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KAROUBI–VILLAMAYOR K-THEORY, WEAKLY STABLE
C∗-CATEGOROIDS, AND KK-THEORY

T. KANDELAKI

Abstract. The aim of the paper is to give, according to Karoubi–Villamayor
K-groups, an interpretation of Kasparov KK-groups. It continues the study
of KK-theory by the methods of K-theory, focusing attention on the problem
posed and discussed in the author’s papers published in 2000 and 2001. But
the methods used in those papers are based on the excision property and
Morita invariance of algebraic and topological K-theories on the category
of C∗-algebras, which are not applicable to Karoubi–Villamayor K-theory,
since excision holds only for some sub class of short exact sequences of C∗-
algebras. In this paper we introduce and study a weak stability property of
the C∗-category Rep(A, B), which is the key to our problem.
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Introduction

An interpretation of Kasparov KK-theory is an interesting and useful prob-
lem. There are various points of view and directions in the study of the theory.
Such interpretations open new application areas.

This article continues the study of KK-theory by the methods of K-theory,
focusing attention on the problem posed and studied in the author’s article [5].
The study of the additive C∗-category Rep(A,B) by the methods of K-theory
and homological algebra seems to be a promising problem. In particular, the
following result was announced in [5] (see also [8]):

(1) Quillen’s algebraic K-groups of Rep(A,B) are isomorphic, up to a shift
of dimension, to Kasparov KKn(A, B)-groups;

The proof of this result is based on the excision property and Morita in-
variance of the algebraic K-theory. It is not applicable to Karoubi–Villamayor
K-theory, since excision holds only for some sub-class of short exact sequences.

In this article we prove the analogue of the main result of [5] for Karoubi–
Villamayor K-theory. (Note that the method of the present paper is applicable
to the case pointed out above. However, the proof of this interesting fact is
omitted here.)

In more detail the contents of this paper are the following.
In Section 1 we recall the definition and properties of C∗-categoroids (see [7]).
In Section 2 we study the weak continuity property of Karoubi–Villamayor K-

groups of additive C∗-categoroids. Let A be an additive C∗-categoroid. There
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is an inductive system of abelian groups {KVn(L(a))} where a ∈ ObA and
L(a) = hom(a, a) and a natural isomorphism

lim−→
a

KVn(L(a)) ' KVn(A).

In Section 3 we define Karoubi–Villamayor K-functors on the category of C∗-
categoroids and ∗-functoroids. By the weak continuity property we prove that
the functors KVn and KVn(−⊗K) are naturally isomorphic on the category of
weakly stable additive C∗-categoroids and additive ∗-functoroids. In the con-
cluding section, we recall the definition of the additive C∗-category Rep(A,B)
and show that Karoubi–Villamayor K-groups are naturally isomorphic to topo-
logical K-groups on the category of weakly stable additive C∗-categoroids. Since
the additive C∗-category Rep(A,B) is a weakly stable C∗-category, one has a
natural isomorphism

KVn(Rep(A,B)) ' Kt(Rep(A,B)).

Now, according to the main result of [5], one has a natural isomorphism

KVn(Rep(A,B)) ' KKn−1(A,B).

1. C∗-Categories and C∗-Categoroids

In this section, we discuss some elementary properties of C∗-categories and C∗

-categoroids, and also a natural categorical generalization of unital C∗ -algebras
and C∗-algebras. We give the basic definitions, constructions and properties
without proofs, but for details we refer the reader to [7] (cf. [1], [14]).

Recall that a diagram scheme D consists of a class of objects ObD and a set
hom(a, b) for any a, b ∈ ObD. By a C-scheme we mean a diagram scheme D
such that hom(a, b) has the structure of a C-linear space, where C is the field
of complex numbers. D is called an involutive C-scheme if:

(a) an anti-linear map ∗ : hom(a, b) → hom(b, a) is given for each a, b ∈ ObD.
(b)the bilinear composition law

hom(a, b)× hom(b, a) → hom(a, a),

hom(a, b)× hom(b, b) → hom(a, b),

hom(a, a)× hom(a, b) → hom(a, b)

is associative for any a, b ∈ ObD.
(c) (f ∗)∗ = f , and (fg)∗ = g∗f ∗ if the composition fg exists.
By a C∗-scheme is meant an involutive C-scheme D such that:
(1) hom(a, b) is a Banach space;
(2) involution is an isometry;
(3) ‖f‖2 = ‖f ∗f‖ for any f ∈ hom(a, b);
(4) the morphism f ∗f is a positive element in the C∗-algebra hom(a, a) for

any f ∈ hom(a, b) and a, b ∈ ObD.
A diagram scheme D is called a categoroid if it satisfies all the axioms of a

category except the existence of the identities of objects. Let a and b be objects
from D. Then hom(a, b) denotes a set of morphisms from a to b. The definition
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of morphisms between categoroids is analogous to that of a functor, and is called
a functoroid. If F : D → D′ is a functoroid of categoroids and there exists the
composition of morphisms f, g in D, then F(fg) = F(f)F(g).

A categoroid A is called a C∗-categoroid if it has the structure of a C∗-scheme
such that

(1) the composition of morphisms is bilinear and ‖fg‖ ≤ ‖f‖ · ‖g‖;
(2) if A is both a category and a C∗-categoroid, then it is called a C∗-category.

Remark. The term “C∗-categoroid” means a C∗-categoroid with a small
underlying categoroid.

(1) The category with Hilbert spaces as objects and all bounded linear maps
as morphisms is a large C∗-category.

