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THE MEAN CONVERGENCE OF TRIGONOMETRIC FOURIER

SERIES IN WEIGHTED ORLICZ CLASSES

M. KHABAZI

Abstract. Some conditions for the mean convergence of trigonomet-

ric Fourier series in weighted Orlicz classes are derived.

Let Snf (n = 1, 2, . . . ) denote the n-th partial sum of the trigonometric
series of the function f . We will assume that Snf ≡ ∞ for n = 1, 2, . . .
when f /∈ L1. If w is a weight on (−π, π) (a.e., positive summable function),
by Lpw(−π, π) we denote the class of all measurable functions f , such that
π
∫

−π

|f(x)|pw(x) dx <∞. The following theorem of Hunt, Muckenhoupt and

Wheeden [1] is well known:

Theorem A. Let w be a weight on (−π, π) and 1 < p <∞. The following

statements are equivalent:

(i) For every f ∈ Lpw(−π, π)

lim
n→∞

π
∫

−π

∣

∣f(x) − Snf(x)
∣

∣

p
w(x) dx = 0.

(ii) w ∈ Ap.

(For the definition of Ap see e.g., [1], [2]).
Our goal was to investigate the same problem for the weighted Orlicz

classes. We need some definitions to formulate our results.
Let Φ denote the set of all functions ϕ : R1 → R

1 which are nonnegative,
even, and increasing on (0,∞) such that ϕ(0+) = 0, lim

t→∞
ϕ(t) = ∞. If w is a

weight on (−π, π), by ϕw(L) we denote the class of all measurable functions

f , such that
π
∫

−π

ϕ(f(x))w(x)dx <∞.
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A function ω is called a Young function on [0,∞) if ω is convex, ω(0) = 0,
and ω(∞) = ∞. A function ϕ is called quasiconvex if there exist a Young
function ω and a constant c > 1 such that ω(t) ≤ ϕ(t) ≤ ω(ct), t ≥ 0.
If these inequalities hold for t > t0 > 0 we say that ϕ is quasiconvex
in a neighborhood of ∞. The concept of quasiconvexity, as well as the
fundamental definition of the number p(ϕ), which follows, was introduced
by V . Kokilashvili and thoroughly investigated by him and his colleagues
(see e.g., [3], [4], [5]).

By definition the function ϕ satisfies ∆2 condition (ϕ ∈ ∆2) if there exist
numbers c > 0 and t0 > 0 such that ϕ(2t) ≤ cϕ(t), when t > t0. If this
inequality holds for every t then they say that ϕ satisfies the global ∆2

condition (ϕ ∈ ∆2).
For any quasiconvex function ϕ let us define a number p(ϕ) and q(ϕ) as

1

p(ϕ)
= inf

{

β : p > 0, ϕβ is quasiconvex
}

,

1

q(ϕ)
= inf

{

β : β > 0, ϕβ is quasiconvex in a neighborhood of ∞
}

. (1)

Now we can formulate our results.

Theorem 1. Let w be weight and ϕ ∈ Φ. If ϕ satisfies ∆2 condition, there

exists a number α, 0 < α < 1, such that ϕα is quasiconvex in a neighborhood

of ∞ and w ∈ Aq(ϕ), where q(ϕ) is defined by (1), then for every f ∈ ϕw(L)

lim
n→∞

π
∫

−π

ϕ
(

f(x) − Snf(x)
)

w(x) dx = 0. (2)

To prove this theorem we need some lemmas.

Lemma 1. Let ϕ ∈ Φ satisfies ∆2 condition, there exists a number α,

0 < α < 1, such that ϕα is quasiconvex in a neighborhood of ∞ and ε > 0.
Then there exist a ψ ∈ Φ and a number x0 > 0 such that ψ satisfies global

∆2 condition, ψβ is quasiconvex for some β, 0 < β < 1, ϕ(x) = ψ(x), when

x > x0 and p(ψ) > q(ϕ) − ε.

