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Abstract

We consider the Cauchy–Goursat initial characteristic problem for nonlinear wave equations with power nonlinearity. Depending
on the power of nonlinearity and the parameter in an equation we investigate the problem on existence and nonexistence of global
solutions of the Cauchy–Goursat problem. The question on local solvability of the problem is also considered.
© 2007 Elsevier Inc. All rights reserved.
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1. Statement of a problem

In the plane of independent variables x and t consider nonlinear wave equation of the following form:

Lλu := utt − uxx + λ|u|αu = f (x, t), (1)

where λ and α are given real constants, and λα �= 0, α > −1; f is given, while u—unknown real functions.
Denote by DT := {(x, t): 0 < x < t, 0 < t < T }, T � ∞ triangle domain, bounded by characteristic segment

γ1,T : x = t , 0 � t � T , segments γ2,T : x = 0, 0 � t � T and γ3,T : t = T , 0 � x � T .

For Eq. (1) in domain DT consider the Cauchy–Goursat problem on determination of solution u(x, t) by initial-
characteristic conditions [1, p. 228]

ux |γ2,T
= 0, u|γ1,T

= 0. (2)

Certain papers have been devoted to the questions of existence and nonexistence of global solutions of nonlinear hy-
perbolic equations for different problems (such as initial, mixed and nonlocal problems) [2–11]. In linear case, i.e., for
λα = 0, problem (1), (2) is posed correctly and we have global solvability in corresponding functional spaces [1,12].

We show that for certain assumption on the power of nonlinearity α and parameter λ problem (1), (2) in some cases
is globally solvable, while in other cases it has not global solution, though, as it will be shown below, this problem is
locally solvable.
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0022-247X/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2007.09.030



1034 O. Jokhadze / J. Math. Anal. Appl. 340 (2008) 1033–1045
Definition 1. Let f ∈ C(DT ). Function u is called a strong generalized solution of problem (1), (2) of the class C

in domain DT , if u ∈ C(DT ) and there exists such the sequence of functions un ∈ C̊2(DT ,ΓT ), that un → u and
Lλun → f in the space C(DT ) for n → ∞, where C̊2(DT ,ΓT ) := {u ∈ C2(DT ): ux |γ2,T

= 0, u|γ1,T
= 0}, ΓT :=

γ1,T ∪ γ2,T .

Remark 1. It is clear that a classical solution of problem (1), (2) in space C̊2(DT ,ΓT ) is a strong generalized solution
of this problem of the class C in domain DT . In turn, if a strong generalized solution of problem (1), (2) of the class C

in domain DT belongs to the space C2(DT ), then it also is a classical solution of the problem.

Definition 2. Let f ∈ C(D∞). We say that problem (1), (2) is globally solvable in the class C, if for any finite T > 0
the problem has a strong generalized solution of the class C in domain DT .

2. A priori estimate of the solution of problem (1), (2)

Lemma 1. Let −1 < α < 0 and in the case when α > 0 let us additionally require that λ > 0. Then for a strong
generalized solution of problem (1), (2) of the class C in domain DT it is valid the following a priori estimate:

‖u‖C(DT ) � c1‖f ‖C(DT ) + c2 (3)

with positive constants ci(T ,α,λ), i = 1,2, not dependent on u and f.

Proof. First consider the case when α > 0 and λ > 0. Let u be a strong generalized solution of problem (1), (2) of the
class C in domain DT . Then due to Definition 1 there exists the sequence of functions un ∈ C̊2(DT ,ΓT ), such that

lim
n→∞‖un − u‖C(DT ) = 0, lim

n→∞‖Lλun − f ‖C(DT ) = 0, (4)

and therefore

lim
n→∞

∥∥λ|un|αun − λ|u|αu
∥∥

C(DT )
= 0. (5)

Consider function un ∈ C̊2(DT ,ΓT ), as a solution of the following problem:

Lλun = fn, (6)
∂un

∂x

∣∣∣
γ2,T

= 0, un|γ1,T
= 0. (7)

Here

fn := Lλun. (8)

Multiplying the both sides of equality (6) by ∂un

∂t
and integrating in domain Dτ := {(x, t) ∈ DT : 0 < t < τ },

0 < τ � T we receive

1

2

∫
Dτ

∂

∂t

(
∂un

∂t

)2

dx dt −
∫
Dτ

∂2un

∂x2

∂un

∂t
dx dt + λ

α + 2

∫
Dτ

∂

∂t
|un|α+2 dx dt =

∫
Dτ

fn

∂un

∂t
dx dt. (9)

Assume that Ωτ := D∞ ∩{t = τ }, 0 < τ � T . Then by virtue of (7), integrating by parts the left side of equality (9),
we have∫

Dτ

fn

∂un

∂t
dx dt =

∫
γ1,τ

1

2νt

[(
∂un

∂x
νt − ∂un

∂t
νx

)2

+
(

∂un

∂t

)2(
ν2
t − ν2

x

)]
ds

+ 1

2

∫
Ωτ

[(
∂un

∂t

)2

+
(

∂un

∂x

)2]
dx + λ

α + 2

∫
Ωτ

|un|α+2 dx, (10)

where ν := (νx, νt ) is unit vector of outer normal to ∂Dτ and γ1,τ := γ1,T ∩ {t � τ }.
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Taking into account that the operator νt
∂
∂x

