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GAUGE INVARIANT QUANTIZATION OF AdS3 × S3

PARTICLE DYNAMICS

Introduction

Quantization of particle dynamics in AdS backgrounds is an important
step towards the computation of string energy spectrum [1, 2], that plays a
major role in the study of the AdS/CFT correspondence (for a review see
[3]).

The present paper is a continuation of our previous work [4], where we
investigated particle type string solutions in AdS3 × S3 by the Pohlmeyer
reduction. Quantization of these solutions was done in [5], using the orbit
method in the conformal gauge.

In this paper we apply a gauge invariant approach to the AdS3 × S3

particle dynamics and derive a canonical structure on the physical phase
space. We construct a complete set of gauge invariant variables with the help
of the isometry group dynamical integrals. They provide a nine dimensional
manifold of the mass-shell and the tenth gauge invariant variable is obtained
from the analysis of the symplectic structure. The additional coordinate
becomes an angle variable, which is canonically conjugated to the angular
momentum on S3. The obtained canonical structure leads to the Hollstein-
Primakoff representation for the isometry group generators.

Setting up Notation

Let us denote coordinates of R2,2 and R4 by (X0′ , X0, X1, X2) and
(Y 1, Y 2, Y 3, Y 4), respectively. The AdS3 and S3 spaces are defined by the
embedding conditions
X ·X ≡ −X2

0′−X2
0+X2

1+X2
2 = −1 , Y ·Y ≡ Y 2

1 +Y 2
2 +Y 2

3 +Y 2
4 = 1 . (1)

Introducing the matrices

g =

(
X0′ +X2 X1 +X0

X1 −X0 X0′ −X2

)
, h =

(
Y 4 + iY 3 Y 2 + iY 1

−Y 2 + iY 1 Y 4 − iY 3

)
, (2)
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one finds that the conditions (1) are equivalent to g ∈ SL(2,R) and h ∈
SU(2). Thus, AdS3 and S3 are identified with the group manifolds SL(2,R)
and SU(2), respectively.

We choose the following basis in the sl(2,R) algebra

t0 =

(
0 1

−1 0

)
, t1 =

(
0 1
1 0

)
, t2 =

(
1 0
0 −1

)
. (3)

The matrices tµ (µ = 0, 1, 2) satisfy the relation

tµ tν = ηµν I + ϵµν
ρ tρ , (4)

where I is the unit matrix, ηµν = diag(−1, 1, 1) and ϵµνρ is the Levi-Civita
tensor, with ϵ012 = 1. The inner product defined by ⟨ tµ tν ⟩ = 1

2 tr(tµ tν)
provides the isometry between sl(2,R) and 3d Minkowski space.

A similar basis in the su(2) algebra is given by sn = iσn (n = 1, 2, 3),
where σn are the Pauli matrices (σ1 = t1 σ2 = −it0, σ3 = t2), and they
form the algebra

sm sn = −δmn I − ϵmnl sl . (5)
Hence, su(2) is isometric to R3 by the inner product ⟨sm sn⟩ ≡ − 1

2 tr(sm sn)
= δmn.

From (4) follow the identities

ab + ba = 2⟨ab⟩I , aba = 2⟨ab⟩a − ⟨a2⟩b , (6)

where a and b are two arbitrary vectors of sl(2,R). In particular, a2 = ⟨a2⟩I.
Similarly, if u and v are elements of su(2), from (5) we find u2 = −⟨u2⟩I

and
uv + vu = −2⟨uv⟩I , uvu = −2⟨uv⟩u + ⟨u2⟩v . (7)

The matrices g and h in (2) and their inverse group elements can be
written as

g = X0′ I +Xµ tµ , h = X4 I +Xn sn , (8)
g−1 = X0′ I −Xµ tµ , h−1 = Y4 I − Yn sn , (9)

and by (4) and (5) one finds the following relations between the length
elements

⟨ (g−1 dg) (g−1 dg)⟩ = dX · dX , ⟨ (h−1 dh) (h−1 dh)⟩ = dY · dY . (10)

Particle Dynamics in AdS3 × S3

The dynamics of a massive particle in AdS3×S3 can be described by the
action

S =

∫
dτ

[
⟨g−1 ġ g−1 ġ⟩+ ⟨h−1 ḣ h−1 ḣ⟩

2λ
− λµ2

2

]
. (11)
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Here τ is an evolution parameter, λ plays the role of a Lagrange multi-
plier and µ is the particle mass. In the first order formalism this action is
equivalent to

