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WEIGHRED ORLICZ CLASS INEQUALITIES FOR CERTAIN

FOURIER OPERATORS

M. KHABAZI

Abstract. The necessary and sufficient conditions of modular in-

equalities for Fejer and Abel-Poisson means are derived.

Let σnf (n = 1, 2, . . . ) denote the n-th Fejer mean and Prf (0≤r<1)-the
Abel Poisson mean of a function f . We will assume that σnf ≡ Prf ≡ ∞
for n = 1, 2, . . . and 0 ≤ r < 1, when f /∈ L1. The following theorem is a
consequence of the results of Rosenblum [1] and Muckenhoupt [2].

Theorem A. Let w be a weight on (−π, π) and 1 < p < ∞. The following

statements are equivalent:

(i) There is a constant c, such that for every f ∈ Lp
w(−π, π)

π
∫

−π

∣

∣σnf(x)
∣

∣

p
w(x) dx ≤ c

π
∫

−π

∣

∣f(x)
∣

∣

p
w(x) dx, n = 1, 2, . . . ,

π
∫

−π

∣

∣Prf(x)
∣

∣

p
w(x) dx

π
∫

−π

∣

∣f(x)
∣

∣

p
w(x) dx, 0 ≤ r < 1.

(ii) w ∈ Ap.

(For the definition of Ap see e.g., [3]).
Our goal is to investigate the same problem for the classes ϕw(L). We

need some definitions to formulate our results.
Let Φ denote the set of all functions ϕ : R1 → R

1 which are nonnegative,
even, and increasing on (0,∞) such that ϕ(0+) = 0, lim

t→∞
ϕ(t) = ∞.

A function ω is called a Young function on [0,∞) if ω is convex, ω(0) = 0,
and ω(∞) = ∞. A function ϕ is called quasiconvex if there exist a Young

2000 Mathematics Subject Classification. 42A10, 41A17.

Key words and phrases. Fourier Series, Orlicz Class, Mean Covergance.



78 M. KHABAZI

function ω and a constant c > 1 such that ω(t) ≤ ϕ(t) ≤ (ct), t ≥ 0.
The concept of quasiconvexity, as well as the basic definition of the num-
ber p(ϕ), which follows, was introduced by V. Kokilashvili and thoroughly
investigated by him and his colleagues (see e.g., [4]–[6]).

For any quasiconvex function ϕ let us define a number p(ϕ) as

1

p(ϕ)
= inf

{

β : ϕβ is quasiconvex
}

.

We will use some properties of quasiconvex functions.

Lemma 1 ([5]). Let ϕ ∈ Φ. Then the following conditions are equivalent:

(i) ϕ is quasiconvex;

(ii) there exists a constant c such that

ϕ

(

1

|I|

∫

I

f(x) dx

)

≤
c

|I|

∫

I

ϕ
(

cf(x)
)

dx,

for every interval I⊂R and nonnegative integrable function f with suppf⊂I.

Lemma 2 ([5]). Let ϕ ∈ Φ. Then the following conditions are equivalent:

(i) ϕα is quasiconvex for some α, 0 < α < 1;

(ii) there exists a constant c such that

t
∫

0

ϕ(s)

s2
ds ≤ c

ϕ(ct)

t
,

for every t > 0.

Lemma 3 ([6]). Let ϕ ∈ Φ. Then the following conditions are equivalent:

(i) ϕ is quasiconvex and w ∈ Ap(ϕ);

(ii) there exists a constant c such that

ϕ

(

1

|I|

∫

I

f(t) dt

)

≤
c

wI

∫

I

ϕ
(

cf(x)
)

w(x) dx,

for every interval I⊂R and nonnegative integrable function f with suppf⊂I.

Theorem 1. Let w be a weight and ϕ ∈ Φ. The following statements are

equivalent:

(i) ϕ is quasiconvex and w ∈ Ap(ϕ).

(ii) there exists a constant c, such that for every f ∈ ϕw(L)

π
∫

−π

(

σnf(x)
)

w(x) dx ≤ c

π
∫

−π

ϕ
(

f(x)
)

w(x) dx, n = 1, 2, . . . . (1)
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Proof. We will start with the proof of (i) ⇒ (ii). As first let us consider the
case p(ϕ) = 1. As it is well known,

σnf(x) =
1

π

π
∫

−π

f(t)Kn(x − t) dt,

where Kn(t) = 1
n+1

n
∑

j=0

Dj(t).