− νx
∂
∂t

is an interior differential operator on γ1,T , due to the second
condition in (7) we have(

∂un

∂x
νt − ∂un

∂t
νx

)∣∣∣
γ1,τ

= 0. (11)

Further, it is clear that(
ν2
t − ν2

x

)∣∣
γ1,τ

= 0. (12)

Therefore, by virtue of (11), (12) from (10) we get

wn(τ) :=
∫
Ωτ

[(
∂un

∂t

)2

+
(

∂un

∂x

)2]
dx � 2

∫
Dτ

fn

∂un

∂t
dx dt. (13)

Taking into account inequality

2fn

∂un

∂t
� ε

(
∂un

∂t

)2

+ 1

ε
f 2

n ,

which is valid for any ε := const > 0, from (13) we have

wn(τ) � ε

τ∫
0

wn(σ)dσ + 1

ε
‖fn‖2

L2(Dτ ), 0 < τ � T .

Whence, having the fact that the value ‖fn‖2
L2(Dτ ), as a function of τ is nondecreasing, by the Gronwall lemma

[13, p. 13] we receive

wn(τ) � 1

ε
‖fn‖2

L2(Dτ ) exp(τε).

Thus, by taking into account that infε>0
exp(τε)

ε
= eτ, which is achieved for ε = 1

τ
, we obtain

wn(τ) � eτ‖fn‖2
L2(Dτ ), 0 < τ � T . (14)

If (x, t) ∈ DT , then by virtue of the second condition in (7) the following equality is valid:

un(x, t) = un(x, t) − un(t, t) =
x∫

t

∂un(σ, t)

∂x
dσ,

thus due to (14) we have

∣∣un(x, t)
∣∣2 �

t∫
x

dσ

t∫
x

[
∂un(σ, t)

∂x

]2

dσ � (t − x)

∫
Ωt

[
∂un(σ, t)

∂x

]2

dσ � (t − x)wn(t)

� twn(t) � et2‖fn‖2
L2(Dt )

� et2‖fn‖2
C(Dt )

mesDt � 1

2
et4‖fn‖2

C(DT )
. (15)

From (15) it follows that

‖un‖C(DT ) �
√

e

2
T 2‖fn‖C(DT ).

According to (4)–(8), by passing in the last inequality to limit for n → ∞, we receive

‖u‖C(DT ) �
√

e

2
T 2‖f ‖C(DT ). (16)

From (16) follows estimate (3) in case when α > 0 and λ > 0.
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Now consider the case when −1 < α < 0 for any λ. When −1 < α < 0, i.e., when 1 < α+2 < 2, using well-known
inequality

ab � ap

p
+ bq

q

(
a = |un|α+2, b = 1, p = 2

α + 2
> 1, q = − 2

α
> 1,

1

p
+ 1

q
= 1

)

we get∫
Ωτ

|un|α+2 dx �
∫
Ωτ

[
α + 2

2
|un|2 − α

2

]
dx = α + 2

2

∫
Ωτ

|un|2 dx + |α|τ
2

.

From equality (10), by virtue of (11), (12) and the last inequality it follows that

ωn(τ) � |λ|
∫
Ωτ

|un|2 dx + |λα|τ
α + 2

+ 2
∫
Dτ

fn

∂un

∂t
dx dt. (17)

In accordance with the theory of trace there holds estimate [14, pp. 77, 86]

‖un‖L2(Ωτ ) �
√

τ‖un‖W̊ 1
2 (Dτ ,γ1,τ )

, 0 < τ � T , (18)

where W̊ 1
2 (Dτ , γ1,τ ) := {u ∈ W 1

2 (Dτ ): u|γ1,τ
= 0}, W 1

2 (Dτ ) is well-known Sobolev space, and

‖un‖2
W̊ 1

2 (Dτ ,γ1,τ )
:=

∫
Dτ

[(
∂un

∂t

)2

+
(

∂un

∂x

)2]
dx dt.

Since 2fn
∂un

∂t
� f 2

n + ( ∂un

∂t
)2, then due to (17), (18) we have

wn(τ) � |λ|τ
∫
Dτ

[(
∂un

∂t

)2

+
(

∂un

∂x

)2]
dx dt +

∫
Dτ

(
∂un

∂t

)2

dx dt +
∫
Dτ

f 2
n dx dt + |λα|τ

α + 2
.

Whence according to the form of function wn(τ) we get

wn(τ) �
(|λ|τ + 1

) τ∫
0

wn(σ)dσ + ‖fn‖2
L2(Dτ ) + |λα|τ

α + 2
,

thus by Gronwall’s lemma [13, p. 13] we obtain

wn(τ) �
[
‖fn‖2

L2(DT ) + |λα|T
α + 2

]
exp

(|λ|T τ + τ
)
.