(2) Let A be a C∗-algebra. The category H(A) with countably generated
right A-modules as objects and all bounded A-linear maps which have adjoints
as morphisms is a C∗-category.

(3) A C∗-algebra is a C∗-categoroid with one object ¦ and elements of the
C∗-algebra as morphisms.

(4) The category of countably generated Hilbert right B-modules as objects
and compact B-linear maps as morphisms has the structure of a C∗-categoroid.

Let A and B be C∗-categoroids. A ∗-functoroid F : A → B is given if F
maps the objects and morphisms of A into the objects and morphisms of B,
respectively, so that:

a) F(fg) = F(f)F(g);
b) F(f + g) = F(f) + F(g);
c) F(λf) = λF(f);
d) F(f ∗) = F(f)∗ when the left side is defined.
If A and B are categories and F(1a) = 1F(1a) for any a ∈ ObA, then F is

called a ∗-functor. We say that a ∗-functoroid between C∗-categoroids is faithful
if canonical maps between objects and between morphisms are injections.

Any ∗-functoroid is norm-decreasing. Moreover, the faithful ∗-functoroid is
norm preserving.

Let A be a C∗-categoroid and I ⊂ MorA. Let homI(a, b) = hom(a, b) ∩ I.
Then I is called a left ideal if homI(a, b) is a linear subspace of hom(a, b) and
f ∈ homI(a, b), g ∈ hom(b, c) implies gf ∈ homI(a, c). A right ideal is defined
similarly. I is a two-sided ideal if it is both a left and a right ideal. An ideal I is
closed if homI(a, b) is closed in hom(a, b) for each pair of objects. I determines
an equivalence relation on the morphisms of A : f ∼ g, if f − g ∈ I. If I = I∗ is
an ideal of A, the set of equivalence classes A/I can be made into a ∗-categoroid
in a unique way.

Arguing as for C∗-algebras, one can show that if A is a C∗-categoroid and I
a closed two-sided ideal of A, then I = I∗ and A/I is a C∗-categoroid.

Let A be a C∗-categoroid. A C∗-category B is called a categorization of A if
A is contained in B as an ideal.
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There exists the smallest categorization A+ of A. This C∗-category has the
same objects as A, while homA+(a, a) is homA(a, a)+ if the C∗-algebra hom(a, a)
is non-unital and homA(a, a) otherwise.

Any ∗-functoroid F from A into the large C∗-category of Hilbert spaces and
bounded linear maps is said to be a representation. If F is faithful, then it is
called a faithful representation.

Let A be a C∗-categoroid. Then there exists a faithful representation.
A C∗-category M(A) is said to be the multiplier C∗-category of A if A is a

closed two-sided ideal in M(A) and has the following universal property: let D
be a C∗-categoroid containing A as a closed two-sided ideal; then there exists a
unique ∗-functoroid d : D → M(A) such that the diagram

A
⊂−−−→ D

‖
y

yd

A
⊂−−−→ M(A)

is commutative. There exists the multiplier C∗-category for any C∗-categoroid.
This is the largest categorization of a C∗-categoroid.

A C∗-categoroid A is said to be an additive C∗-categoroid if there exists an
additive C∗-category containing A as a closed two-sided ideal. Of course, in this
situation the multiplier C∗-category must be an additive C∗-category. A func-
toroid f : A → A′ is said to be additive if it is the restriction of some additive
functor between additive C∗- categories containing the relevant categoroids as
ideals.

Let A be a C∗-categoroid. Then there exists a unique additive C∗-categoroid
F(A) satisfying the following conditions:

(1) A is a full sub-categoroid of F(A);
(2) any object in F(A) is a finite sequence of objects in A;
(3) any morphism from a = (a1, . . . , an) to a′ = a′1, . . . , a

′
m is an n×m-matrix

of the form (αij), where αij : ai → a′j is a morphism in A;
(4) a composition is the product of matrices.
The structure of a C∗-category is defined as follows. Let φA → H(C) be a

faithful representation in the large additive C∗-category of Hilbert spaces. Then
it has an extension to an additive faithful representation F(φ) : F(A) → H(C).
Thus one has an induced C∗-norm on F(A).

Let A be a C∗-category. The pseudo-abelian C∗-category of the additive
C∗-category F(A) is denoted by P(A).

In the sequel, we will need the notation of a C∗-tensor product of a C∗-
categoroid on a C∗-algebra K of compact operators on a countably generated
Hilbert space:

• Let A be a C∗-categoroid. Let A ¯ K be an involutive categoroid with
the set of objects that is equal to the set objects of A and

hom(a, a′)A¯K = hom(a, a′)¯K,
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where “¯” is the algebraic tensor product over the given field. Since
there exists a faithful imbedding of A in the category of Hilbert spaces,
there also exists the standard faithful imbedding of A¯K in the category
of Hilbert spaces. Consider the category A ⊗ K with Ob(A ⊗ K) =
Ob(A¯K), and hom(a, a′)A⊗K is the completion of hom(a, a′)A¯K with
respect to the induced C∗-norm from the category of Hilbert spaces.
The constructed C∗-category is said to be the C∗-tensor product of A
and K.

Lemma 1.1. Let A be an additive C∗-categoroid. Then A⊗K is an additive
C∗-categoroid too.

Proof. Let A′ be an additive C∗-category containing A as an ideal. Then it is
easy to check that A′ ⊗ K+ is an additive C∗-category, too. One has an exact
sequence of C∗-algebras

0 → hom(a, a)A⊗K ⊗K+ → hom(a, a)A′⊗K+ ⊗K+.