By Lemma 1 (for the measure dµ(t) = Kn(x − t)dt),

ϕ
(

σnf(x)
)

= ϕ

(

π
∫

−π

f(t)

π
Kn(x − t) dt

)

≤ c1

π
∫

−π

ϕ
(f(t)

π

)

Kn(x − t) dt ≤

≤ c2σn

(

ϕ(c2f)
)

(x). (2)

Hence, as w ∈ A1, by Theorem A we get

π
∫

−π

(

σnf(x)
)

w(x) dx ≤ c2

π
∫

−π

σn

(

ϕ(c2f)
)

(x)w(x) dt ≤

≤ c3

π
∫

−π

ϕ
(

c3f(x)
)

w(x) dx. (3)

Now, let p(ϕ) > 1. There exists p < p(ϕ), such that w ∈ Ap. From the

definition of the number p(ϕ) follows that, ϕ
1
p is quasiconvex. According

to (2),

ϕ
1
p

(

σnf(x)
)

≤ c4σn

(

ϕ
1
p (c4f)

)

(x).

Applying once more Theorem A, we get

π
∫

−π

ϕ
(

σnf(x)
)

w(x) dx =

π
∫

−π

(

ϕ
1
p

(

σnf(x)
)

)p

w(x) dx ≤

≤ c5

π
∫

−π

(

σn

(

ϕ
1
p

(

c4f(x)
)

))

w(x)dx ≤ c6

π
∫

−π

(

ϕ
1
p

(

c4f(x)
)

)p

w(x) dx ≤

≤ c7

π
∫

−π

ϕ
(

c7f(x)
)

w(x) dx. (4)

From (3) and (4) follows (1).
(ii) ⇒ (i). Let us note, that if |t| ≤ π

n+1 , then

Kn(t) =
2

n + 1

( sin 1
2 (n + 1)t

2 sin t
2

)2

≥ c1n. (5)
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Let I ⊂ (−π, π) be an interval, |I| ≤ π
4 , f ≥ 0 and supp f ⊂ I. Suppose

that n is such natural number, that π
4(n+1) ≤ |I| ≤ π

4n
. We will estimate

σnf(x), when x ∈ I:

σnf(x) =
1

π

π
∫

−π

f(t)Kn(x − t) dt =
1

π

∫

I

f(t)Kn(x − t) dt ≥

≥ c2n

∫

I

f(t) dt ≥
c3

|I|

∫

I

f(x) dt.

From (1) then we get

ϕ

(

1

|I|

∫

I

f(t) dt

)

≤
c4

wI

∫

I

ϕ
(

c4f(x)
)

w(x) dx.

According Lemma 3, this means that ϕ is quasiconvex and w ∈ Ap(ϕ).
Theorem 1 is proved.

Theorem 2. Let w be a weight and ϕ ∈ Φ. The following statements are

equivalent:

(i) ϕ is quasiconvex and w ∈ Ap(ϕ).

(ii) there is a constant c, such that for every f ∈ ϕw(L)

π
∫

−π

ϕ
(

Prf(x)
)

w(x) dx ≤ c

π
∫

−π

ϕ
(

f(x)
)

w(x) dx, 0 ≤ r < 1. (6)

Proof. The implication (i)⇒(ii) can be proved the same way as for Theo-
rem 1. Let us show that (ii) ⇒ (i). Let I ⊂ (−π, π) be an interval. One
easily can check that if r = max(0, 1 − |I|) and t ∈ I, then

Pr(t) =
1

2

1 − r2

1 − 2r cos t + r2
≥

1

4|I|
. (7)

If f ≥ 0, supp f⊂I and x ∈ I, then from (7) follows

Prf(x) =
1

π

∫

π

f(t)pr(x − t) dt ≥
c1

|I|

∫

I

f(t) dt.

And the proof can be continued as in Theorem 1.

Theorem 3. Let λ > 0, f(θ) sin2λ θ is integrable on (0, π),
∑

anPλ
n (cos θ) is

the Gegenbauer expansion of f and for 0≤r<1, f(r, θ)=
∑

anrnPλ
n (cos θ).

Then the following inequalities are equivalent:
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(i) There is a constant c, such that the inequalities

π
∫

0

ϕ
(

f(r, θ)
)

w(θ) dθ < c

π
∫

0

ϕ
(

cf(θ)
)

w(θ) dθ, 0 ≤ r < 1,

hold for any f ∈ ϕw(L) on (0, π).
(ii) ϕ is quasiconvex and there exists a number K, independent of I, such

that for every subinterval I of (0, π),

(
∫

I

w(θ) dθ

)(
∫

I

(

w(θ)
)− 1

p(ϕ)−1 (sin θ)2λp′(ϕ) dθ

)

< K

(
∫

I

sin2λ θ dθ

)p(ϕ)

when p(ϕ) > 1 and

∫

I

w(θ) dθ < K

(
∫

I

sin2λ θ dθ

)

essinf
y∈I

(

w(y) sin−2λ y
)

when p(ϕ) = 1.

To prove this theorem we will need a lemma, concerning the Ap classes
generated by continuous Borel measures.