Analogously to that as (16) was received from (15), from last inequality we receive

∣∣un(x, t)
∣∣2 � twn(t) � T

[
‖fn‖2

C(DT )
mesDT + |λα|T

α + 2

]
exp

(|λ|T 2 + T
)

= T

[
T 2

2
‖fn‖2

C(DT )
+ |λα|T

α + 2

]
exp

(|λ|T 2 + T
)
.

From here follows that

‖un‖C(DT ) �
[√

T

2
T ‖fn‖C(DT ) +

√ |λα|
α + 2

T

]
exp

{
1

2

(|λ|T 2 + T
)}

,

whence due to (4)–(8), as a result of passing to limit when n → ∞ we get estimate

‖u‖C(DT ) �
√

T

2
T exp

{
1

2

(|λ|T 2 + T
)}‖f ‖C(DT ) +

√ |λα|
α + 2

T exp

{
1

2

(|λ|T 2 + T
)}

. (19)

This completely proves estimate (3). �
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Remark 2. From (16) and (19) follows that constants c1 and c2 in estimate (3) are equal

(1) c1 =
√

e

2
T 2, c2 = 0, for α > 0, λ > 0; (20)

(2) c1 =
√

T

2
T exp

{
1

2

(|λ|T 2 + T
)}

, c2 =
√ |λα|

α + 2
T exp

{
1

2

(|λ|T 2 + T
)}

,

for −1 < α < 0, λ ∈ (−∞,0) ∪ (0,+∞).

(21)

3. Equivalent reduction of problem (1), (2) to Volterra type nonlinear integral equation

Let P0 := P0(x0, t0) be an arbitrary point in domain DT . Denote by Gx0,t0 a quadrangle with vertices O(0,0),
P0(x0, t0) and also P1, P3, which lay on data supports γ2,T and γ1,T , respectively, i.e., P1 := P1(0, t0 − x0), P3 :=
P3(

x0+t0
2 ,

x0+t0
2 ); and by Ωx0,t0 —a triangle domain with vertices P1, O and P2—belonging to characteristics γ1,T ,

i.e., P2 := P2(
t0−x0

2 ,
t0−x0

2 ).

Let u ∈ C2(DT ) be a classical solution of problem (1), (2). By integration of Eq. (1) in domain Gx0,t0 , using
homogeneous boundary conditions (2) and returning to initial variables x, t it is easy to see that

u(x, t) + λ

2

∫
Gx,t

|u|αudx′ dt ′ + λ

2

∫
Ωx,t

|u|αudx′ dt ′

= 1

2

∫
Gx,t

f (x′, t ′) dx′ dt ′ + 1

2

∫
Ωx,t

f (x′, t ′) dx′ dt ′, (x, t) ∈ DT . (22)

Remark 3. Equality (22) can be considered as a nonlinear Volterra type integral equation, which can be rewritten as
follows

u(x, t) + λ
(�−1|u|αu

)
(x, t) = F(x, t), (x, t) ∈ DT . (23)

Here � := L0 = ∂2

∂t2 − ∂2

∂x2 and �−1 is a linear operator acting by formula

(�−1v
)
(x, t) := 1

2

∫
Gx,t

v(x′, t ′) dx′ dt ′ + 1

2

∫
Ωx,t

v(x′, t ′) dx′ dt ′, (x, t) ∈ DT , (24)

and

F(x, t) := (�−1f
)
(x, t), (x, t) ∈ DT . (25)

Lemma 2. Function u ∈ C(DT ) is a strong generalized solution of problem (1), (2) of the class C in domain DT if
and only if, when it is a continuous solution of nonlinear integral equation (23).

Proof. Indeed, let u ∈ C(DT ) be the solution of Eq. (23). Since f ∈ C(DT ) and space C2(DT ) is dense in C(DT )

[15, p. 37], then there exists the sequence of functions fn ∈ C2(DT ), such that fn → f in space C(DT ) for n → ∞.

Analogously, since u ∈ C(DT ), then there exists the sequence of functions wn ∈ C2(DT ), such that wn → u in space
C(DT ) for n → ∞. Let un := −λ(�−1|wn|αwn) + �−1fn, n = 1,2, . . . . It is easy to verify that un ∈ C̊2(DT ,ΓT ),

but since �−1 is a linear continuous operator acting in space C(DT ), and besides limn→∞ ‖wn − u‖C(DT ) = 0,

limn→∞ ‖fn − f ‖C(DT ) = 0, we have un → −λ(�−1|u|αu) + �−1f in space C(DT ) for n → ∞. On the other

hand from Eq. (23) it follows that −λ(�−1|u|αu) + �−1f = u. Therefore limn→∞ ‖un − u‖C(DT ) = 0. But�un = −λ|wn|αwn + fn, whence by virtue of limn→∞ ‖un − u‖C(DT ) = 0, limn→∞ ‖wn − u‖C(DT ) = 0 and
limn→∞ ‖fn − f ‖C(DT ) = 0, we receive Lλun = �un + λ|un|αun = −λ|wn|αwn + fn + λ|un|αun = −λ[|wn|αwn −
|u|αu] + λ[|un|αun − |u|αu] + fn → f in space C(DT ) for n → ∞. The only if part of the lemma is obvious. �
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4. The case of global solvability of problem (1), (2) in the class of continuous functions

As it was said above operator �−1 from (24) is a linear continuous operator acting in space C(DT ).