It implies, according to the definition of a C∗-categoroid, that A⊗K is an ideal
in the additive C∗-category A′ ⊗ K+. This means that A ⊗ K is an additive
C∗-categoroid. ¤

2. Some Properties of Karoubi–Villamayor K-Theory

In this section we want to establish a property of Karoubi–Villamayor K-
functors KVn, n ≥ 1, which we call weak continuity. This property will play
one of the major role in the proof of our main result.

Remark. The groups K−n, n ≥ 1, from [11] is denoted here by KVn.
Let A be an additive C∗-category. Then one has a sequence of additive

categories

(1) A(1) = A;
(2) A(n) = A[x1, . . . , xn−1], if n > 1.

The objects of the category A[x1, . . . , xn] are the objects of A and a morphism
from M into N is a formal polynomial

∑
i1,...,in

ai1,...,inxi1
1 · · ·xin

n ,

where ai1,...,in ∈ hom(M, N). A composition is analogous to the product of
polynomials.

Any additive functor ϕ : A → B may be extended to a functor ϕ(n) : A(n) →
B(n) which is given on morphisms by the map

∑
i1,...,in

ai1,...,inxi1
1 · · · xin

n 7→
∑

i1,...,in

ϕ(ai1,...,in)xi1
1 · · · xin

n .

Let E (n)(ϕ) be a set of pairs (E, α), where E ∈ ObA(n) = ObA and α is an
automorphism of E in A(n) such that ϕ(n)(α) = 1ϕ(E); moreover, if n > 1 and
one of xi is 0 or 1, then α = α(x1, . . . , xi, . . . , xn−1) = 1.
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Let H(n)(ϕ) be a set of pairs of the form (E, h), where h = h[x1, . . . , xn−1, t]
such that

(1) h[x1, . . . , xi, . . . , xn−1, t] = 1A
E, if xi = 1 or 0.

(2) ϕ(n)(h[x1, . . . , xi, . . . , xn−1, t]) = 1ϕ(E);

Pairs (E, α0) and (E, α1) are homotopic if there exists a pair (E, h) ∈ H(n)(ϕ)
such that

• h(x1, . . . , xn−1, 0) = α0 and h(x1, . . . , x(n−1), 1) = α1.

Pairs (E,α) and (E ′, α′) are said to be equivalent if there exist a pair (G, 1G)
such that

α⊕ 1E′ ⊕ 1G is homotopic to 1E ⊕ α′ ⊕ 1G.

By definition KVn(ϕ) is the set of classes of equivalent pairs in En(ϕ). The
latter is an abelian group with respect to the sum

(E, α) + (E ′, α′) = (E ⊕ E ′, α⊕ α′)

(cf. [11]).

Proposition 2.1. Let I be an ideal in the additive categories A and B.
Let Γ : A → B be an additive functor which is the identity on I. Let ϕA

I :
A → A/I and ϕB

I : B → B/I be natural additive functors. Then Γ induces an
isomorphism Kn(ϕA

I ) ≈ Kn(ϕB
I ), n ≥ 1.

Proof. Indeed, let (E, α[x1, . . . , xn−1]) ∈ E (n)(ϕA
I ) and 1A

E be the identity mor-
phism of an object E in A. Then 1A

E − α[x1, . . . , xn−1] ∈ I[x1, . . . , xn−1]. Let
1B

E be the identity morphism of E in B. It is clear that Γ(n)(α) = 1B
E +

(1A
E − α[x1, . . . , xn−1]). Conversely, if (E, β[x1, . . . , xn−1]) ∈ E (n)(ϕB

I ), then
α = 1A

E + (1B
E − β[x1, . . . , xn−1]) ∈ E (n)(ϕA

I ) such that Γ(n)(α) = β. Thus
Γ(n) induces the bijection

E (n)(ϕA
I ) ≈ E (n)(ϕB

I ).

Consider the induced map Γn
H : H(n)(ϕA

I ) → H(n)(ϕB
I ) defined by the equation

Γn
H(E, h) = (E, Γ(n+1)(h)).

Let us show that Γn
H is a bijection. Indeed,

h− 1
A[x1,...,xn−1,t]
E ∈ I[x1, . . . , xn−1, t] and

Γ(n+1)(h) = 1
B[x1,...,xn−1,t]
E + (h[x1, . . . , xn−1, t]− 1

A[x1,...,xn−1,t]
E ).

This equation shows that Γn
H is an injection. Γn

H is a surjection, too. Indeed, if
(E, l) ∈ H(n)(ϕB

I ), then

l[x1, . . . , xn−1, t]− 1
B[x1,...,xn−1,t]
E ∈ I[x1, . . . , xn−1, t]

and

h[x1, . . . , xn−1, t]=1
A[x1,...,xn−1,t]
E +(l[x1, . . . , xn−1, t]− 1

B[x1,...,xn−1,t]
E )∈H(n)(ϕA

I ).

One has Γn
H(h[x1, . . . , xn−1, t]) = l[x1, . . . , xn−1, t]. Now, according to the defi-

nition of the group Kn(ϕ), it is clear that Kn(ϕA
I ) ≈ Kn(ϕB

I ), n ≥ 1. ¤
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Recall that a morphism s : E → E ′ in A is said to be an isometry if s∗s = 1E.
It is clear that ps = ss∗ is a projection.

Let s : E → E ′ be an isometry and α be an automorphism of E; then
ads(α) = sαs∗ + (1E′ − ps) is an automorphism of E ′ in A(n).