Let µ be a continuous Borel measure on the real line (for every point
α ∈ R, µ{a} = 0), ϕ ∈ Φ and w is a weight function (a.e., positive, locally
integrable function). By definition w ∈ Ap(µ) (0 ≤ r < 1) if

sup
I⊂R

(

1

µI

∫

I

w(x) dµ(x)

)(

1

µI

∫

I

w(x)−
1

p−1 dµ(x)

)p−1

< ∞, when 1< p< ∞

and
1

µI

∫

I

w(x) dµ(x) <≤ cessinf
y∈I

w(y), when p = 1,

where c is independent of I. Here and everywhere the ratio is supposed to
be zero when µI = 0.

Let f ∈ L
1
loc(µ) and define Maximal function

Mµf(x) = Mf(x) = sup
x∈I

1

µI

∫

I

|f(x)| dµ(x). (8)

Lemma 4. Let ϕ ∈ Φ and w is a weight on R. The following conditions

are equivalent:

(i) There exists c1 > 0, such that for every f ∈ L
1
loc(µ)

ϕ(λ)w
{

x : Mf(x) > λ
}

≤

∞
∫

−∞

ϕ
(

c1f(x)
)

w(x) dµ(x). (9)
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(ii) There exists c2 > 0, such that for every interval I and f ∈ L
1
loc(µ)

with supp f⊂I

ϕ

(

1

µI

∫

I

f(x) dµ(x)

)

≤
c2

wI

∫

I

ϕ
(

c2f(x)
)

w(x) dµ(x). (10)

(iii) ϕ is quasiconvex and w ∈ Ap(ϕ)(µ).

Lemma 4 was proved by A. Gogatisahvili and V. Kokilashvili for homo-
genous-type spaces ([5], [6]). The proof is same in our case and we will not
repeat it.

Proof of Theorem 3. (ii) ⇒ (i). As it is known

f(r, θ) =

π
∫

0

P (r, θ, t)f(t) dmλ(t), (11)

where dmλ = sin2λ t dt and

P (r, θ, t) =
λ

π
(1 − r2)

π
∫

0

sin2λ−1 τ

(1 − 2r(cos θ cos t + sin θ sin t) + r2)λ+1
dτ.

The kernel P (r, θ, t) has approximation unit properties, and because of
this, the rest of the implication (ii) ⇒ (i) is the same as in Theorem 1.

(i) ⇒ (ii). Let I ⊂ (0, π), f ≥ 0, supp f⊂I and r = 1 − |I|
6 . As is shown

in [7], there exists a constant c, independent of I, θ and t, such that

P (r, θ, t) ≥ c

(
∫

I

sin2λ τ dτ

)−1

,

when θ, t ∈ I. Then from (11) follows that

f(r, θ) ≥
c

mλI

∫

I

f(t) dmλ(t). (12)

If we apply (12) in (9), will get

ϕ

(

1

mλI

∫

I

f(x) dmλ(x)

)
∫

I

w(θ) dθ ≤ c

∫

I

ϕ
(

cf(θ)
)

w(θ) dθ.

Now, using Lemma 4 for the weight w(θ) sin−2λ θ, we obtain (i). Theo-
rem 3 is proved.

As we touched the operator Mµ let us formulate and prove one theorem,
concerning the boundedness of this operator in the classes ϕw(L). The same
problem for homogenous-type spaces was investigated by A. Gogatishvili
and V. Kokilashvili [5].
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Theorem 4. Let µ be nonnegative, continuous Borel measure on the real

axis, ϕ ∈ Φ, w is a weight function and the operator M be defined by the

equality (9). Then the following statements are equivalent:

(i) ϕα is quatsiconvex for some α, 0 < α < 1 and w ∈ Ap(ϕ)(µ).
(ii) There exists a conctant c, such that for every f ∈ L

1
loc(µ)

∞
∫

−∞

ϕ
(

Mf(x)
)

w(x) dµ(x) ≤ c

∞
∫

−∞

ϕ
(

f(x)
)

w(x) dµ(x).

Lemma 5. If µ is continuous Borel measure on the real axis and µ(a, b)<
∞, then there exists a point c ∈ (a, b), such that

µ(a, c) =
1

2
µ(a, b). (13)

Proof. Define on [a, b] a function m by the equality: m(x) = µ(a, x). We
will show that m is continuous on [a, b]. Let x ∈ [a, b] and h > 0. Then

m(x + h) − m(x) = µ[x, x + h) → µ{x}

when h → 0. But µ{x} = 0 and therefore m(x+h) → m(x). So, lim
t→x+

m(t) =

m(x). In the same manner we can show that lim
t→x−

m(t) = m(x). Thus m is

continuous. As m(a) = 0 and m(b) = µ(a, b), by the Cauchy Theorem we
can find a point c ∈ (a, b), for which the (13) holds.

