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ONE VERSION OF GALERKIN-PETROV'S METHOD

WITH ITERATIONS

A. DZHISHKARIANI AND A. SVANIDZE

Abstrat. We onsider the projetive-iterative method for ellipti

boundary value problems in whih in the apaity of the projetive

method we take one version of the Galerkin-Petrov method. An ap-

proximate solution is sought in the form of a linear ombination of

base funtions of the method of �nite elements, and the algebrai sys-

tem is onstruted by salar multipliation of the residual by the other

funtions. The error estimates of the projetive- iterative sheme are

obtained and its stability is shown. The numerial realization of the

sheme is presented.

îâäæñéâ. à�êýæèñèæ� ìîëâóùæñè-æðâî�ùæñèæ éâåëáæ âèæòïñîæ

ï�ïä�ãîë �éëù�êâ�æï�åãæï, ï�á�ù ìîëâóùæñè éâåëá�á ��â�ñèæ�

à�èæëîçæê-ìâðîëãæï éâåëáæï âîåæ ã�îæ�êðæ; éæ�ýèëâ�æåæ �éë-

ê�ýïêæ �àâ�ñèæ� ï�ïîñè âèâéâêðå� éâåëáæï ï���äæïë òñêóùæâ�æï

ûîòæãæ çëé�æê�ùææå; �èàâ�îñèæ ïæïðâé� öâáàâêæèæ� à�á�ýîæï

ïýã� òñêóùæâ�äâ ïç�è�îñèæ à�éî�ãèâ�æï ï�òñúãâèäâ. éæ�â�ñèæ�

ìîëâóùæñè-æðâî�ùæñèæ ïóâéæï ùáëéæèâ�æï öâò�ïâ��êæ á� ê�øãâêâ-

�æ� ïóâéæï éáàî�áë��. ø�ð�îâ�ñèæ� îæùýãæåæ îâ�èæä�ùæ�.

1. Statement of the Problem

We onsider the equation of the type ([1℄, p. 426)

Au+Ku = f; u 2 D(A); f 2 H; (1.1)

where A is a linear self-onjugate positive de�nite di�erential operator in the

Hilbert spae H � L

2

(
), 
 is a bounded domain with regular boundary

�
, K is a linear di�erential operator suh that A

�1

K is fully ontinuous

in H , an energeti spae H

A

� D(K), H

A

is a supplement of a dense lineal

D(A) � H by the norm kuk

H

A

= [u; u℄

1

2

= (Au; u)

1

2

([1℄, p. 76), D(A) and

D(K) are the domains of de�nition of operators A and K.

2000 Mathematis Subjet Classi�ation. 65N30.

Key words and phrases. Ellipti boundary value problem, Galerkin-Petrov's method,

projetive-iterative method, order of onvergene, stability.



72 A. DZHISHKARIANI AND A. SVANIDZE

Let the base funtions of the method of �nite elements '

k

� '

(h)

k

, k =

1; 2; : : : ; n, n = n(h) belong to H

A

, h is a lattie pith.

Suppose that the operator A

�1

is given expliitly by Green's funtions

G(x; t), i.e. a solution of equation Av = g, v 2 D(A), g 2 H is given by the

formula

v = A

�1

g =

Z




G(x; t)g(t) dt: (1.2)

First we �nd the funtions

 

i

� A

�1

'

i

=

Z




G(x; t)'

i

(t) dt; i = 1; 2; : : : ; n: (1.3)

An approximate solution of equation (1.1) is sought in the form

u

h

=

n

X

k=1

a

k

'

k

; n = n(h) (1.4)

and the algebrai system is onstruted by the method of Galerkin-Petrov:

�

Au

h

+Ku

h

� f;  

i

�

= 0; i = 1; 2; : : : ; n;

or

n

X

k=1

a

k

�

('

k

; '

i

) + (K'

k

; A

�1

'

i

)

�

= (A

�1

f; '

i

); i = 1; 2; : : : ; n: (1.5)

Constrution of algebrai system (1.5) makes in pratie diÆulties in

omparison with the ordinary method of �nite elements, where the system

is suh that

n

X

k=1

a

k

�

['

k

; '

i

℄ + (K'

k

; '

i

)

	

= (f; '

i

); i = 1; 2; : : : ; n(h): (1.6)

But system (1.5) possesses the following property: a number of ondi-

tionality {

n

� �

max

�

�1

min

of symmetri matries in (1.5), generated by the

operator A in ase of a uniform lattie with pith h, is uniformly bounded as

h! 0 ([2℄, p. 104; [3℄, p. 240), whih guarantees the stability. Numbers of

onditionality of orresponding matries in sheme (1.6) is {

n

� h

�2m

([3℄,

p. 243), where 2m is an order of the di�erential operator A. On the basis of

the Galerkin-Petrov method, order of onvergene of the projetive-iterative

sheme inreases for eah yle even for '

k

2D(A).

