∫

E

ϕ
(
Sn

( ϕ̃(Snf)

Snf
χE

)
(x)

)
dµ(x) +

1

2c1c2

∫

E

ϕ̃(2c1c2f(x))dµ(x) ≤

≤
1

2c2

∫

E

ϕ
( ϕ̃(Snf(x))

Snf(x)

)
dµ(x) +

1

2c1c2

∫

E

ϕ̃(2c1c2f(x))dµ(x) ≤

≤
1

2

∫

E

ϕ̃(Snf(x))dµ(x) +
1

2c1c2

∫

E

ϕ̃(2c1c2f(x))dµ(x),

and ∫

E

ϕ̃(Snf(x))dµ(x) ≤
1

c1c2

∫

E

ϕ̃(2c1c2f(x))dµ(x).

Applying once more Lemma 6 we conclude that ϕ̃ satisfies the global ∆2

condition. As we have already shown that ϕ is quasiconvex, by Lemma 3
ϕα is quasiconvex for some α, 0 < α < 1. Theorem 1 is proved.

The following theorems are the modifications of Theorem 1.

Theorem 2. Let w be a weight and ϕ ∈ φ. The following statements are

equivalent:

(i) There is a constant c, independent of f ∈ ϕw(L), such that for any

measurable function f

∫

G

ϕ(snfw)dµ ≤ c

∫

G

ϕ(fw)dµ, n = 1, 2, . . . . (13)
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(ii) There exists a number α, 0 < α < 1, such that ϕα is quasiconvex, ϕ

satisfies global ∆2 condition and, wp(ϕ) ∈ Ap(ϕ)(G) and w−p(ϕ̃) ∈ A
p(ϕ̃)

(G).

Proof. (ii)⇒ (i). From the conditions of the theorem follows that p(ϕ) > 1
and p(ϕ̃) > 1. Then there exists an ε > 0, such that wp(ϕ)−ε ∈ Ap(ϕ)−ε

and w−(p(ϕ̃)−ε ∈ A
p(ϕ̃)−ε

. Therefore w1−(p(ϕ)−ε)′ ∈ A(p(ϕ)−ε)′ . Define the

operators Tn by the following manner:

Tnf = wSn

( f

w

)
, n = 1, 2, . . . .

By virtue of Theorem A,
∫

G

|Tnf |p(ϕ)−εdµ ≤ c1

∫

G

|f |p(ϕ)−εdµ,

∫

G

|Tnf |(p(ϕ̃)−ε)′dµ ≤ c2

∫

G

|f |(p(ϕ)−ε)′dµ.

As p(ϕ) − ε < p(ϕ) < p′(ϕ̃) < (p(ϕ̃) − ε)′, by lemma 5 we get
∫

G

ϕ(Tnf)dµ ≤ c3

∫

G

ϕ(f)dµ.

Changing f by fw we obtain (i).
(i)⇒(ii). Let i ∈ F , f ≥ 0 and supp f ⊂ I. As Smk

f(x) = 1
µI

∫
I
fdµ,

x ∈ I, from (13) we have
∫

I

ϕ(fIw)dµ ≤ c

∫

I

ϕ(fw)dµ.

By Lemma 4 this means that ϕ is quasiconvex, wp(ϕ) ∈ Ap(ϕ) and w−p(ϕ̃) ∈

A
p(ϕ̃)

. Let k be a positive number, such that E =
{

x : 1
k
≤ w(x) ≤ k

}
has

a positive measure. If supp f ⊂ E, then from (13) follows
∫

E

ϕ(Snf)dµ ≤ c

∫

E

ϕ(k2f)dµ.

As we saw while proving Theorem 1, from here follows that ϕ, ϕ̃ ∈ ∆2. As
ϕ is quasiconvex, by lemma 3 ϕα is quasiconvex for some α, 0 < α < 1.

Theorem 3. Let w be a weight and ϕ ∈ φ. The following statements are

equivalent:

(i) There is a constant c, independent of f ∈ ϕw(L), such that for any

measurable function f
∫

G

ϕ
(Snf

w

)
wdµ ≤ c

∫

G

ϕ
( f

w

)
wdµ, n = 1, 2, . . . . (14)
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(ii) There exists a number α, 0 < α < 1, such that ϕα is quasiconvex, ϕ

satisfies global ∆2 condition and w ∈ A
p(ϕ̃)

(G).

Proof. (ii)⇒(i). From the condition w ∈ A
p(ϕ̃)

(G) follows that w ∈ A
p(ϕ̃)−ε

(G)

for some ε > 0. Then w1−(p(ϕ̃)−ε)′ ∈ A
p(ϕ̃)−ε)′

. As ϕ is quasiconvex,

p(˜̃ϕ) = p(ϕ) and p(ϕ̃) < p′(ϕ) < (p(ϕ) − ε)′, thus w ∈ A
p(ϕ̃)−ε

. From this

we get that w1−(p(ϕ)−ε) ∈ Ap(ϕ)−ε). Let us consider the operator

Tnf =
1

w
Sn(fw), n = 1, 2, . . . .

By virtue of Theorem A,
∫

G

|Tnf |p(ϕ)−εdµ ≤ c1

∫

G

|f |p(ϕ)−εdµ,

∫

G

|Tnf |(p(ϕ)−ε)′dµ ≤ c2

∫

G

|f |(p(ϕ)−ε)′dµ.

As p(ϕ) − ε < p(ϕ) < p′(ϕ̃) < (p(ϕ̃) − ε)′, by lemma 5 we get
∫

G

ϕ(Tnf)dµ ≤ c3

∫

G

ϕ(f)dµ.

Changing f by f
w

we obtain (i).
(i)⇒(ii). Let I ∈ F , f ≥ 0 and supp f ⊂ I. As Smk

f(x) = 1
µI

∫
I
fdµ,

x ∈ I, from (14) we have
∫

I

ϕ(fIw
−1)dµ ≤ c

∫

I

ϕ(fw−1)dµ.

By Lemma 4 this means that ϕ is quasiconvex and w ∈ A
p(ϕ̃)

. The rest of

the proof coincides with the one of Theorem 2.
Finally we must note that analogous theorems for various classical oper-

ators were proved by V. Kokilashvili, A. Gogatishvili and M. Krbec in [4],
[5–7].
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