Now let us show that this operator acts as a linear and continuous one from space C(DT ) into the space of differen-
tiable functions C1(DT ). For this purpose by linear nondegenerative transformation of independent variables t = ξ +τ

and x = ξ − τ let us pass to a plane of variables ξ, τ. As a result triangular domain DT will transform into triangle
D′

T with vertices O,N ′
1(T ,0),N ′

2(
T
2 , T

2 ); quadrangle Gx,t from previous paragraph will transform into quadrangle
G′

x,t with vertices P ′( t+x
2 , t−x

2 ),P ′
1(

t−x
2 , t−x

2 ),O,P ′
3(

t+x
2 ,0), i.e., into variables ξ, τ in quadrangle G′

ξ,τ (= G′
x,t )

with vertices P ′(ξ, τ ),P ′
1(τ, τ ),O and P ′

3(ξ,0), while triangular domain Ωx,t will transform into triangle Ω ′
x,t with

vertices P ′
1(

t−x
2 , t−x

2 ),O,P ′
2(

t−x
2 ,0), i.e., into variables ξ, τ in triangle Ω ′

ξ,τ (= Ω ′
x,t ) with vertices P ′

1(τ, τ ),O

and P ′
2(τ,0).

The operator �−1 from (24) will transform into operator (�−1)′, acting in space C(D′
T ) by formula

((�−1)′
w

)
(ξ, τ ) =

∫

G′
ξ,τ

w(ξ ′, τ ′) dξ ′ dτ ′ +
∫

Ω ′
ξ,τ

w(ξ ′, τ ′) dξ ′ dτ ′

=
τ∫

0

dτ ′
ξ∫

τ ′
w(ξ ′, τ ′) dξ ′ +

τ∫
0

dτ ′
τ∫

τ ′
w(ξ ′, τ ′) dξ ′, (ξ, τ ) ∈ D′

T . (26)

If w ∈ C(D′
T ), then from (26) directly follows that

∂

∂ξ

((�−1)′
w

)
(ξ, τ ) =

τ∫
0

w(ξ, τ ′) dτ ′, (ξ, τ ) ∈ D′
T , (27)

∂

∂τ

((�−1)′
w

)
(ξ, τ ) =

ξ∫
τ

w(ξ ′, τ ) dξ ′ +
τ∫

0

w(τ, τ ′) dτ ′, (ξ, τ ) ∈ D′
T . (28)

Now, taking into account that for (ξ, τ ) ∈ D′
T it is valid 0 � ξ � T and 0 � τ � T

2 , then by virtue of (26)–(28) we
get

∥∥(�−1)′
w

∥∥
C(D′

T )
+

∥∥∥∥ ∂

∂ξ

(�−1)′
w

∥∥∥∥
C(D′

T )

+
∥∥∥∥ ∂

∂τ

(�−1)′
w

∥∥∥∥
C(D′

T )

� ξτ‖w‖C(D′
T ) + τ‖w‖C(D′

T ) + (ξ − τ)‖w‖C(D′
T ) + τ‖w‖C(D′

T ) � 2−1(T 2 + 3T )‖w‖C(D′
T ),

i.e., ∥∥(�−1)′∥∥
C(D′

T )→C1(D′
T )

� 2−1(T 2 + 3T
)
, (29)

this concludes the proof.
Further, since space C1(D′

T ) is compactly embedded into space C(D′
T ) [16, p. 135], then due to (29) operator

(�−1)′ : C(D′
T ) → C(D′

T ) is a linear and compact operator. Thus, returning from variables ξ and τ to variables x

and t , for operator �−1 from (24) we receive the validity of the following statement.

Lemma 3. Operator �−1 : C(DT ) → C(DT ) acting by formula (24) is a linear compact operator, moreover this
operator transforms space C(DT ) into space C1(DT ).

Equation (23), taking into account (25), can be rewritten in the form

u = Au := �−1(−λ|u|αu + f
)
, (30)

where operator A : C(DT ) → C(DT ) is continuous and compact, since nonlinear operator K : C(DT ) → C(DT ),

acting according to formula Ku := −λ|u|αu + f for α > −1, is bounded and continuous, while linear operator
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�−1 : C(DT ) → C(DT ) due to Lemma 3 is compact. At the same time, by virtue of Lemmas 1 and 2, equalities (20)
and (21), for any parameter τ ∈ [0,1] and any solution u ∈ C(DT ) equation u = τAu, it is valid a priori estimate
‖u‖C(DT ) � c̃1‖f ‖C(DT ) + c̃2 with positive constants c̃1 and c̃2, not dependent on u, τ and f. Therefore, according

to Leray–Schauder theorem [17, p. 375], Eq. (30) in conditions of Lemma 1 has at least one solution u ∈ C(DT ). In
that way, by virtue of Lemma 2, we have proved the following

Theorem 1. Let −1 < α < 0 and in the case when α > 0 parameter λ > 0. Then problem (1), (2) is globally solvable
of the class C in the sense of Definition 2, i.e., if f ∈ C(D∞), then for any T > 0 problem (1), (2) has a strong
generalized solution of the class C in domain DT .