Note that in the iteration we shall need the funtions A

�1

'

k

, A

�1

K'

k

,

k = 1; 2; : : : ; n.

The aim of the present paper is to get an error estimate for sheme (1.5)

by iterations in the spaes L

2

(
), W

2m

2

(
), C(
) and to show the stability

of the projetive-iterative sheme. The numerial realization is given.
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2. Projetive-Iterative Sheme

Introdue the operator

P

h

v =

n

X

k=1

C

k

'

k

; n = n(h);

where oeÆients C

1

; C

2

; : : : ; C

n

are de�ned from the ondition







v �

n

X

k=1

C

k

'

k







2

H

= min :

Then we an write (1.5) in the form

u

h

+ P

h

A

�1

Ku

h

= P

h

A

�1

f; u

h

2 S

h

; (2.1)

where S

h

is the linear shell of funtions '

1

; '

2

; : : : ; '

n

, (H

n

� S

h

).

From (1.1) we obtain the seond kind equation

u+A

�1

Ku = A

�1

f (2.2)

and its Galerkin's approximation (2.1) ([4℄, p. 199). If the operator I +

A

�1

K is invertible in H and kP

h

A

�1

Kk ! 0 as h! 0, (P

h

� I�P

h

) then

for suÆiently small h equation (2.1) has a unique solution u

h

. Moreover,

if kA

�1

KP

h

k

H

! 0 as h! 0, then we an apply the following projetive-

iterative method ([5℄):

of the solution u

h

we take the iteration

eu

h

= �A

�1

Ku

h

+A

�1

f; (2.3)

(1) alulate the residual

r

0

� A

�1

f � eu

h

�A

�1

Keu

h

and the salar produt (r

0

; '

i

), i = 1; 2; : : : ; n;

(2) solve the algebrai system

n

X

k=1

a

(1)

k

�

('

k

; '

i

) + (K'

k

; A

�1

'

i

)

�

= (r

0

; '

i

); i = 1; 2; : : : ; n; (2.4)

the left-hand sides of algebrai systems (1.5) and (2.4) are the same;

(3) of the solution u

(1)

h

=

P

n

k=1

a

(1)

k

'

k

we take the iteration

eu

(1)

h

= �A

�1

Ku

(1)

h

+ r

0

;

(4) summarize the results of iterations

eu

h;1

� eu

h

+ eu

(1)

h

:

Cyle (1){(4) an be repeated several times. After l yles we obtain an

approximate solution by means of the projetive-iterative method

eu

h; l

� eu

h

+ eu

(1)

h

+ � � �+ eu

(l)

h

: (2.5)
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The error of an approximate solution for suÆiently small h (similarly to

[5℄) is expressed by the formula

u� eu

h; l

=

= (I +A

�1

KP

h

)

�1

(�A

�1

KP

h

) � � � (I +A

�1

KP

h

)

�1

(�A

�1

KP

h

u): (2.6)

3. Error Estimates in H

Lemma 1. Let H

A

� D(K

�

) and for 8 v 2 H

A

the inequality

kK

�

vk � Ckvk

H

A

; (3.1)

is ful�lled. Then the operator A

�

1

2

K is bounded in H.

Indeed, the ondition v 2 H

A

implies that g � A

1

2

v 2 H , v = A

�

1

2

g.

From (3:1) we have

kK

�

A

�

1

2

gk � Ckgk; 8 g 2 H;

i.e., the operator K

�

A

�

1

2

is bounded in H . The operator K

�

is onjugate

in H , and the norm kA

�

1

2

Kk = kK

�

A

�

1

2

k.

It is well-known ([3℄, p. 172) that if power of the linear shell S

h

of base

funtions is equal to (k � 1), the base is homogeneous of order q, an order

of all derivatives whih are onneted with nodal parameters is less than

k �

P

2

, p is dimension of the domain 
 and the funtion u 2 W

k

2

(
), then

for the interpolation u

I

the estimate

ku� u

I

k

s

� C

s

h

k�s

kuk

k

; s = 0; 1; 2 : : : ; q: (3.2)

is valid. Here we suppose that s = 0, k = 2m, where 2m is order of the

di�erential operator A. Then

kP

h

uk = ku� P

h

uk

0

� ku� u

s

k

0

� C

0

h

2m

kuk

2m

: (3.3)

Lemma 2. In ondition (3:3) the norm

kA

�

1

2

P

h

k � Ch

m

: (3.4)

Indeed, we have

�

A

�

1

2

P

h

g; A

�

1

2

P

h

g

�

=

�

A

�1

P

h

g; P

h

g

�

�





A

�1

P

h





kgk

2

;





A

�

1

2

P

h





�





A

�1

P

h





1

2

;