Lemma 2.2. Let s : E → E ′ be an isometry. Then (E, α) and (E ′, ads(α))
are equivalent pairs.

Proof. Remark that

(1) (E,α) ∼ (E ⊕ E ′ ⊕ E ′, α⊕ 1E′ ⊕ 1E′).
(2) (E, ads(α)) ∼ (E ⊕ E ′ ⊕ E ′, 1E ⊕ ads(α)⊕ 1E′).

On the other hand, there exists an isomorphism of the pair (E ⊕ E ′ ⊕ E ′, α ⊕
1E′ ⊕ 1E′) to the pair (E ⊕ E ′ ⊕ E ′, 1E ⊕ ads(α) ⊕ 1E′) induced by a unitary
isomorphism u : E ⊕ E ′ ⊕ E ′ → E ⊕ E ′ ⊕ E ′, where

u =




0 0 s∗

s (1E′ − ps) 0
0 ps (1E′ − ps)


 ; u−1 =




0 s∗ 0
0 (1E′ − ps) ps

s 0 (1E′ − ps)


 .

But, by Lemma 6.1 in [11], the latter pairs in (1) and (2) are equivalent. Thus
(E, α) and (E ′, ads(α)) are equivalent pairs, too. ¤

Definition 2.3. Pairs (E, α) and (E ′, α′) are said to be ι-equivalent if there
exist isometries s : E → G and s′ : E ′ → G such that the pairs (G, ads(α)) and
(G, ads′(α

′)) are homotopic.

Proposition 2.4. Pairs (E, α) and (E ′, α′) are equivalent if and only if they
are ι-equivalent.

Proof. Let (E, α) and (E ′, α′) be equivalent pairs. Consider the isometries s :
E → E ⊕ E ′ ⊕G and s′ : E ′ → E ⊕ E ′ ⊕G defined by matrices


1E

0
0


 and




0
1E′

0


 ,

respectively. Of course, ads(α) = α⊕1E′⊕1G and ads′(α
′) = 1E⊕α′⊕1G. One

has the pairs

(E ⊕ E ′ ⊕G,α⊕ 1E′ ⊕ 1G) and (E ⊕ E ′ ⊕G, 1E ⊕ α′ ⊕ 1G).

By assumption, there exists G such that the latter pairs are homotopic. Thus
(E, α) and (E ′, α′) be ι-equivalent pairs. Conversely, let (E, α) and (E ′, α′) are
ι-equivalent. By assumption, there exist isometries s : E → G and s′ : E ′ → G
such that the pairs (G, ads(α)) and (G, ads′(α

′)) are homotopic. But, by Lemma
2.2, (E, α) ∼ (G, ads(α)) and (E ′, α′) ∼ (G, ads′(α

′)). Therefore (E, α) and
(E ′, α′) are equivalent pairs, too. ¤

Let A′ be a full additive subcategory of an additive category A. It is said to
be cofinal if for any object E in A there exists an isometry s : E → E ′, where
E ′ is an object in A′.
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Proposition 2.5. Let ϕ : A → B be an additive functor, A′ be a cofinal
additive cofinal subcategory of A and ϕ′ be the restriction of ϕ on A′. Then
KVn(ϕ′) = KVn(ϕ).

Proof. Consider the natural homomorphism KVn(ϕ′) → KVn(ϕ) induced by
the map (E ′, α′) 7→ (E ′, α′). Let an element in KVn(ϕ) be represented by
the pair (E, α). Consider an isometry s : E → E ′, where E ′ is an object in
A′. Then the pair (E ′, ads(α)) defines an element in KVn(ϕ′). But by Lemma
2.2 the pairs (E,α) and (E ′, adsα) are equivalent. Thus, we have shown that
the homomorphism is an epimorphism. Now, we have to show that the natural
homomorphism is a monomorphism. Let x = d(E ′, α′) be an element in KVn(ϕ′)
such that the suitable element in KVn(ϕ) is zero. Then by Proposition 2.4 there
exists an isometry s : E ′ → E that (E, ads(α)) is homotopic to (E, 1E). By the
cofinality there exists an isometry s′ : E → E ′′ where E ′′ is an object in A′.
Note that from the fullness of A′ in A it follows that the composition s′s is an
isometry in A′. It is clear that the pair (E ′′, ads′s(α

′)) is homotopic to the pair
(E ′′, 1E′′). This means that d(E ′, α) = 0 in KVn(ϕ′). ¤

Let ϕ : A → B be as above. Consider an object E in A. Let AE be a full
subcategory of A which consists of all finite sums of the form En = E⊕· · ·⊕E
and the zero object. Let ϕE : AE → A′ be the restriction of ϕ on AE. Let
s : E → E ′ be an isometry. Then one has the isometries sn : En → E ′n for any
natural n, where sn = s⊕ · · · ⊕ s (n summands). There is a homomorphism

τ s
EE′ : KVn(ϕE) → KVn(ϕ′E)

induced by the map (En, α) 7→ (E ′
n, adsn(α)). Then Lemma 2.2 implies that

the diagram

KVn(ϕE)
τs−−−→ KVn(ϕE′)

τE

y
yτE′

KVn(ϕ) KVn(ϕ)

commutes, where the vertical arrows are induced by the natural functors AE ⊂
A and AE′ ⊂ A.

Let t : E → E ′ be another isometry. According to Lemma 2.2, one concludes
that τs = τt, since

(E ′
n, ads(α)) ∼ (E ′

n, adt(α)) (2.1)

in the category AE′ .
Consider the ordering “≤” on the set of objects in A:

• E ≤ E ′ if and only if there exists an isometry s : E → E ′.