Proof. Let us suppose that ε < 1, 1
q(ϕ) < a < 1

q(ϕ)−ε and ϕα is quasiconvex

in a neighborhood of ∞. It means that there exist a Young function ω and
a number x1 > 0, such that

ω(x) ≤ ϕα(x) ≤ ω(cx),

when x > x1. Since α > 1
p(ϕ) , lim

x→∞

ω(x)
x

= lim
x→∞

ϕα(x)
x

= ∞. Then ([6],

Theorem 3.3), there exist γ > 1 and x2 > 0, such that the function

ω1(x) =

{

k|x|γ , |x| ≤ x2

ω(x), |x| > x2



THE MEAN CONVERGENCE OF TRIGONOMETRIC FOURIER SERIES 67

is a Young function. Let us define the function ψ in the following way:

ψ(x) =

{

ω
1
α

1 (x), |x| ≤ max(x1, x2)

ϕ(x), |x| > max(x1, x2).

It is not difficult to see that ψ satisfies global ∆2 condition and ψα is
quasiconvex. Also,

1

p(ψ)
< α <

1

q(ϕ) − ε
,

from where follows that p(ψ) > q(ϕ) − ε. The lemma is proved.

Lemma 2. Let ϕ ∈ Φ, there exists a number α, 0 < α < 1, such that

ϕα is quasiconvex in a neighborhood of ∞ and w ∈ Aq(ϕ). Then for every

f ∈ ϕw(L) and σ > 0

lim
n→∞

w
{

x :
∣

∣f(x) − Sn(x)
∣

∣ > σ
}

= 0. (3)

Proof. It is easy to prove that if ψ is quasiconvex in a neighborhood of ∞,
then there exist t0 > 0 and c > 0, such that

ψ(t1)

t1
≤
ψ(ct2)

t2
,

when t2 > t1 > t0. Hence, if ϕα is quasiconvex in a neighborhood of ∞,
then ϕw(L) ⊂ Lpw, where p = 1

α
. Let us take such ε > 0 that w ∈ Aq(ϕ)−ε

and q = q(ϕ) − ε > 1. If α is chosen so that 1
α
> q(ϕ) − ε and ϕα is

quasiconvex in a neighborhood of ∞, then, by Theorem A

lim
n→∞

π
∫

−π

∣

∣f(x) − Snf(x)
∣

∣

p
w(x) dx = 0.

From where immediately follows (3).

Lemma 3. Let ϕ ∈ Φ satisfies ∆2 condition and w is a weight on (−π, π).
Then the class of all trigonometric polinomes is everywhere dense in ϕw(L),
i.e., for every f ∈ ϕw(L) and ε > 0 there exists a trigonometric polinome

T , such that
π

∫

−π

ϕ
(

f(x) − T (x)
)

w(x) dx < ε.

Proof. Let f ∈ ϕw(L). Since ϕ satisfies ∆2 condition, 2f ∈ ϕw(L) and by
the absolute continuity of Lebesgue integral there is δ1 > 0, such that

∫

e

ϕ
(

2f(x)
)

w(x) dx < ε, (4)
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whenever |e|<δ1. Let a be a positive number, such that |{x:|f(x)|>a}|<δ1.
Using once more the absolute continuity of Lebesgue integral, we can find
a number δ2 > 0, such that

∫

e

w(x) dx <
ε

ϕ(82)
, (5)

whenever |e| < δ2. Let us define a function h,

h(x) = af(x) =

{

f(x), |f(x)| ≤ a

0, |f(x)| > a.