S =

∫
dτ

[
⟨Rg−1 ġ⟩+ ⟨Rs h−1 ḣ⟩ − λ

2

(
⟨RR⟩+ ⟨RsRs⟩+ µ2

)]
, (12)

where R and Rs are Lie algebra valued (R ∈ sl(2,R), Rs ∈ su(2)) phase
space variables. The Hamilton equations obtained from (12) read

g−1 ġ = λR , Ṙ = 0 , h−1 ḣ = λRs , Ṙs = 0 , (13)

and the variation of (12) with respect to λ provides the mass-shell condition

⟨RR ⟩+ ⟨Rs Rs ⟩+ µ2 = 0 . (14)

To prepare the system for quantization one has to find physical variables
on the constraint surface (14) and calculate the reduction of the symplectic
form defined by (12). This can be done either by gauge fixing or in a gauge
invariant way, using a complete set of gauge invariant variables. Here we
follow the gauge invariant approach.

In order to find a complete set of gauge invariant variables we introduce
the ‘left’ Lie algebra valued quantities

L = g R g−1 , Ls = hRs h−1 , (15)

which have the same norm as the ‘right’ ones
Since the worldlines are timelike, L and R have to be time-like elements

of sl(2,R), i.e. ⟨LL ⟩ = −µ2
a = ⟨RR ⟩, with µa > 0. We also introduce the

norm of Ls and Rs by ⟨Ls Ls ⟩ = µ2
s = ⟨Rs Rs ⟩, and write the mass-shell

condition (14) as µ2
a = µ2

s + µ2.
The first order action (12) defines the pre-symplectic form of the system

θ = ⟨Rg−1dg⟩+ ⟨Rsh−1dh⟩ , (16)

which leads to the following Poisson brackets
{Lµ, Lν}=−2ϵµν

ρ Lρ , {Rµ, Rν}=2ϵµν
ρ Rρ , {Lµ, Rν} = 0 ,

{Ls
m, Ls

n}=2ϵmnl L
s
l , {Rs

m, Rs
n}=−2ϵmnl R

s
l , {Ls

m, Rs
n} = 0 .

(17)

where Lµ = ⟨ tµ L ⟩, Rµ = ⟨ tµ R ⟩, Ls
m = ⟨ sm Ls ⟩, Rs

m = ⟨ sm Rs ⟩. From
these Poisson brackets follow that the components Lµ, Rµ, Ls

m, Rs
m have

vanishing Poisson brackets with the constraint (14). Hence, the components
are gauge invariant and, therefore, their Poisson brackets algebra (17) will
be preserved after the reduction to the physical phase space. By (13), these
components are time independent as well. Obviously, they are the isometry
Noether charges of (11) and satisfy the relations

LµL
µ = −µ2

a = RµR
µ , Ls

mLs
m = µ2

s = Rs
mRs

m . (18)
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Taking into account (14), we conclude that the number of independent
components is nine. On the other hand, the number of independent physical
variables is ten. The missing physical variable has to be constructed from
the group elements g and h.

Note that a given L and R define the group element g ∈ SL(2,R) up to
a rotation angle [6]. A similar statement is also valid for the SU(2) part.
To extract these angle parameters, we introduce normalized Lie algebra
elements

l̂ = L/µa , r̂ = R/µa ; l̂s = Ls/µs , r̂s = Rs/µs (19)

and define auxiliary variables for the SL(2,R) part

cosh 2α
L
= −⟨ l̂ t0 ⟩, cosh 2α

R
= −⟨ r̂ t0 ⟩ , (20)

n̂
L
=

[t0, l̂]
2 sinh 2αL

, n̂
R
= − [t0, r̂]

2 sinh 2αR

. (21)

Similar variables for the SU(2) part are given by

cos 2αs
L
= ⟨ l̂s s3 ⟩, cos 2αs

R
= ⟨ r̂s s3 ⟩ , (22)

n̂s
L
=

[s3, l̂s]
2 sin 2αs

L

, n̂s
R
= − [s3, r̂s]

2 sin 2αs
R

, (23)

and we use the relations

eα n̂ = coshα I + sinhα n̂ , eαs n̂s = cosαs I + sinαs n̂s , (24)

which hold for unit and spacelike n̂ ∈ sl(2,R) and unit n̂s ∈ su(2).
From (6), (7) and (19)-(24) follows that

e−α
L

n̂
L l̂ eαL

n̂
L = t0 , eαR

n̂
R r̂ e−α

R
n̂
R = t0 , (25)

e−αs

L
n̂s

L l̂s eα
s

L
n̂s

L = s3 , eα
s

R
n̂s

R r̂s e−αs

R
n̂s

R = s3 . (26)