Thus one has a well-defined direct system of abelian groups {KVn(ϕE), τEE′}
over the directed system (ObA;≤) and the natural homomorphism

τ : lim−→
E

KVn(ϕE) → KVn(ϕ). (2.2)
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Proposition 2.6 (Weak Continuity). Let A and B be additive categories
and ϕ : A → B be an additive functor. Then the natural homomorphism (2.2)
is an isomorphism.

Proof. 1. τ is an epimorphism. Let (E,α) represent an element f in KVn(ϕ).
This pair represents an element f ′ in KVn(ϕE) too. It is clear that τE(f ′) = f ;

2. τ is a monomorphism. Let (E, α) represent an element f in KVn(ϕE)
such that a suitable element in KVn(ϕ) is the zero element. By Proposition
2.4, there exists an isometry s : E → E ′ such that (E ′, ads(α)) is homotopic to
(E ′, 1′E). It implies that τ s

EE′(f) = 0 in KVn(ϕE′), and also in lim−→
E

KVn(ϕE). ¤

3. Karoubi–Villamayor K-Groups and Weakly Stable
C∗-Categoroids

In this section, we define Karoubi–Villamayor K-functors for the pair (A, I),
where A is additive C∗-category and I is a closed ideal. We shall show that this
group is independent of the C∗-category A. Thus there exists a natural defini-
tion of Karoubi–Villamayor K-groups on the category of additive C∗-categoroids
and additive ∗-functoroids. Using this construction, we can extend the definition
of Karoubi–Villamayor K-groups to the category of (not necessarily additive)
C∗-categoroids. It will be shown that Karoubi–Villamayor K-groups and topo-
logical K-groups on the category of weak stable C∗-categoroids are naturally
isomorphic (cf. [11], [4]).

Definition 3.1. Let A be an additive C∗-category and I be an C∗-ideal. Let
π : A → A/I be the natural additive functor. We define Karoubi–Villamayor
KV -functors, for n ≥ 1, by

KVn(A, I) = KVn(π), n ≥ 1. (3.1)

Proposition 3.2. Let I be an additive C∗-categoroid which is a C∗-ideal in
an additive C∗-category A. Then

KVn(A, I) = KVn(M(I), I), n ≥ 1.

Proof. By the universality property of M(A), there exists a natural additive
functor ω : A → M(I) which is the identity functor on I. Then Proposition 2.6
guaranties the assertion. ¤

From Proposition 3.2 it follows that if I is an additive C∗-category, then
KVn(A, I) is naturally isomorphic to KVn(A′, I), where A and A′ are additive
C∗-categories containing I as an ideal. Thus, if I is an additive C∗-categoroid,
we can define

KVn(I) = KVn(A, I),

where A is an additive C∗-category containing I as an ideal. This group is
independent of the choice of an additive C∗-category containing I as a closed
ideal.

It is easy to check that if φ : I → I ′ is an additive functoroid then there is
the induced homomorphism φn : KVn(I) → KVn(I ′).
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Now, we are ready to extend the definition of Karoubi–Villamayor functors
to the category of C∗-categories and ∗-functoroids.

Let A be a C∗-categoroid. We need two C∗-categories A+ (see section one)
and CA, satisfying the following properties: Ob(A+) = Ob(A) and Ob(CA) =
Ob(A); besides that

homA+(a, a′) =





homA(a, a′) if a 6= a′,
homA(a, a) if a = a′ and homA(a, a) is unital,

homA(a, a)+ otherwise

and

homCA
(a, a′) =





0 if a 6= a′,
0 if a = a′ and homA(a, a) is unital,

C otherwise.

Let χA : A+ → CA be the natural ∗-functor which is the identity map on the
set of objects and the induced ∗-homomorphism χa : homA+(a, a) → C is the
natural projection, defined by the map (a, λ) 7→ λ, λ ∈ C. The functor χA

induces the additive functor P(χA):P(A+) → P(CA).

Definition 3.3. Let A be a C∗-categoroid. By definition

KVn(A) = KVn(P(χA)).

So extended Karoubi–Villamayor groups define functors from the category of
C∗-categoroids and ∗-functoroids into the category abelian groups. Indeed, if
f : A → B is a ∗-functoroid, then one has the naturally extended ∗-functoroid
f+ : A+ → B+ and the additive ∗-functor P(f+) : P(A+) → P(B+). Thus one
has the induced homomorphism

fn : KVn(A) → KVn(B).

The following lemma shows that above functors are a natural extension of
Karoubi–Villamayor groups from the category of additive C∗-categories and
additive ∗-functors to the category of C∗-categoroids and ∗-functoroids.

Lemma 3.4. The functors KVn and KVn are isomorphic on the category of
additive C∗-categories and additive ∗-functors.

Proof. Let A be an additive C∗-category and ϑ be the trivial additive category
containing only zero object. Let τ : A → ϑ be the trivial additive functor.
By definition KVn(A) = KVn(ϑ). Since A is a C∗-category, A+ = A and
CA ' ϑ. Thus KVn(A) = KVn(P(A)). According to Proposition 2.5, it is
easy to check that KVn(A) = KVn(P(A)), where P(A) is the pseudo-abelian
C∗-category of A. Since A is an additive C∗-category, the natural imbedding
A ↪→ F(A) is an equivalence of additive categories. Thus it induces equiva-
lence of categories P(A) and P(A), and KVn(P(A)) = KVn(P(A)). Therefore,
KVn(A) = KVn(A). ¤
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Definition 3.5. A C∗-categoroid A is said to be directed if for any two
objects a and a′ in A there exists an object b and isometries s : a → b and
s′ : a′ → b in an M(A).