�

A

�1

P

h

�

�

= P

h

A

�1

:

Moreover, it follows from (3:3) that





P

h

A

�1

g





� C

0

h

2m





A

�1

g





2m

� Ch

2m





g





H

;

i.e.,





P

h

A

�1





� Ch

2m

; C � C

0

e

C;





A

�1

g





2m

�

e

C





g





and �nally,





A

�

1

2

P

h





� (C

0

)

1

2

h

m

; C = (C)

�

1

2

:
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Lemma 3. If all the onditions of Lemmas 1 and 2 are ful�lled and the

operator A

�1

KA

1

2

is bounded in H, then





A

�1

KP

h





� C

0

h

m

: (3.5)

Indeed,





A

�1

KP

h





�





A

�1

KA

1

2









A

�

1

2

P

h





� C

0

h

m

;

where

C

0

�





A

�1

KA

1

2





�

C

�

1

2

:

Note that





P

h

A

�1

K





�





P

h

A

�

1

2









A

�

1

2

K





:

Theorem 1. If the operator I + A

�1

K is invertible in H, inequalities

(3:1) and (3:3) are ful�lled, the operator A

�1

KA

1

2

is bounded in H, the

exat solution u 2 W

k

2

(
), k � 2m, then for suÆiently small h the error

estimate





u� eu

h; l





�

�





(I +A

�1

KP

h

)

�1





l+1





A

�1

KA

1

2





l+1





P

h

A

�

1

2





l+1





P

h

u





; (3.6)

l = �1; 0; 1; : : :

is valid. When l is �xed and h! 0, the above estimate has the order





u� eu

h; l





= O

�

h

k+m(l+1)

�

: (3.7)

This theorem follows from (2.6), (3.2), from the above lemmas and the

fat that the operator A

�1

KA

1

2

is bounded.

The ase l = �1 orresponds to an approximate solution u

h

of equation

(2.1), whereas in [4℄ (p. 200) we have





u� u

h





= O(h

k

):

In partiular problems we have to prove the boundedness of the operators

A

�

1

2

K and A

�1

KA

1

2

. The boundedness of A

�

1

2

K follows from (3.1) and

the latter have to be proved. We an prove the boundedness of A

�1

KA

1

2

as follows: introdue the operator L � A

1

2

K �KA

1

2

. If we prove that the

operator A

�1

L is bounded, then the operator A

�1

KA

1

2

= A

�

1

2

K � A

�1

L

will be bounded as well.

4. Stability

In [6℄ we an �nd de�nitions of stability of the projetive-iterative sheme

for the seond kind equation (I + T )u = f , u, f 2 H . For the j-th yle, a

non-perturbed approximate equation has the form

u

j

n

+ P

n

Tu

j

n

= P

n

r

j�1

; u

j

n

2 H

n

; j = 0; 1; : : : ; l; (4.1)

r

�1

= f; u

0

n

= u

n

; r

j�1

� f � eu

n;j�1

� T eu

n;j�1

;
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and a perturbed approximate equation has the form

�

I + P

n

T +�

n

�

v

j

n

= P

n

r

j�1

+ P

n

�

r

j�1

� r

j�1

�

+�

�

P

n

r

j�1

�

; (4.2)

v

n

2 H

n

; j = 0; 1; : : : ; l; v

0

n

= v

n

;

r

j�1

� f � ev

n;j�1

� Tev

n;j�1

; r

�1

= r

�1

= f:

To the operator (I+P

n

T ) : H

n

! H

n

there orresponds the matrix B

n

�

((I+T )'

k

; '

i

)

(n)

i;k=1

and to the operator �

n

:H

n

!H

n

there orresponds the

error matrix �

n

�(

ki

)

(n)

i;k=1

. They are independent of the norm of yle j.

Here we ite De�nition 2 from [6℄ whih onerns the stability.

The projetive-iterative method is said to be stable from the spae l

(n)

2

to the spae H , if there exist independent of n onstants r > 0, C

(l)

1

> 0

and C

(l)

2

> 0 suh that perturbed equations (4.2) for k�

n

k � r have unique

solutions v

j

n

, j = 0; 1; : : : ; l and the estimate





ev

n; l

� eu

n; l





H

� C

1

max

�1�k�l�1





Æ

(n;k)





l

n

2

+ C

2





�

n





l

n

2

(4.3)

is valid; the vetor r

(n)

2 l

(n)

2

, the norm k�

(n)

k = (

n

P

k=1

�

2

k

)

1=2

, the norm of

the matrix k�

n

k � (

n

P

i;k=1



2

ki

)

1=2

and Æ

(n;k)

is the error of the salar produts

(r

k

; '

i

); (r

k

; '

2

); : : : ; (r

k

; '

n

), k = �1; 0; 1; : : : ; l � 1.