By Lusin’s Theorem there exists a continuos function g, such that ‖g‖∞ ≤
‖f‖∞ ≤ a and

∣

∣

{

x : h(x) 6= g(x)
}∣

∣ < δ2. (6)

If T is trigonometric polinome with ‖g − T ‖∞ < ε, then taking in con-
sideration (4), (5) and (6), we get

π
∫

−π

ϕ
(

f(x) − T (x)
)

w(x) dx ≤

π
∫

−π

ϕ
(

2
(

f(x) − h(x)
))

w(x) dx +

+

π
∫

−π

ϕ
(

2
(

h(x) − T (x)
))

w(x) dx ≤

π
∫

{x:|f(x)|>a}

ϕ
(

2
(

f(x)
))

w(x) dx +

+

π
∫

−π

ϕ
(

4
(

h(x) − g(x)
))

(x)w(x) dx +

π
∫

−π

ϕ
(

4
(

g(x) − T (x)
))

(x)w(x) dx ≤

≤ ε+ ϕ(8a)

∫

{h 6=g}

w(x) dx + ϕ(4ε)w(−π, π) < 2ε+ ϕ(4ε)w(−π, π),

and, as lim
ε→0

ϕ(4ε) = 0, the lemma is proved.

We will also use our result, obtained earlier in [7].

Theorem B. Let w be a weight function and ϕ ∈ Φ. The following condi-

tions are equivalent:

(i) there is c > 0, such that the inequalities

π
∫

−π

ϕ
(

Snf(x)
)

w(x) dx < c

π
∫

−π

ϕ
(

f(x)
)

w(x) dx, n = 1, 2, . . . .

(ii) ϕ satisfies global ∆2 condition, ϕα is quasiconvex for some α, 0 <
α < 1, and w ∈ Ap(ϕ).
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Proof of Theorem 1. Let ε be such that w ∈ Aq(ϕ)−ε and ψ be the function
defined by Lemma 1. Since p(ψ) > q(ϕ) − ε, w ∈ Ap(ψ). If σ > 0, then

π
∫

−π

ϕ
(

f(x) − Snf(x)
)

w(x) dx =

∫

{x:|f(x)−Snf(x)|≤σ}

ϕ
(

f(x)−Snf(x)
)

w(x) dx +

+

∫

{x:σ<|f(x)−Snf(x)|≤x0}

ϕ
(

f(x) − Snf(x)
)

w(x) dx +

+

∫

{x:|f(x)−Snf(x)|>x0}

ϕ
(

f(x)−Snf(x)
)

w(x) dx = J1 + J2 + J3.

We will estimate each of J1, J2 and J3.

J1 ≤ ϕ(σ)w(−π, π), (7)

J2 ≤ ϕ(x0)w
{

x :
∣

∣f(x) − Snf(x)
∣

∣ > σ
}

, (8)

J3 =

∫

{x:|f(x)−Snf(x)|>0}

ϕ
(

f(x) − Snf(x)
)

w(x) dx ≤

≤

π
∫

−π

ψ
(

f(x) − Snf(x)
)

w(x) dx.

According to Lemma 3 there is a trigonometric polinome T , such that

π
∫

−π

ψ
(

f(x) − T (x)
)

w(x) dx < σ.

If n is greater then the order of the polinome T ,then by Theorem B,

J3≤c1

π
∫

−π

ψ
(

f(x) − T (x)
)

w(x) dx+c1

π
∫

−π

ψ
(

T (x)−Snf(x)
)

w(x) dx≤

≤ c1σ + c1

π
∫

−π

ψ
(

Sn(f − T )(x)
)

w(x) dx ≤

≤ c1σ + c2

π
∫

−π

ψ
(

f(x) − T (x)
)

w(x) dx ≤ c3σ. (9)

From (7), (8) and (9) follows

π
∫

−π

ϕ
(

f(x) − Snf(x)
)

w(x) dx ≤ w(−π, π)ϕ(σ) +
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+ϕ(x0)w
{

x :
∣

∣f(x) − Snf(x)
∣

∣} > σ
}

+ c3σ,

when n is great enough. Then, by Lemma 2,

lim sup
n→∞

π
∫

−π

ϕ
(

f(x) − Snf(x)
)

w(x) dx ≤ w(−π, π)ϕ(σ) + c3σ.

and sending σ to zero we get

lim sup
n→∞

π
∫

−π

ϕ
(

f(x) − Snf(x)
)

w(x) dx = 0

and the proof is completed.
The following theorem is a partial reversion of Theorem 1.