For example, any additive C∗-categoroid is a directed C∗-categoroid.
Let A be a directed C∗-categoroid. Then one can form, as in the case of addi-

tive C∗-categoroids, a direct system of abelian groups {KVn(L(E)), τEE′} over
directed set (ObA;≤). Proposition 2.6 implies that the natural homomorphism

τ : lim−→
E

KVn(L(E)) → KVn(A) (3.2)

is an isomorphism. The following property is said to be the weak continuity of
functors KVn:

(1) Let A be a directed C∗-categoroid. Let sa : a → a′ be an isometry
in A′ containing A as a closed ideal. Let ad(s) : L(a) → L(a′) be a
∗-homomorphism defined by the map f 7→ safs∗a and let ia : L(a) → A
be the natural ∗-functoroid defined by the maps a 7→ a and f 7→ f ,
f ∈ L(a). Then the diagram

KVn(L(a))
(ad(s))n−−−−→ KVn(L(a′))

(ia)n

y
y(ia′ )n

KVn(A) KVn(A)

commutes.
(2) Let A be a directed C∗-category. For any element α ∈ KVn(A), there

exist an object a ∈ A and an element αa ∈ KVn(L(a)) such that
(ia)n(αa) = α.

Definition 3.6. Let A be a C∗-categoroid. A ∗-functoroid G : A → A is
said to be inner if for any object a ∈ A there exists an isometry sa : a → G(a)
in A′, such that G(f) = safs∗a, ∀f ∈ L(a).

Proposition 3.7. Let A be a directed C∗-categoroid and let G be an inner
additive ∗-functoroid. Then

Gn : KVn(A) → KVn(A)

is the identity homomorphism.

Proof. According to the weak continuity property (1) and (2), for any element
α ∈ KVn(A) there exist an object a ∈ A and an element αa ∈ KVn(L(a)) such
that (ia)n(αa) = α, and for any isometry sa : a → a′ one has a commutative
diagram

KVn(L(a))
(ad(sa))n−−−−−→ KVn(L(G(a)))y(ia)n

y(iG(a))n

KVn(A) KVn(A).
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Consider the commutative diagram

L(a)
Ga−−−→ L(G(a))

ia

y
yiG(a)

A
G−−−→ A

where Ga is a ∗- homomorphism which is the restriction of G on the object a.
Thus the following diagram

KVn(L(a))
(Ga)n−−−→ KVn(L(G(a)))

(ia)n

y
y(iG(a))n

KVn(A)
Gn−−−→ KVn(A)

commutes. Since G is inner, there exists an isometry sa : a → G(a) such that
Ga(f) = ad(sa)(f), f ∈ L(a) (definition 3.6) and the diagram

KVn(L(a))
(ad(sa))n−−−−−→ KVn(L(G(a)))

(ia)n

y (iG(a))n

y
KVn(A)

Gn−−−→ KVn(A)

commutes. Comparing the first and the last commutative diagrams one con-
cludes that Gn is the identity homomorphism. ¤

Let K be the C∗-algebra of compact linear maps in H. Consider K as a
categoroid with one object. Let A be a directed C∗ -categoroid. Then A⊗K is
a directed C∗-categoroid. Indeed, it is enough to remark that if s is an isometry
in the C∗-category A′, containing A as a closed ideal, then s⊗1H is an isometry
in A⊗ L(H) containing A⊗K as a closed ideal. Define a ∗ -functoroid

eA : A → A⊗K
to be the identity on objects and defined on the morphisms by a map f 7→ f⊗p,
where f is a morphism in A and p is a rank one projection in K.

Definition 3.8. A directed C∗-categoroid A is said to be weak stable if there
exists a ∗-functoroid GA : A⊗K → A such that the composition GA · eA is an
inner functoroid.

Consider a functor

KVKn = KVn(−⊗K)

on the category of C∗-categoroids. A simple check shows that Proposition 2.6
holds for KVKn , too. The functor KVKn is said to be the stabilization of KVn.
The following theorem is one of the main result in this paper.

Theorem 3.9. The functor KVn is isomorphic to KVKn , for any n ≥ 1, on
the full subcategory of weakly stable C∗-categoroids.
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Proof. 1. nNote that if A is a weakly stable C∗-categoroid, then A ⊗ K is a
weakly stable C∗-categoroid, too. Indeed, consider the homomorphism

eA⊗K : A⊗K → A⊗K ⊗K
given by the map a ⊗ k 7→ a ⊗ k ⊗ p, where p is a fixed rank one projection.
Then the homomorphism

GA⊗K : A⊗K ⊗K → A⊗K
is defined by the map a⊗ k ⊗ l 7→ GA(a⊗ l)⊗ k. It is clear that

GA⊗K · eA⊗K = (GA · eA)⊗ idK

and the isometry sa ⊗ idK satisfies

ad(sa ⊗ idK)(f ⊗ k) = (GA⊗K · eA⊗K)(f ⊗ k).

2. Let ρ : A⊗K⊗K → A⊗K⊗K be an isomorphism of C∗-categoroids which
is the identity on the objects and defined on the morphisms by the twisting map
a⊗ k ⊗ l 7→ a⊗ l ⊗ k. Thus the diagram

A⊗K ⊗K ρ−−−→ A⊗K ⊗K
GA⊗idK

y
yGA⊗K

A⊗K A⊗K
commutes.