The ase l = 0, k = �1 is the stability of the initial projetive method

without iteration.

Here we quote Theorem 2 from [6℄ (p. 1040). Uniform linear indepen-

dene (almost orthonormalization) of the base system '

1

; '

2

; : : : in H is

suÆient for the projetive-iterative method to be stable in a sense of De-

�nition 2.

If '

1

; '

2

; : : : ; '

n

, n = n(h), 8n 2 N are uniformly linearly independent,

i.e., eigen numbers of symmetri matries ('

k

; '

i

)

(n)

i;k=1

, 8n(h) satisfy the

onditions

0 < �

0

� �

(n)

1

� � � � � �

(n)

n

� �

0

;

then the numbers of onditionality of these matries is {

n

= �

(n)

n

(�

(n)

1

)

�1

�

�

0

�

�1

0

, and vie versa, if numbers of onditionality of matries ('

k

; '

i

)

(n)

i;k=1

,

are {

n

� {, 8n(h), then the funtions e'

k

� (�

(n)

1

)

�

1

2

'

k

, k = 1; 2; : : : ; n(h),

n(h) 2 N are uniformly linearly independent.

Indeed, eigen numbers of the matrix (e'

k

; e'

i

)

i;k=1

are bounded below

�

(n)

k

, k = 1; 2; : : : ; n(h), �

(n)

1

= �

(n)

1

(�

(n)

1

)

�1

= 1 and bounded above �

(n)

n

=

�

(n)

n

(�

(n)

1

)

�1

= {

n

� {, 8n(h) 2 N .

Normalization of base funtions does not hange approximate solutions

u

j

n

, v

j

n

, j = 0; 1; : : : ; l, it hanges only solutions of algebrai systems.
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As is mentioned in x1, numbers of onditionality of matries generated

by the operator A in sheme (1.5) are uniformly bounded. The operator

A

�1

K is fully ontinuous in H . If we take the normalized base funtions

e'

k

= (l

(n)

1

)

�

1

2

'

k

, k = 1; 2; : : : ; n, the onditions of Theorem 2 from [6℄ will

be ful�lled. Therefore the following theorem is valid.

Theorem 2. The suggested projetive-iterative sheme is stable from l

(n)

2

to H.

Note that the de�nition of the stability of the projetive method on the

basis of strong minimality of the base system in H

A

([7℄, p. 62) admits the

norm perturbation k�

n

k � r, 8n 2 N where r > 0 is the �xed number.

In an ordinary method of �nite elements (sheme (1:6)), eigen numbers of

the basi matries (['

k

; '

i

℄)

(n)

i;k=1

are not simultaneously bounded below and

above as n!1(h! 0).

5. Residual Estimate

From (1.1) we have

(I +KA

�1

)Au = f; Au 2 f; f 2 H: (5.1)

An approximate solution eu

h

satis�es the equation

(I +A

�1

KP

h

)eu

h

= A

�1

f;

whih an be veri�ed diretly by means of (2.1) and (2.3). Therefore

(I +KP

h

A

�1

)Aeu

h

= f: (5.2)

Equations (5.1) and (5.2) yield

(I +KP

h

A

�1

)(Au�Aeu

h

) = �KP

h

u: (5.3)

If the operator I + KA

�1

is invertible in H and kKP

h

A

�1

k ! 0 as

h! 0, then just in the same way as in (2.6) we get

Au�Aeu

h; l

=

(I +KP

h

A

�1

)

�1

(�KP

h

A

�1

) � � � (I +KP

h

A

�1

)(�KP

h

u); (5.4)

i.e.,

kAu�Aeu

h; l

k � k(I +KP

h

A

�1

)

�1

k

l+1

kKP

h

A

�1

kkKP

h

uk; (5.5)

l = 0; 1; : : : ; (h � h

0

):

Let an energeti norm

k � k

H

A

�

e

Ck � k

m

(5.6)

and

kuk

2m

�

e

e

CkAuk; u 2 D(A): (5.7)
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Note that estimates (5.6) and (5.7) are ful�lled in ellipti problems when

oeÆients of the operator A have ertain smoothness. Moreover, let

kKP

h

uk � kKA

�

1

2

kkA

1

2

P

h

uk: (5.8)

Then the following theorem is valid.

Theorem 3. If the operator I+KA

�1

is invertible in H, the domain 
 is

a P -dimensional ube, the norm of the di�erential operator is 2m, the exat

solution u 2 W

k

2

(
), k � 2m, base funtions '

k

2 H

A

, k = 1; 2; : : : ; n(h),

a number of projetive-iterative yles l is �xed, and the mesh pith h! 0,

then the following estimate is valid:

kAu�Aeu

h; l

k = O(h

k+m(l�1)

); (5.9)

(k � 1 is the power of the subspae S

h

), l = 0; 1; : : : .