Theorem 2. If for any f ∈ ϕw(L) the equality (2) holds, then ϕ satisfies

∆2 condition and ϕ is quasiconvex in a neighborhood of ∞.

The proof of this theorem is based on the following lemma, which at the
same time generalizes a result of P. Oswald’s [8].

Lemma 4. If E ⊂ (−π, π) has a positive Lebesgue measure and for every

f ∈ ϕw(L), supp f ⊂ E

lim
n→∞

∫

E

ϕ
(

f(x) − Snf(x)
)

dx = 0, (10)

then ϕ satisfies ∆2 condition and ϕ is quasiconvex in a neighborhood of ∞.

Proof. We will start with the proof of ϕ ∈ ∆2. We can suppose that x = 0
is the density point of E. Let ϕ /∈ ∆2. Then there exists an increasing
sequence (tk)k≥1, such that

ϕ
(21

20
tk

)

≥ 22kϕ(tk) (k = 1, 2, . . . ), ϕ(t1) > 1, (11)

tk > 2k
k−1
∑

i=1

ti (k = 2, 3, . . . ). (12)

Then we can find integer numbers 2 ≤ n1 < n2 < . . . , which satisfy the
inequalities

2−k−1 < 2−nkϕ(tk) ≤ 2−k (k = 1, 2, . . . ). (13)

Let us define the function f in the following way:

f(x) =



















tk, x ∈
(

2−nk , 11
102−nk

)

∩ E

−tk, x ∈
(

11
102−nk , 2−nk+1

)

∩ E

0, x ∈ (−π, π)\
(

2−nk , 11
102−nk

)

∩ E.

(14)
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It is obvious that supp f ⊂ E and

π
∫

−π

ϕ
(

f(x)
)

w(x) dx ≤

∞
∑

k=1

ϕ(tk)2
−nk ≤

∞
∑

k=1

2−k <∞.

One can easily check that the Dirichlet kernel Dn(x) =
sin(n+ 1

2
)(x)

2 sin 1
2
x

satis-

fies the inequalities:

2

π

(

n+
1

2

)

≤ Dn(x) ≤
π

2

(

n+
1

2

)

, x ∈
[

−
1

n
,

1

n

]

. (15)

Let us take x ∈ [0, 2−nk+1] and estimate S2n
k
−2f(x).

S2n
k
−2f(x) =

1

π

π
∫

−π

f(t)D2n
k
−2(x − t) dt =

1

π

(

2−n
k
+1

∫

0

+

π
∫

2−n
k
+1

)

=
1

π
(I1 + I2).

Applying (15) we get

I1 =

∞
∑

i=k

ti

(

11
10

2−ni

∫

2−ni

1E(t)D2n
k
−2(t− x) dt−

2−ni+1
∫

11
10

2−ni

1E(t)D2n
k
−2(t− x) dt

)

≤

≤

∞
∑

i=k

ti

(π

2

(

2nk−2+
1

2

)2−nk

10
−

2

π

(

2nk−2+
1

2

)∣

∣

∣

(11

10
2−ni , 2−ni+1

)

∩E
∣

∣

∣

)

.

As x = 0 is a denisity point of E, for a k0 great enough when i ≥ k0 we
have

∣

∣

∣

(11

10
2−ni , 2−ni+1

)

∩ E
∣

∣

∣
>

8

9

∣

∣

∣

(11

10
2−ni , 2−ni+1

)
∣

∣

∣
=

8

10
2−ni .

Hence,

I1 ≤
∞
∑

i=k

2−niti

(

2nk−2 +
1

2

)( π

20
−

16

10π

)

≤

≤ 2−nktk,
(

2nk−2 +
1

2

)(π2 − 32

20π

)

<
tk
4

π2 − 32

20π
< −

tk
16
.