5. Smoothness and uniqueness of the solution of problem (1), (2). The existence of a global solution in D∞

From equality (30), due to Lemmas 2 and 3, it follows the following

Lemma 4. Let u be a strong generalized solution of problem (1), (2) of the class C in domain DT in the sense of
Definition 1. If α > 0 and f ∈ C1(DT ), then u ∈ C2(DT ).

Indeed, in this case due to Lemma 2 function u represents a continuous solution for integral equation (23), therefore
for Eq. (30), and moreover, |u|αu ∈ C(DT ). According to Lemma 3 and Eq. (30) we conclude that u ∈ C1(DT ).

Besides, in conditions of Lemma 4, |u|αu ∈ C1(DT ) is true and again according to Lemma 3 and Eq. (30), we
conclude that u ∈ C2(DT ), and thus u is a classical solution of problem (1), (2).

Lemma 5. For α > 0 problem (1), (2) cannot have more than one strong generalized solution of the class C in
domain DT .

Proof. Indeed, suppose that problem (1), (2) has two possible different strong generalized solutions u1 and u2 of the
class C in domain DT . According to Definition 1 there exists the sequence of functions uin ∈ C̊2(DT ,ΓT ), i = 1,2,

such that

lim
n→∞‖uin − ui‖C(DT ) = 0, lim

n→∞‖Lλuin − f ‖C(DT ) = 0, i = 1,2. (31)

Denote by ωnm := u2n − u1m. It is easy to see that function ωnm ∈ C̊2(DT ,ΓT ) satisfies the following identities:

�ωnm + gnmωnm = fnm, (32)
∂ωnm

∂x

∣∣∣
γ2,T

= 0, ωnm|γ1,T
= 0. (33)

Here

gnm := λ(1 + α)

1∫
0

∣∣u1m + t (u2n − u1m)
∣∣α dt, (34)

fnm := Lλu2n − Lλu1m, (35)

where we used obvious equality ϕ(x2)−ϕ(x1) = (x2 −x1)
∫ 1

0 ϕ′(x1 + t (x2 −x1)) dt for function ϕ(x) := |x|αx when
x2 = u2n, x1 = u1m, α > 0. Due to the first equality from (31) there exists the number M := const > 0, not dependent
on indices i and n, such that ‖uin‖C(DT ) � M, whence by virtue of (34) it follows that

‖gn,m‖C(DT ) � |λ|(1 + α)Mα ∀n,m. (36)

According to (35) and the second equality from (31) it follows that

lim ‖fnm‖C(DT ) = 0. (37)

n,m→∞
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Multiplying the both sides of equality (32) by ∂ωnm

∂t
and integrating the received equality in domain Dτ :=

{(x, t) ∈ DT : 0 < t < τ }, 0 < τ � T , due to equalities (33), as it was in receiving of inequality (13) from (6), (7), we
shall have

ωnm(τ) :=
∫
Ωτ

[(
∂ωnm

∂t

)2

+
(

∂ωnm

∂x

)2]
dx � 2

∫
Dτ

(fnm − gnmωnm)
∂ωnm

∂t
dx dt, (38)

where Ωτ := D∞ ∩ {t = τ }, 0 < τ � T .

Due to estimate (36) and the inequality of Cauchy we shall have

2
∫
Dτ

(fnm − gnmωnm)
∂ωnm

∂t
dx dt

�
∫
Dτ

(
∂ωnm

∂t

)2

dx dt +
∫
Dτ

(fnm − gnmωnm)2 dx dt

�
∫
Dτ

(
∂ωnm

∂t

)2

dx dt + 2
∫
Dτ

f 2
nm dx dt + 2

∫
Dτ

g2
nmω2

nm dx dt

�
∫
Dτ

(
∂ωnm

∂t

)2

dx dt + 2
∫
Dτ

f 2
nm dx dt + 2λ2(1 + α)2M2α

∫
Dτ

ω2
nm dx dt. (39)

Further, from equality ωnm(x, t) = ∫ t

x
∂ωnm(x,τ)

∂t
dτ , (x, t) ∈ DT , which follows from the second equality of (33),

using standard considerations we receive inequality [14, p. 63]
∫
Dτ

ω2
nm dx dt � τ 2

∫
Dτ

(
∂ωnm

∂t

)2

dx dt. (40)

From inequality (38), by virtue of (39) and (40), it follows that

wnm(τ) �
(
1 + 2λ2(1 + α)2M2ατ 2) ∫

Dτ

(
∂ωnm

∂t

)2

dx dt + 2
∫
Dτ

f 2
nm dx dt

�
(
1 + 2λ2(1 + α)2M2αT 2) τ∫

0

wnm(σ)dσ + 2
∫

DT

f 2
nm dx dt.