Proof. For k = 2m and s = m estimate (3.2) results in

kA

�1

g � (A

�1

g)

I

k

m

� C

m

h

2m�m

kA

�1

gk

2m

: (5.10)

Next, from (3.2) and (5.7), with regard for the inequality

kA

�1

g � P

h

A

�1

gk

0

� kA

�1

g � (A

�1

g)

I

k;

we obtain

k(A

�1

g)

I

� P

h

A

�1

gk

0

� k(A

�1

g)

I

�A

�1

gk

0

+ kA

�1

g � P

h

A

�1

gk

0

�

� 2kA

�1

g � (A

�1

g)

I

k � 2C

0

e

e

Ch

2m

kgk

0

: (5.11)

The funtions u

I

, P

h

u 2 S

h

and therefore inequality (2.14) from [8℄ (p. 37)

ju

I

� P

h

uj

2

�+1

� P � 4C

2

(k � 1)h

�2

ju

I

� P

h

uj

2

�

;

1 � �+ 1 � q; C

2

(k � 1) �

�

C(k � 1)

�

2

is valid for these funtions. The norm k �k

2

�

=

�

P

k=0

j � j

2

k

, j � j

k

is the half-norm.

Therefore

ku

I

� P

h

uk

2

�+1

�

�

h

2

+ p4C

2

(k � 1)

�

h

�2

ku

I

� P

h

uk

2

�

;

whene

ku

I

� P

h

uk

�+l

�

�

h

2

+ 4C

2

(k � 1)p

�

l=2

h

�l

ku

I

� P

h

uk

�

;

whih for � = 0, l = m gives

ku

I

� P

h

uk

m

� D

m

h

�m

ku

I

� P

h

uk

0

; (5.12)

where the pith

D

m

� (2

�2

+ 4pC

2

(k � 1))

m

2

; h � 2

�1

:

Estimates (5.12) and (5.11) yield

k(A

�1

g)

I

� P

h

A

�1

gk

m

� D

m

� 2C

0

e

e

Ch

m

kgk

0

: (5.13)
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Further, on the basis of (5.6), (5.10) and (5.13) we have

kKP

h

A

�1

gk � kKA

�

1

2

kkA

1

2

P

h

A

�1

gk � kKA

�

1

2

k

e

CkP

h

A

�1

gk

m

�

� kKA

�

1

2

k

e

C

�

kA

�1

g � (A

�1

g)

I

k

m

+ k(A

�1

g)

I

� P

h

A

�1

gk

m

�

�

� kKA

�

1

2

k

e

C(C

m

h

m

e

e

C +D

m

� 2C

0

e

e

Ch

m

)kgk; (5.14)

i.e.,

kKP

h

A

�1

k � E

m

h

m

;

where

E

m

� kKA

�1=2

k

e

C

e

e

C(C

m

+D

m

� 2C

0

):

If the exat solution u 2 W

k

2

(
), k � 2m then again by virtue of (3.2) we

have

ku

I

� P

h

uk

0

� ku� u

I

k

0

+ ku� P

h

uk

0

� 2C

0

h

k

kuk

k

: (5.15)

By (5.6),

kKP

h

uk � kKA

�

1

2

kkA

1

2

P

h

uk � kKA

�

1

2

k

e

CkP

h

uk

m

: (5.16)

Inequalities (5.12) and (5.15) yield

ku

I

� P

h

uk

m

� D

m

h

�m

� 2C

0

h

k

kuk

k

: (5.17)

Thus we have

kP

h

uk

m

� ku� u

I

k

m

+ ku

I

� P

h

uk

m

: (5.18)

On the basis of (5.18), (3.2) and (5.17), inequality (5.16) leads to

kKP

h

uk � F

m

h

k�m

kuk

k

; (5.19)

where

F

m

� kKA

�

1

2

k

e

C(C

m

+ 2D

m

C

0

):

Finally, by virtue of (5.14) and (5.19), from inequality (5.5) we obtain esti-

mate (5.9). Thus Theorem 3 is proved. �

For the residual we have

kf �Aeu

h; l

�Keu

h; l

k � (I + kKA

�1

k)kAu�Aeu

h; l

k = O(h

k+m(l+1)

):

6. The Uniform Estimate

From the known multipliative inequalities and embedding theorems we

obtain the following inequality ([9℄, p. 46):





v





C(
)

� C





v





1�

P

4m

0





v





P

4m

2m

; 8 v 2W

2m

2

(
); (6.1)

here 4m > p, p is dimension of the domain 
, 2m is the order of the

di�erential operator A, k � k

0

� k � k

L

2

(
)

, k � k

2m

� k � k

2m

W

2(
)

.
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Theorem 4. In the onditions of Theorems 1 and 3 the uniform estimate





u� u

h; l





C(
)

= O

�

h

k+m(l+1)�

P

2

�

(6.2)

is valid, where (k � 1) is power of the subspae of base funtions, l is a

number of projetive-iterative yles, p is dimension of the ube 
, the exat

solution u 2 W

k

2

(
), k � 2m, 4m > p, l = 0; 1; : : : , is �xed, h! 0.