Now let us apply (12) and (13) to estimate I2.

|I2| ≤
k−1
∑

i=1

ti

2−ni+1
∫

2−ni

dt

2| sin 1
2 (t− x)|

≤
k−1
∑

i=1

ti2
−ni2ni+2 < 2−k+2tk.

So, if k ≥ k0 is great enough, we have

S2n
k
−2f(x) ≤

1

π

(

−
1

16
+ 2−k+2

)

tk < −
tk
20

(

x ∈
[

0, 2−nk+1
])

.



72 M. KHABAZI

Then, by (11) and (13)

∫

E

ϕ
(

f(x) − S2n
k
−2f(x)

)

dx ≥

∫

E∩(2−n
k , 11

10
2−n

k )

ϕ
(

f(x) − S2n
k
−2f(x)

)

dx ≥

≥ ϕ
(21

20
tk

)
∣

∣

∣
E ∩

(

2−nk ,
11

10
2−nk

)
∣

∣

∣
≥ c

2−nk

10
22kϕ(tk) >

c

20
2k, (k ≥ k0).

Therefore,

lim sup
n→∞

∫

E

ϕ
(

f(x) − Snf(x)
)

dx = ∞

and this is in the contradiction with the condition of the lemma. So, the
statement ϕ ∈ ∆2 is proved.

No we will show that if ϕ is not quasiconvex in a neighborhood of ∞,
then there exists an f , such that

lim sup
n→∞

∫

E

ϕ
(

f(x) − Snf(x)
)

dx = ∞. (16)

In fact it is enough to prove the existance of an f , for which

lim sup
n→∞

∫

E

ϕ
(

Snf(x)
)

dx = ∞. (17)

Indeed, as we have already shown, ϕ ∈ ∆2. So, there exists a number c,
such that ϕ(2u) ≤ cϕ(u) when u ≥ u0. Then,

∫

E

ϕ
(

Snf(x)
)

dx =

∫

E

ϕ
(

Snf(x) − f(x) + f(x)
)

dx ≤

≤

∫

E

ϕ
(

2
(

Snf(x) − f(x)
))

dx+

∫

E

ϕ
(

2f(x)
)

dx =

=

∫

E∩(|Snf−f |>u0)

ϕ
(

2
(

Snf(x)−f(x)
))

dx+

∫

E∩(|Snf−f |≤u0)

ϕ
(

2
(

Snf(x)−f(x)
))

dx+

+

∫

E∩(|f |>u0)

ϕ
(

2f(x)
)

dx+

∫

E∩(|f |≤u0)

ϕ
(

2f(x)
)

dx ≤

≤ c

∫

E

ϕ
(

Snf(x) − f(x)
)

dx+ c

∫

E

ϕ
(

f(x)
)

dx+ 2ϕ(2u0),

and it is obvious that from (17) follows (16).

Once more suppose that x = 0 is the density point of E. By the Oswald’s
lemma ([8], Lemma 4), there exists a sequence of positive functions fk with
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the following properties:

1
∫

0

fk(x) dx ≥ 8π2k
k−1
∑

i=1

1
∫

0

fi(x) dx (k = 2, 3, . . . ), (18)

1
∫

0

ϕ
(

fk(x)
)

dx ≥ 2

1
∫

0

ϕ
(

fk−1(x)
)

dx > 2 (k = 2, 3, . . . ), (19)

ϕ

(

1
∫

0

fk(x) dx

)

≥ 22k

1
∫

0

ϕ
(

fk(x)
)

dx > 2, (k = 1, 2, . . . ). (20)

Let us chose natural numbers nk, 2 ≤ nk ≤ nk+1 − 2 (k = 1, 2, . . . ) so that

2−k−1 < 2−nk

1
∫

0

ϕ
(

fk(x)
)

dx ≤ 2−k (k = 1, 2, ) (21)

and define the function f :

f(x) =







fk
(

2nk(x− 2−nk)
)

, x ∈
[

2−nk , 2−nk+1
]

, k = 1, 2, . . .