Whence by the lemma of Gronwall [13, p. 13] we receive that

wnm(τ) � c‖fnm‖2
L2(DT ), 0 < τ � T , (41)

where c := 2 exp(T + 2λ2(1 + α)2M2αT 3).

Conducting the same considerations, as those used for receiving of inequality (15), taking into account obvious
inequality

‖fnm‖2
L2(DT ) � ‖fnm‖2

C(DT )
mesDT ,

and also due to (41) we have∣∣ωnm(x, t)
∣∣2 � twnm(t) � T c mesDT ‖fnm‖2

C(DT )

= 2−1cT 3‖fnm‖2
C(DT )

, (x, t) ∈ DT .

From this inequality it follows that

‖ωnm‖ � T
√

2−1cT ‖fnm‖ . (42)
C(DT ) C(DT )
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Recalling the definition of function ωnm, according to the first inequality from (31) we have

lim
n,m→∞‖ωnm‖C(DT ) = ‖u2 − u1‖C(DT ).

Due this equality and (37), passing in inequality (42) to limit for n,m → ∞ we receive ‖u2 − u1‖C(DT ) = 0, i.e.,
u1 = u2, which proves Lemma 5.

Here arises naturally the question on what happens in the sense of the theorem of uniqueness for −1 < α < 0. In
this case, as the example below shows clearly, at additional condition λ < 0 problem (1), (2) for f ≡ 0 has also other
solutions in addition to trivial one u ≡ 0.

Indeed, as simple verification can confirm, the following function:

u(x, t) := β
(
t2 − x2)γ if |β| = (−4λ−1α−2) 1

α , γ = −α−1

satisfies this condition. �
Theorem 2. Let α > 0 and λ > 0. Then for any f ∈ C1(D∞) problem (1), (2) has unique global classical solution
u ∈ C̊2(D∞,Γ∞) in domain D∞.

Proof. If α > 0, λ > 0 and f ∈ C1(D∞), then according to Theorem 1 and Lemmas 4 and 5 in domain DT for T = n

there exists unique classical solution un ∈ C̊2(Dn,Γn) of problem (1), (2). Since un+1 represents also a classical
solution of problem (1), (2) in domain Dn, then by virtue of Lemma 5 we have un+1|Dn = un. Therefore function u,

constructed in domain D∞ by rule u(x, t) = un(x, t) at n = [t] + 1, where [t] is an integer part of number t, while
point (x, t) ∈ D∞, will be a unique classical solution of problem (1), (2) in domain D∞ of class C̊2(D∞,Γ∞).

Theorem 2 is proved completely. �
6. The case of nonexistence of a global solution of problem (1), (2)

Below, we consider the case when parameter λ < 0 in Eq. (1), while a power of nonlinearity α > 0.

Lemma 6. Let u be a strong generalized solution of problem (1), (2) of the class C in domain DT in the sense of
Definition 1. Then it is valid the following integral equality:∫

DT

u�ϕ dx dt = −λ

∫
DT

|u|αuϕ dx dt +
∫

DT

f ϕ dx dt (43)

for any function ϕ, such that

ϕ ∈ C2(DT ), ϕ|t=T = 0, ϕt |t=T = 0, ϕx |γ2,T
= 0. (44)

Proof. According to the definition of strong generalized solution u of problem (1), (2) of the class C in domain DT ,

function u ∈ C(DT ) and there exists the sequence of functions un ∈ C̊2(DT ,ΓT ), such that the equalities (4) are
valid.

Suppose that fn := Lλun. Multiplying the both sides of equality Lλun = fn by function ϕ let us integrate the
received equality in domain DT . As a result of integration by parts of the left side of this equality, due to (44) and
boundary conditions (2) we receive∫

DT

un�ϕ dx dt = −λ

∫
DT

|un|αunϕ dx dt +
∫

DT

fnϕ dx dt.

By passing to limit in this equality for n → ∞, according to (4) we receive equality (43). Thus Lemma 6 is
proved. �
Lemma 7. Let λ < 0 and α > 0, and function u ∈ C(DT ) be a strong generalized solution of problem (1), (2) of the
class C in domain DT . If f � 0 in domain DT , then u � 0 in domain DT .
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Proof. According to Lemma 2 and equalities (23)–(25) function u is a solution of the following Volterra type integral
equation:

u(x, t) =
∫

Gx,t

K(x′, t ′)u(x′, t ′) dx′ dt ′ +
∫

Ωx,t

K(x′, t ′)u(x′, t ′) dx′ dt ′ + F(x, t), (x, t) ∈ DT . (45)

Here K(x, t) := −λ
2 |u(x, t)|α ∈ C(DT ), and function F(x, t) is given by equality (25). By virtue of suppositions

made in Lemma 7 we have

K(x, t) � 0, F (x, t) � 0 ∀(x, t) ∈ DT . (46)