Estimate (6.2) follows from (6.1) by virtue of estimates (3.7) and (5.9).

Corollaries of Theorem 4:

(1) if A is the seond order di�erential operator, K is the �rst order

di�erential operator, 
 = [0; 1℄, as the base system are taken pieewise linear

�nite funtions (m = 1, p = 1, k = 2), and the exat solution u 2W

2

2

(0; 1),

then





u� u

h; l





C(
)

= O(h

2;5+l

); l = 0; 1; : : : ;

l is �xed, h! 0, for 
 = [0; 1℄� [0; 1℄ (p = 2)





u� u

h; l





C(
)

= O(h

2+l

);

for 
 = [0; 1℄� [0; 1℄� [0; 1℄ (p = 3)





u� u

h; l





C(
)

= O(h

3

2

+l

);

(2) if as the base system are taken pieewise ubi Hermitian �nite funtions

(k = 4), then for u 2W

2

2

(
), for p = 1





u� u

h; l





C(
)

= O(h

4;5+l

);

for p = 2





u� u

h; l





C(
)

= O(h

4+l

);

for p = 3





u� u

h; l





C(
)

= O(h

3;5+l

):

7. Numerial Realization

Let us onsider the boundary value problem

�u

00

(x) + p

1

(x)u

0

(x) + p

2

(x)u(x) = f(x); 0 < x < 1; (7.1)

u(0) = u(1) = 0:

We take the spaeH � L

2

(0; 1). The operator Au � �u

00

(x), u(0) = u(1) =

0, and the operator Ku � p

1

u

0

+ p

2

u. The salar produt in the energeti

spae H

A

is [u; v℄ =

R

1

0

u

0

v

0

dx.

Let p

0

1

, p

2

2 C[0; 1℄. For 8u, v 2 H

A

,

(Ku; v) = (p

1

u

0

+ p

2

u

00

; v) = (�p

1

v

0

+ (p

2

� p

0

1

)v; u);

i.e.,

K

�

v = �p

1

v

0

+ (p

2

� p

0

1

)v
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(u and v satisfy the boundary onditions).

Further,





K

�

v





=

��

p

2

+ p

0

1

�

� 2

�

1

2

�





v

0





; 8 v 2 H

A

;

where p

1

� max

x2[0;1℄

jp(x)j are analogous to p

2

and p

0

1

. Therefore the operators

K

�

A

�

1

2

and A

�

1

2

K are bounded.

Green's funtion of the operator Au = �u

00

(x), u(0) = u(1) = 0,

G(x; t) =

(

(1� x)t; t � x;

x(1� t); t � x; x; t 2 [0; 1℄:

Introdue the operator

Lv � �KA

1

2

v +A

1

2

Kv; 8 v 2 D(A):

The operator

A

1=2

v = �iv

0

; Av = A

1=2

(A

1=2

v) = �v

00

; Lv = A

We have

A

�1

Lv =

1

Z

0

G(x; t)

�

� i(p

0

1

v

0

+ p

0

2

v)

�

dt:

Taking into aount that G

0

t

(x; t) is disontinous of the �rst order for x(t),

G(x; t) is ontinuous; they are bounded (almost everywhere) by the number

1, and hene we have

kA

�1

Lvk � (p

0

1

+ p

00

1

+ p

0

1

)kvk; 8 v 2 D(A): (7.2)

Therefore we �nd that the operator A

�1

KA

1=2

is bounded for p

00

1

, p

0

2

2

C[0; 1℄.

Now we take the uniform mesh h =

1

n

and the pieewise linear �nite

funtions

'

(x)

k

� '

h

k

=

8

>

<

>

:

'

(1)

k

= h

�1

(x� x

k�1

); x 2 [x

k�1

; x

k

℄;

'

(2)

k

= h

�1

(x

k+1

� x); x 2 [x

k

; x

k+1

℄;

0; x2[x

k�1

; x

k+1

℄:

We need the funtions

A

�1

'

k

=

1

Z

0

G(x; t)'

k

(t) dt =

x

k

Z

x

k�1

G(x; t)'

(1)

k

(t) dt+

+

x

k+1

Z

x

k

G(x; t)'

(2)

k

(2) dt; k = 1; 2; : : : ; n� 1; n = h

�1

: (7.3)

Thus
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(1) for x � x

k�1

,

A

�1

'

k

= x

x

k

Z

x

k�1

(1� t)h

�1

(t� x

k�1

) dt+ x

x

k+1

Z

x

k

(1� t)h

�1

(x

k+1

� t) dt;