0, x ∈ (−π, π)\
∞
∪
k=1

[

2−nk , 2−nk+1
]

.

We will show that f ∈ ϕ(L).

π
∫

−π

ϕ
(

f(x)
)

dx =

∞
∑

k=1

2−n
k
+1

∫

2−n
k

ϕ
(

fk
(

2nk(x− 2−nk)
))

dx =

=

∞
∑

k=1

2−nk

1
∫

0

ϕ
(

fk(x)
)

dx ≤

∞
∑

k=1

2−nk <∞.

Applying (15) and (18) we get the following estimation when x ∈ [0, 2−nk+1]:

S2n
k
−2f(x) ≥

≥
1

π

(

2−n
k
+1

∫

2−n
k

f(t)D2n
k
−2(t− x) dt−

k−1
∑

i=1

2−ni+1
∫

2−ni

f(t)|D2ni−2(t− x)| dt

)

≥

≥
1

π

(

2

π

(

2nk−2 +
1

2

)

2−n
k
+1

∫

2−n
k

fk
(

2nk(t− 2−nk)
)

dt−

−

k−1
∑

i=1

2ni+2

2−ni+1
∫

2−ni

fi
(

2ni(t− 2−ni)
)

dt

)

=
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=
1

π

(

2

π

(

2nk−2 +
1

2

)

2−nk

1
∫

0

fk(t) dt−

k−1
∑

i=1

2ni+22−ni

1
∫

0

fi(t) dt

)

≥

≥
1

π

(

1

2π

1
∫

0

fk(t) dt− 4

k−1
∑

i=1

1
∫

0

fi(t) dt

)

≥
1

4π2

1
∫

0

fk(t) dt.

Then,
∫

E

ϕ
(

S2n
k
−2f(x)

)

dx ≥

∫

E∩(0,2−n
k
+1)

ϕ
(

S2n
k
−2f(x)

)

dx ≥

≥ ϕ

(

1

2π2

1
∫

0

fk(x) dx

)

∣

∣E ∩
(

0, 2−nk+1
)
∣

∣ ≥ α2−nkϕ

(

1

4π2

1
∫

0

fk(x) dx

)

,

when k is great enough (as x = 0 is the density point of E).

According (18),
1
∫

0

fk(x)dx → ∞. Then, as ϕ ∈ ∆2,

ϕ

(

1

4π2

1
∫

0

fk(x) dx

)

≥ c1ϕ

(

1
∫

0

fk(x) dx

)

and by (19) and (20)

∫

E

ϕ
(

S2n
k
−2f(x)

)

dx ≥ αc12
−nkϕ

(

1
∫

0

fk(x) dx

)

≥

≥ αc12
2k2−nk

1
∫

0

ϕ
(

fk(x)
)

dx ≥ c22
k.

This shows that (17) is held and the proof of the lemma is completed.

Proof of Theorem 2. Suppose that k is such a real number, that E={x : 1
k
≤

w(x) ≤ k} has s positive measure. If ϕ /∈ ∆2 or if ϕ is not quasiconvex in a
neighborrhood of ∞, then by Lemma 4 there exists an f ∈ ϕ(L), supp f ⊂ E
and

lim sup
n→∞

π
∫

−π

ϕ
(

f(x) − Snf(x)
)

dx = ∞. (22)

Let us show that f ∈ ϕw(L):

π
∫

−π

ϕ
(

f(x)
)

w(x) dx =

∫

E

ϕ
(

f(x)
)

w(x) dx ≤ k

∫

E

ϕ
(

f(x)
)

dx <∞.
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On the other hand, by (22)

lim sup
n→∞

π
∫

−π

ϕ
(

f(x) − Snf(x)
)

w(x) dx ≥

≥
1

k
lim sup
n→∞

π
∫

−π

ϕ
(

f(x) − Snf(x)
)

dx = ∞,

what is in contradiction with (10). Theorem 2 is proved.
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