Lemma 6. Let µ be nonnegative, continuous Borel measure on the real axe,

ϕ ∈ Φ and µE > 0. If there exists a number c, such that the inequality
∫

E

ϕ
(

Mf(x)
)

dµ(x) ≤ c

∫

E

ϕ
(

f(x)
)

dµ(x) (14)

holds for every measurable function f with supp f⊂E, then ϕα is quasicon-

vex for some α, 0 < α < 1.

Proof. Define a Borel measure ν by the following way:

νe = µ
(

e ∩ E
)

=

∫

e

χE(x) dµ(x)

where e is any Borel measurable set. The measure ν is absolutely continuous
with respect of the measure µ and dν

dµ
(x) = χE(x) for a.e., x by the sense

of the measure µ. Without restricting generality we can assume that 0 <

µ(0, 1) < ∞, 0 ∈ E and dν
dµ

(0) = 1. We can also assume that ν(0,x)
µ(0,x) ≥ 3

4

when x ≤ 1. By the definition of ν it means that

µ(0, x) ∩ E ≥
3

4
µ(0, x) (15)
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when x ≤ 1. By Lemma 5, there exists a decreasing sequence (rj) of real
numbers, such that r0 = 1 and

µ(0, rj) = 2−jµ(0, 1). (16)

Let us estimate µE ∩ (rj+1, rj), using (15) and (16):

µE ∩ (rj+1, rj) = µE ∩ (0, rj) − µE ∩ (0, rj+1) ≥
3

4
µ(0, rj) − µ(0, rj+1) =

=
3

2
µ(rj+1, rj) − µ(rj+1, rj) =

1

2
µ(rj+1, rj) =

µ(0, 1)

2j+2
. (17)

Let t > 0, k ∈ N and f(t) = χE∩(0,rk)(t). Suppose that rj+1 < x ≤ rj .
If j ≥ k, then

Mf(x) ≥
1

µ(0, rk)

∫

(0,rk)

f dµ = t
µE ∩ (0, rk)

µ(0, rk)
>

t

2
(18)

and when j < k,

Mf(x) ≥
1

µ(0, rj)

∫

(0,rj)

f dµ = t
µE ∩ (0, rk)

µ(0, rk)
>

t

2

µ(0, rk)

µ(0, rj)
= t2j−k−1. (19)

From (18), (19) and (17) follows:

∫

E

ϕ
(

Mf(x)
)

dµ(x) ≥

k−1
∑

j=0

∫

E∩(rj+1,rj)

ϕ
(

Mf(x)
)

dµ(x) >

>

k−1
∑

j=0

ϕ
( t

2k−j+1

)

µE ∩ (rj+1, rj) + ϕ
( t

2

)

µE ∩ (0, rk) >

>
1

2

k−1
∑

j=0

ϕ
( t

2k−j+1

)µ(0, 1)

2j+1
.

On the other hand,
∫

E

ϕ
(

cf(x)
)

dµ(x) = ϕ(t)µE ∩ (0, rk) ≤ ϕ(ct)2−kµ(0, 1),

or, which is the same,

k+1
∑

i=1

2iϕ
( t

2i

)

≤ c1ϕ(ct).

Tending k to infinity we get

∞
∑

i=1

2iϕ
( t

2i

)

≤ c1ϕ(ct). (20)
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It can be easily shown that from (20) follows the inequality:

t
∫

0

ϕ(s)

s2
ds ≤ c2

ϕ(ct)

t
.

Then, by Lemma 2, ϕα is quasiconvex for some α, 0 < α < 1.

Proof of Theorem 4. (i) ⇒ (ii). Let p < p(ϕ) be such that w ∈ Ap. By the

definition of p(ϕ), ϕ
1
p is quasiconvex. Then, by Lemma 1,

ϕ
1
p

(

Mf(x)
)

≤ c1M
(

ϕ
1
p (c1f)

)

(x),

and, as the operator is bounded in Lp
w(µ) space ([8], Theorem 7),

∞
∫

−∞

ϕ
(

Mf(x)
)

w(x) dµ(x) =

∞
∫

−∞

(

ϕ
1
p

(

Mf(x)
)

)p

w(x) dµ(x) ≤

≤ c2

∞
∫

−∞

(

M
(

ϕ
1
p

(

c1f
)

)

(x)
)p

w(x) dµ(x) ≤ c3

∞
∫

−∞

ϕ
(

c3f(x)
)

w(x) dµ(x).

(i) ⇒ (ii). Let k be such that the set E = {x : 1
k
≤ w(x) ≤ k} is of positive

measure, f ∈ L
1
loc(µ) and supp f⊂E. Then

∫

E

ϕ
(

Mf(x)
)

dµ(x) ≤ c

∫

E

ϕ
(

f(x)
)

dµ(x).

By Lemma 6 ϕα is quasiconvex and by Lemma 4 w ∈ Ap(ϕ)(µ). The
proof is complete.
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