Applying these equations to (15), we find the group elements

g = eαL
n̂
L e−φa t0 eαR

n̂
R , h = eα

s

L
n̂s

L eφs s3 eα
s

R
n̂s

R , (27)

where φa and φs are the angle parameters mentioned above.
The insertion of (27) into (16) leads to the following pre-symplectic form

θ = µadφa + θ
L
+ θ

R
+ µsdφs + θs

L
+ θs

R
, with (28)

θ
L
=

µa⟨ [l̂, t0]dl̂ ⟩
4(1− ⟨ t0 l̂ ⟩)

= H
L

dϕ
L
, θ

R
=

µa⟨ [t0, r̂] dr̂ ⟩
4(1− ⟨ t0 r̂ ⟩)

= H
R

dϕ
R
,

θs
L
=

µs⟨ [l̂s, s3] dl̂s ⟩
4(1 + ⟨ s3 l̂s ⟩)

= Hs
L

dϕs
L
, θs

R
=

µs⟨ [s3, r̂s] dr̂s ⟩
4(1 + ⟨ s3 r̂s ⟩)

= Hs
R

dϕs
R
.

(29)
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HL =
µa

2
(l̂0 − 1) , tanϕL =

l̂1

l̂2
, HR =

µa

2
(r̂0 − 1), tanϕR =

r̂2
r̂1

,

Hs
L
=

µs

2
(1− l̂s3) , tanϕs

L
=

l̂s2

l̂s1
, Hs

R
=

µs

2
(1− r̂s3) , tanϕs

R
=

r̂s1
r̂s2

.

(30)

The differential of (28) then takes a canonical form
ω = dµa ∧ dφa + dHL ∧ dϕL + dHR ∧ dϕR+

+dµs ∧ dφs + dHs
L
∧ dϕs

L
+ dHs

R
∧ dϕs

R
, (31)

and we obtain the dynamical integrals in terms of canonical variables
L0 = µa + 2H

L
, R0 = µa + 2H

R
,

L± =
√
µaHL

+H2
L
e±iϕ

L , R± =
√

µaHR
+H2

R
e±iϕ

R ,
(32)

Ls
3 = µs − 2Hs

L
, Rs

3 = µs − 2Hs
R
,

Ls
± =

√
µsHs

L −Hs 2
L

e±iϕs

L , R± =
√
µsHs

R
−Hs 2

R
e±iϕs

R ,
(33)

where L± = 1
2 (L2 ± iL1), R± = 1

2 (R1 ± iR2), Ls
± = 1

2 (L
s
1 ± iLs

2) and
Rs

± = 1
2 (R

s
2 ± iRs

1), µa =
√
µ2 + µ2

s and one can read of µa’s canonical
conjugated variable from (31).

Quantization

The form (32)-(33) dictates the realization of the symmetry generators in
terms of creation-annihilation operators, known as the Holstein-Primakoff
transformation

L0 = µa + 2a†
L
a

L
, R0 = µa + 2a†

R
a

R
,

L+ = a†
L

√
µa + a†LaL

, R+ = a†
R

√
µa + a†RaR

,

L− =

√
µa + a†LaL aL , R− =

√
µa + a†RaR aR ,

(34)

Ls
3 = µs − 2as †

L
as

L
, Rs

3 = µs − 2as †
R

as
R
,

Ls
+ = as †

L

√
µs − as †

L as
L
, Rs

+ = as †
R

√
µs − as †

R as
R
,

Ls
− =

√
µs − as †

L as
L
as

L
, Rs

− =

√
µs − as †

R as
R
as

R
.

(35)

This yields a representation of sl(2,R)
L
⊕ sl(2,R)

R
⊗ su(2)

L
⊗ su(2)

R
, with

the basis vectors |µa; nL ⟩ |µa; nR ⟩ |µs; n
s
L
⟩ |µa; n

s
R
⟩ where nL , nR , µs,

ns
L

, ns
R

are nonnegative integers, with ns
L
≤ µs and ns

R
≤ µs.

The representation is characterized by the Casimir numbers identified
with

CA = −LµL
µ = −RµR

µ = µa(µa − 2) ,

CS = Ls
mLs

m = Rs
mRs

m = µs(µs + 2) .
(36)
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According to (14), CA = CS+µ2, which provides µa = 1+
√
µ2 + (µs + 1)2.

The spectrum of the energy operator E = 1
2

(
L0 +R0

)
then reads

E = µa +mL +mR . (37)
where µa is the lowest energy level for a given spherical orbital momentum
µs.

In this way we reproduce the result obtained in [5] and [7].
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