3. The functoroid ρ is an inner ∗-functoroid. Let ρ′ : L(H) ⊗ L(H) →
L(H) ⊗ L(H) be a ∗-isomorphism defined by a map f ⊗ l 7→ l ⊗ f . Consider
a linear map µ : H ⊗H → H⊗H defined by x ⊗ y 7→ y ⊗ x. The map µ is a
self-adjoint (bounded) unitary map. Indeed,

〈µ(x⊗ y); x′ ⊗ y′〉 = 〈y; x′〉 · 〈x; y′〉 = 〈x⊗ y; µ(x′ ⊗ y′)〉.
Let f ⊗ l : H⊗H → H⊗H be a bounded linear map and x, y ∈ H; then

µ(f ⊗ l)µ(x⊗ y) = µ(f ⊗ l)(y ⊗ x) = µ(f(y)⊗ l(x))

= l(x)⊗ f(y) = (l ⊗ f)(x⊗ y) = ρ′(f ⊗ g)(x⊗ y).

Now, we are ready to show that the functoroid ρ is inner. Indeed, consider a
unitary morphism idE⊗µ : E → E in the C∗-category M(A)⊗L(H))⊗L(H)).
Let f ⊗ (k ⊗ l) ∈ L(E). Then

(idE ⊗ µ)(f ⊗ (k ⊗ l))(idE ⊗ µ) = f ⊗ (l ⊗ k).

4. Let us return to the main aim. A simple check shows that the family of
homomorphisms {(eA)n}A is a natural transformation from functor KVn to the

functor KVKn . Thus the diagram

KVn(A⊗K)
(eA⊗K)n−−−−−→ KVKn (A⊗K)

(GA)n

y
y(GA)Kn

KVn(A)
(eA)n−−−→ KVKn (A)
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commutes. Since ρ is an inner isomorphism, it follows that

(GA)Kn · (eA⊗K)n = (GA ⊗ idK)n · (eA⊗K)n

= (GA⊗K)n · (ρ)n · (eA⊗K)n = (GA⊗K)n · (eA⊗K)n

is the identity. Thus (eA)n is an epimorphism. According to the weak con-
tinuity property, one has Gn · (eA)n = idKVn(A). This implies that (eA)n is a
monomorphism. Thus (eA)n is an isomorphism. ¤

It is a well-known fact that the stabilizations of Karoubi–Villamayor K-
functors are naturally isomorphic to the topological K-functors Kt

n on the cat-
egory of C∗-algebras [3]. Similar to Karoubi–Villamayor K-groups, one can
establish the weak continuity for topological K-theory. Therefire topological
K-functors and stabilizations of Karoubi–Villamayor K-functors are naturally
isomorphic. So, in Theorem 3.9, the functors KVK

n may be replaced by the
functors of topological K-theory. Thus Theorem 3.9 may be formulated in the
following form.

Corollary 3.10. The functor KVn is isomorphic to Kt
n, for any n ≥ 1, on

the full subcategory of weakly stable C∗-categoroids.

4. Karoubi–Villamayor K-Theory and KK-Theory

In this section, we recall the definition of the C∗-category Rep(A,B), where
A is an involutive algebra and B is a σ-unital C∗-algebra (see also [15], where
it is denoted by D(A,B)). We will show that it is a weak stable category
and according to the results of Section 3 and the main result of [5], calculate
Kasparov KK-groups as Karoubi–Villamayor K-groups of Rep(A, B) (up to a
shift of dimension).

LetH(B) be the C∗-category of countably generated right Hilbert B-modules,
the B-homomorphisms of which have adjoints. The norm of a morphism is
defined as the norm of a linear bounded map (see [12]). H(B) is an additive
C∗-category with respect to the sum of Hilbert modules.

In the additive C∗-category Rep(A,B), objects are all pairs of the form (E; φ),
where E is an object in H(B) and φ : A → L(E) is a ∗-homomorphism. A
morphism f : (E, φ) → (E ′, φ′) is a morphism f : E → E ′ in H(B) such that

fφ(a)− φ′(a)f ∈ K(E, E ′)

for all a ∈ A. The structure of the C∗-category follows from H(B). It is easy
to show that Rep(A,B) is an additive C∗-category (but it is not a pseudo-
abelian C∗-category). The universal pseudo-abelian C∗category associated to
Rep(A,B) is denoted by Rep(A,B).

Using the definition of a pseudo-abelian C∗-category, we have the following
description of Rep(A,B). Its objects are triples (E, φ, p), where (E, φ) is an
object and p : (E, φ) → (E, φ) is a morphism in Rep(A,B) such that p∗ = p
and p2 = p. A morphism f : (E, φ, p) → (E ′, φ′, p′) is a morphism f : (E, φ) →
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(E, φ) in Rep(A,B) such that fp = p′f = f . More exactly, f has the properties

fφ(a)− φ′(a)f ∈ K(E,F ), fp = p′f = f. (4.1)

The structure of the C∗-category of Rep(A,B) is obtained from the correspond-
ing structure of Rep(A,B) [5].

Proposition 4.1. Let A be an involutive algebra and B be a C∗-algebra.
Then the category Rep(A; B) is a weakly stable C∗-category.