Assuming that function K(x, t) is given, let us consider Volterra type linear integral equation

v(x, t) =
∫

Gx,t

K(x′, t ′)v(x′, t ′) dx′ dt ′ +
∫

Ωx,t

K(x′, t ′)v(x′, t ′) dx′ dt ′ + F(x, t), (x, t) ∈ DT , (47)

in the class C(DT ) with respect to unknown function v(x, t). As it is known [18], Eq. (47) in the class C(DT ) has
unique continuous solution v(x, t), which can be obtained by use of the method of consecutive approximations

v0(x, t) = 0,

vn+1(x, t) =
∫

Gx,t

K(x′, t ′)vn(x
′, t ′) dx′ dt ′ +

∫
Ωx,t

K(x′, t ′)vn(x
′, t ′) dx′ dt ′ + F(x, t), n � 1, (x, t) ∈ DT .

From these equalities according to (46) we have vn(x, t) � 0 in DT for all n = 0,1, . . . . On the other hand, vn → v

in the class C(DT ) for n → ∞. Therefore, limit function v � 0 in domain DT . We have just note, that by virtue of
equality (45) function u is also a solution of Eq. (47), and therefore due to the uniqueness of solution of this equation
we finally receive u = v � 0 in domain DT . Lemma 7 is proved. �

For λ < 0, according to the last lemma, equality (43) can by rewritten in the form∫
DT

|u|�ϕ dx dt = |λ|
∫

DT

|u|α+1ϕ dx dt +
∫

DT

f ϕ dx dt. (48)

Let us introduce into consideration function ϕ0 := ϕ0(x, t) such that

ϕ0 ∈ C2(D∞), ϕ0
∣∣
DT =1

> 0, ϕ0
x

∣∣
γ2,∞ = 0, ϕ0

∣∣
t�1 = 0 (49)

and

�0 :=
∫

DT =1

|�ϕ0|p′

|ϕ0|p′−1
dx dt < +∞, p′ = 1 + 1

α
. (50)

It is easy to verify that in the role of function ϕ0, satisfying conditions (49) and (50), one may use function

ϕ0(x, t) :=
{

xn(1 − t)m, (x, t) ∈ DT =1,

0, t � 1,

for sufficiently large positive numbers n and m.

Suppose that ϕT (x, t) := ϕ0( x
T

, t
T

), T > 0. Due to (49) it is easy to see that

ϕT ∈ C2(DT ), ϕT |DT
> 0, ϕT |t=T = 0,

∂ϕT

∂t

∣∣∣
t=T

= 0,
∂ϕT

∂x

∣∣∣
γ2,T

= 0. (51)

Supposing that function f is fixed, let us introduce into consideration a function of one variable T ,

ζ(T ) :=
∫

DT

f ϕT dx dt, T > 0. (52)

The following theorem on the nonexistence of a global solution of problem (1), (2) is valid.
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Theorem 3. Let λ < 0, α > 0, f ∈ C(D∞) and f � 0 in domain D∞. If

lim inf
T →+∞ ζ(T ) > 0, (53)

then there exists positive number T0 := T0(f ), such that for T > T0 problem (1), (2) cannot have strong generalized
solution u of the class C in domain DT .

Proof. Suppose, that in conditions of this theorem there exists strong generalized solution u of problem (1), (2) of
the class C in domain DT . Then according to Lemmas 6 and 7 equality (48) holds, where due to (51) in the role of
function ϕ can be taken function ϕ = ϕT , i.e.,∫

DT

|u|�ϕT dx dt = |λ|
∫

DT

|u|pϕT dx dt +
∫

DT

f ϕT dx dt, p := α + 1.

Taking into account (52) this equality can be rewritten in the form

|λ|
∫

DT

|u|pϕT dx dt =
∫

DT

|u|�ϕT dx dt − ζ(T ). (54)

If in Young inequality with parameter ε > 0,

ab � ε

p
ap + 1

p′εp′−1
bp′ ; a, b � 0,

1

p
+ 1

p′ = 1, p := α + 1 > 1,

we shall take a = |u|ϕ
1
p

T , b = |�ϕT |
ϕ

1
p
T

, then since p′
p

= p′ − 1 we obtain

|u�ϕT | = |u|ϕ
1
p

T

|�ϕT |
ϕ

1
p

T

� ε

p
|u|pϕT + 1

p′εp′−1

|�ϕT |p′

ϕ
p′−1
T

.

According last inequality from (54) we have(
|λ| − ε

p

) ∫
DT

|u|pϕT dx dt � 1

p′εp′−1

∫
DT

|�ϕT |p′

ϕ
p′−1
T

dx dt − ζ(T ),

whence for ε < |λ|p we receive
∫

DT

|u|pϕT dx dt � p

(|λ|p − ε)p′εp′−1

∫
DT

|�ϕT |p′

ϕ
p′−1
T

dx dt − p

|λ|p − ε
ζ(T ).