(2) for x 2 [x

k�1

; x

k

℄,

A

�1

'

k

= (1� x)

x

Z

x

k�1

th

�1

(t� x

k�1

) dt+

+x

x

k

Z

x

(1� t)h

�1

(t� x

k+1

) dt+ x

x

k+1

Z

x

k

(1� t)h

�1

(x

k+1

� t) dt;

(3) for x 2 [x

k

; x

k+1

℄,

A

�1

'

k

= (1� x)

x

k

Z

x

k�1

th

�1

(t� x

k�1

) dt+

+(1� x)

x

Z

x

k

th

�1

(x

k+1

� t) dt+ x

x

k+1

Z

x

(1� t)h

�1

(x

k+1

� t) dt;

(4) for x � x

k+1

,

A

�1

'

k

= (1� x)

x

k

Z

x

k�1

th

�1

(t� x

k�1

) dt+ (1� x)

x

k+1

Z

x

k

th

�1

(x

k+1

� t) dt:

Our alulations show that

(1) for x � x

k�1

,

A

�1

'

k

= x

�

h

2

(�k) + h

�

;

(2) for x 2 [x

k�1

; x

k

℄,

A

�1

'

k

=

= h

�1

�

�

x

3

6

+

x

k+1

2

x

2

+ x

h

h

3

(�k) +

h

2

2

(�k

2

+ 2k + 1)

i

+

1

6

x

3

k�1

�

;

(3) for x 2 [x

k

; x

k+1

℄,

A

�1

'

k

=

= h

�1

�

x

3

6

�

x

k+1

2

x

2

+ x

h

h

3

(�k) +

h

2

(k + 1)

2

2

i

�

1

3

h

3

k

3

+

1

6

h

3

(k � 1)

3

�

;

(4) for x � x

k+1

,

A

�1

'

k

= (1� x)h

2

k:
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Next we onsider a partiular type of the operator K, Ku = xu

0

+ u.

The right-hand side f = �4x

3

+3x

2

+6x� 2 and the exat unique solution

u = x

2

� x

3

.

We have

'

0

k

=

8

>

<

>

:

h

�1

; x 2 ℄x

k�1

; x

k

[ ;

�h

�1

; x 2 ℄x

k

; x

k+1

[ ;

0; x2 [x

k�1

; x

k+1

℄:

For A

�1

t'

0

k

, k = 1; 2; : : : ; n� 1, similarly to A

�1

'

k

, we �nd that

(1) for x � x

k�1

,

A

�1

t'

0

k

= x(�h+ h

2

� 2k);

(2) for x 2 [x

k�1

; x

k

℄,

A

�1

t'

0

k

= �

h

�1

6

x

3

+ x

h

h

2

� 2k +

h

2

(k

2

� 2k � 1)

i

�

h

�1

3

x

3

k�1

;

(3) for x � x

k+1

,

A

�1

t'

0

k

=

h

�1

6

x

3

+ x

h

h

2

� 2k �

h

2

(k + 1)

2

i

+

h

2

3

(k

3

+ 3k

2

� 3k + 1);

(4) for x � x

k+1

,

A

�1

t'

0

k

= (1� x)h

2

(�2k):

The expression

A

�1

f =

x

5

5

�

x

4

4

� x

3

+ x

2

+

x

20

:

We take the pith h =

1

4

. Then:

A

�1

'

1

=

8

>

>

>

>

>

<

>

>

>

>

>

:

�

2

3

x

3

+

3

16

x; x 2 [0; h℄;

2

3

x

3

� x

2

+

7

16

x�

1

48

; x 2 [h; 2h℄;

1

16

�

1

16

x; x 2 [2h; 1℄;

A

�1

'

2

=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

1

8

x; x 2 [0; h℄;

�

2

3

x

3

+

1

2

x

2

+

1

96

; x 2 [h; 2h℄;

2

3

x

3

�

3

2

x

2

+ x�

5

32

; x 2 [2h; 3h℄;

1

8

�

1

8

x; x 2 [3h; 1℄:
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A

�1

'

3

=

8

>

>

>

>

>

<

>

>

>

>

>

:

1

16

x; x 2 [0; 2h℄;

�

2

3

x

3

+ x

2

�

7

16

x+

1

12

; x 2 [2h; 3h℄;

2

3

x

3

� 3x

2

+

29

16

x�

23

48

; x 2 [3h; 1℄3

A

�1

t'

0

1

=

8

>

>

>

>

>

<

>

>

>

>

>

:

�

2

3

x

3

�

x

8

; x 2 [0; h℄;

2

3

x

3

�

3

8

x+

1

24

; x 2 [h; 2h℄;

1

8

x�

1

8

; x 2 [2h; 1℄;