Proof. Let E be a Hilbert B-module, and H be a separable countably generated
Hilbert space. According to [12], one can construct the Hilbert B-module E⊗H
in the following way. Consider the B-scalar product

〈e0 ¯ h0; e1 ¯ h1〉 = 〈e0; e1〉E · 〈h0; h1〉H
on the algebraic tensor product E ¯H, where 〈−;−〉E is the B-scalar product
on E and 〈−;−〉H is a usual scalar product on H. The completion of E ¯ H
with respect to the so defined B-scalar product is denoted by E ⊗ H. Then,
any object in Rep(A,B)⊗K can be considered as ξ = (E, ϕ), i.e., as an object
in Rep(A,B), where ϕ : A → L(E) is a ∗-homomorphism. By definition,

homRep(A,B)⊗K(ξ, ξ′) = homRep(A,B)(ξ, ξ
′)⊗K.

Let f ⊗ κ : (E, ϕ) → (E ′, ϕ′) be a morphism in Rep(A,B)⊗K. Then

f ⊗ κ : (E ⊗H, ϕ̂) → (E ⊗H, ϕ̂′)

is an morphism in Rep(A,B), where

ϕ̂ : A → L(E ⊗H), a 7→ ϕ(a)⊗ 1H, a ∈ A.

Indeed,

(f ⊗ κ) · (ϕ⊗ 1H)(a)− (ϕ′ ⊗ 1H)(a) · (f ⊗ κ) = fϕ(a)⊗ κ− ϕ′(a)f ⊗ κ

= (fϕ(a)− ϕ′(a)f)⊗ κ ∈ K(E, E ′)⊗K ⊂ K(E ⊗H, E ⊗H).

Define a ∗-functoroid

G : Rep(A,B)⊗K → Rep(A,B)

in the following way. Let ξ = (E, ϕ) be an object in Rep(A,B)⊗K. Then

G(ξ) = (E ⊗H, ϕ̂),

and G(f ⊗ κ) = f ⊗ κ where f ⊗ κ : ξ → ξ′ is a morphism in Rep(A,B) ⊗ K.
It is easy to check that the ∗-functor

I = G · eRep(A,B) : Rep(A,B) → Rep(A,B)

sends an object (E, ϕ) to (E ⊗H, ϕ̂) and a morphism f to f ⊗ p. We will show
below that I = G · eRep(A,B) is an inner functoroid.

Let p be a fixed rank one projection on H, and y be a fixed element in pH
such that ‖y‖ = 1. On the one hand side, there is a B-linear map

sE : E → E ⊗H, x 7→ x⊗ y, x ∈ E,
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and on the other hand, one has a B-linear map

s∗E : E ⊗H → E, x⊗ z 7→ λx, x ∈ E, z ∈ H,

where λ is a unique number such that pz = λy, since pH is a one-dimensional
subspace of H.

Let us show that s∗ is an adjoint to s. Indeed, let x, x′ ∈ E and z ∈ H. Since
p∗ = p and

〈y; z〉 = 〈py; z〉 = 〈y; pz〉,
we have

〈sEx; x′ ⊗ z〉 = 〈x⊗ y; x′ ⊗ z〉 = 〈x; x′〉 · 〈y; z〉 = 〈x; x′〉 · 〈y; pz〉
= λ〈x; x′〉 · 〈y; y〉 = λ〈x; x′〉 = 〈x; λx′〉 = 〈x; s∗E(x′ ⊗ z)〉.

Let ϕ : A → L(E) be a ∗-homomorphism, where A is a separable C∗-algebra.
Then one has the induced ∗-homomorphism ϕ̂ : A → L(E ⊗ H). Let us show
that

sEϕ(a) = ϕ̂(a)sE, ∀a ∈ A.

Indeed, let x ∈ E and a ∈ A, then sEϕ(a)(x) = ϕ(a)(x)⊗ y and

ϕ̂(a)sE(x) = ϕ̂(a)(x⊗ y) = (ϕ(a)⊗ 1H)(x⊗ y) = ϕ(a)(x)⊗ y.

Thus sE is a morphism from ϕ into ϕ̂ in the category Rep(A; B). Moreover,
sE is an isometry. Indeed, s∗EsE(x) = s∗E(x ⊗ y) = x since py = y. Thus if
ϕ is an object in Rep(A,B) then we define the isometry sϕ = sE : ϕ → ϕ̂.
The ∗-functoroid I is an inner functoroid. Indeed, for any object ϕ there is an
isometry

sϕ : ϕ → I(ϕ) = ϕ̂,

and if f : ϕ → ϕ is a morphism, then sϕfs∗ϕ = I(f) since

sϕfs∗ϕ(x⊗ z) = λsϕf(x) = λ(f(x)⊗ y) = f(x)⊗ λy

f(x)⊗ pz = (f ⊗ p)(x⊗ z) = I(f)(x⊗ z),

where x ∈ E, z ∈ H and λ is a scalar number. ¤
Consider the natural transformation κA : KVn(A) → Kt

n(A) defined by the
map (E, α) → (E, α), where α is a continuous map from In−1. Then, according
to Corollary 3.10, Lemma 3.4, Proposition 2.5 and the main result of [5], one
immediately gets the following result.

Theorem 4.2. Let A be a separable C∗-algebra, and B be a σ-unital C∗-
algebra. Then there exist natural isomorphisms

KVn(Rep(A,B)) ' KVn(Rep(A,B)) ' KKn−1(A,B), n ≥ 1,

where KVn stand for Karoubi–Villamayor K-groups from [11].

Remark 1. The main results of this paper also hold for the category of C∗-
algebras, over either real or complex numbers, with a fixed action of a compact
group. One can also replace the Karoubi–Villamayor K-groups by Quillen’s
K-groups. In the latter case, see [6], [8].
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