Since p′ = p
p−1 , p = p′

p′−1 and min0<ε<|λ|p p

(|λ|p−ε)p′εp′−1 = 1
|λ|p′ , which is achieved for ε = |λ|, it follows, that

∫
DT

|u|pϕT dx dt � 1

|λ|p′

∫
DT

|�ϕT |p′

ϕ
p′−1
T

dx dt − p′

|λ|ζ(T ). (55)

Since ϕT (x, t) := ϕ0( x
T

, t
T

), then due to (49), (50), after changing variables x = T x′, t = T t ′, it is easy to verify,
that ∫

DT

|�ϕT |p′

ϕ
p′−1
T

dx dt = T −2(p′−1)

∫
DT =1

|�ϕ0|p′

|ϕ0|p′−1
dx′ dt ′ = T −2(p′−1)�0.

According to (51) and the last inequality from (55) we receive

0 �
∫

|u|pϕT dx dt � 1

|λ|p′ T
−2(p′−1)�0 − p′

|λ|ζ(T ). (56)
DT
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Since p′ = p
p−1 > 1, then −2(p′ − 1) < 0 and due to (50) we have

lim
T →∞

1

|λ|p′ T
−2(p′−1)�0 = 0.

Therefore, by virtue of (53) there exists positive number T0 := T0(f ), such that for T > T0 the right-hand side of
inequality (56) will be negative, whereas the left-hand side of this inequality is nonnegative. This means that if there
exists strong generalized solution u of problem (1), (2) of the class C in domain DT , then necessarily T � T0, which
proves Theorem 3. �
Remark 4. It is easy to verify that if f ∈ C(D∞) and f (x, t) � ct−m for t � 1, where c := const > 0, 0 � m :=
const � 2, then condition (53) will be fulfilled, and so for λ < 0, α > 0 problem (1), (2) for sufficiently large T will
not have strong generalized solution u of the class C in domain DT .

Indeed, let us introduce in (52) the transformation of independent variables x and t by formula x = T x′, t = T t ′,
after some estimates we have

ζ(T ) = T 2
∫
D1

f (T x′, T t ′)ϕ0(x′, t ′) dx′ dt ′

� cT 2−m

∫

D1∩{t ′�T −1}
t ′−mϕ0(x′, t ′) dx′ dt ′ + T 2

∫

D1∩{t ′<T −1}
f (T x′, T t ′)ϕ0(x′, t ′) dx′ dt ′

in supposition that T > 1. Further, let T1 > 1 be any fixed number. Then from the last inequality for function ζ we
have

ζ(T ) � cT 2−m

∫

D1∩{t ′�T −1}
t ′−mϕ0(x′, t ′) dx′ dt ′

� cT 2−m

∫

D1∩{t ′�T −1
1 }

t ′−mϕ0(x′, t ′) dx′ dt ′,

if T � T1 > 1. From the latter inequality immediately follows the validity of (53).

7. Local solvability of problem (1), (2) in the case when λ < 0 and α > 0

Theorem 4. Let λ < 0 and α > 0, function f ∈ C(D∞), f �≡ 0. Then there exists positive number T∗ := T∗(f ), such
that for T � T∗ problem (1), (2) in domain DT will have strong generalized solution u in the class C.

Proof. In Section 4 problem (1), (2) in space C(DT ) equivalently was reduced to the functional equation (30), where
operator A : C(DT ) → C(DT ) is a linear and compact. Therefore for the solvability of Eq. (30), according to the
theorem of Schauder, it will suffice to show that operator A maps certain ball BR := {v ∈ C(DT ): ‖v‖C(DT ) � R} of

radius R > 0, which is closed and convex set in Banach space C(DT ), into itself. Let us show that this takes place for
sufficiently small T .

Indeed, according to (24) and (30) for ‖u‖C(DT ) � R we have

‖Au‖C(DT ) �
∥∥�−1

∥∥
C(DT )→C(DT )

[|λ|‖u‖α+1
C(DT )

+ ‖f ‖C(DT )

]
� 2−1 sup

(x,t)∈DT

(mesGx,t + mesΩx,t )
[|λ|‖u‖α+1

C(DT )
+ ‖f ‖C(DT )

]

� mesDT

[|λ|‖u‖α+1
C(DT )

+ ‖f ‖C(DT )

]
= 2−1T 2[|λ|‖u‖α+1 + ‖f ‖ ]

� 2−1T 2[|λ|Rα+1 + ‖f ‖ ]
.

C(DT ) C(DT ) C(DT )



O. Jokhadze / J. Math. Anal. Appl. 340 (2008) 1033–1045 1045
Let us fix arbitrarily positive number T2. Then by virtue of the last estimate for 0 < T � T2, we shall have

‖Au‖C(DT ) � 2−1T 2[|λ|Rα+1 + ‖f ‖C(DT2 )

]
.

In turn, from this estimation it follows that if

T 2∗ := min

{
T 2

2 ,
2R

|λ|Rα+1 + ‖f ‖C(DT2 )

}
,

then ‖Au‖C(DT ) � R for ‖u‖C(DT ) � R, 0 < T � T∗. Theorem 4 is proved completely. �
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