A

�1

t'

0

2

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0; x 2 [0; h℄;

�

2

3

x

3

+

1

8

x�

1

48

; x 2 [h; 2h℄;

2

3

x

3

�

7

8

x+

5

16

; x 2 [2h; 3h℄;

1

4

x�

1

4

; x 2 [3h; 1℄;

A

�1

t'

0

3

=

8

>

>

>

>

>

<

>

>

>

>

>

:

1

8

x; x 2 [0; 2h℄;

�

2

3

x

3

+

5

8

x�

1

6

; x 2 [2h; 3h℄;

2

3

x

3

�

13

8

x+

23

24

; x 2 [3h; 1℄:

To onstrut the algebrai system (1.5) we shall need the following ma-

tries:

M

1

� ('

k

; '

i

)

(3)

i;k=1

; M

2

� (t'

0

k

; A

�1

'

i

)

(3)

i;k=1

= (A

�1

t'

0

k

; '

i

)

(3)

i;k=1

;

M

3

� (A

�1

'

k

; '

i

)

(3)

i;k=1

:

The matrix M

1

is known ([2℄, p. 104). We alulate the matries M

2

and M

3

and obtain

M

1

=

0

B

B

B

�

1

6

1

24

0

1

24

1

6

1

24

0

1

24

1

6

1

C

C

C

A

; M

2

=

0

B

B

B

B

B

�

�

13

5 � 16

2

�

1

5 � 16

2

1

8�16

�

111

30 � 16

2

�

13

5 � 16

2

109

30 � 16

2

�

1

8 � 16

�

53

15 � 16

2

7

5 � 16

2

1

C

C

C

C

C

A

;
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M

3

=

0

B

B

B

B

B

�

31

15 � 16

2

59

30 � 16

2

1

16

2

59

30 � 16

2

46

15 � 16

2

59

30 � 16

2

1

16

2

59

30 � 16

2

31

15 � 16

2

1

C

C

C

C

C

A

;

The matrix M �M

1

+M

2

+M

3

,

M =

0

B

B

B

B

B

�

79

30 � 16

373

30 � 16

2

3

16

2

134

15 � 16

2

647

15 � 16

2

244

15 � 16

2

�

1

16

273

30 � 16

2

692

15 � 16

2

1

C

C

C

C

C

A

;

The right-hand side of the algebrai system (1.5)

b

(3)

� (b

1

; b

2

; b

3

)

T

; b

i

= (A

�1

f; '

i

); i = 1; 2; 3;

b

1

= 0; 015137; b

2

= 0; 033545; b

3

= 0; 033396:

All alulations are performed to within the auray 10

�6

.

The algebrai system (1.5) is written in the form

Ma

(3)

= b

(3)

(7.4)

its solutions

a

1

= 0; 042240; a

2

= 0; 129767; a

3

= 0; 160635:

By the method of Galerkin-Petrov, the third approximation

u

3

(x) =

3

X

k=1

a

k

'

k

(x): (7.5)

One iteration

eu

3

= �A

�1

Ku

3

+A

�1

f = �

3

X

k=1

a

k

(A

�1

t'

0

k

+A

�1

'

k

) +A

�1

f:

Taking into aount the expressionsA

�1

'

k

, A

�1

t'

0

k

, k = 1; 2; 3 we obtain

(1) for x 2 [0; h℄,

A

�1

Ku

3

= a

1

�

�

4

3

x

3

+

1

16

x

�

+ a

2

�

x

8

+ a

3

�

3x

16

;

(2) for x 2 [h; 2h℄,

A

�1

Ku

3

=

= a

1

�

4

3

x

3

� x

2

+

1

16

x+

1

48

�

+ a

2

�

�

4

3

x

3

+

1

2

x

2

+

1

8

x�

1

96

�

+ a

3

�

3x

16

;
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(3) for x 2 [2h; 3h℄,

A

�1

Ku

3

= a

1

�

1

16

x�

1

16

�

+ a

2

�

4

3

x

3

�

3

2

x

2

+

1

8

x+

5

32

�

+

+a

3

�

�

4

3

x

3

+ x

2

+

3

16

x�

1

2

�

;

(4) for x 2 [3h; 1℄,

A

�1

Ku

3

=

= a

1

�

1

16

x�

1

16

�

+ a

2

�

1

8

x�

1

8

�

+ a

3

�

4

3

x

3

� 2x

2

+

3

16

x+

23

48

�

:

Finally,

eu

3

= �A

�1

Ku

3

+A

�1

f; (7.6)

where A

�1

Ku

3

are de�ned above; it depends on the interval [x

k�1

; x

k

℄,

k = 1; 2; 3; 4, and the polynomial A

�1

is added. Expressions (7.5) and (7.6)

for u

3

(x) and eu

3

(x) depend on the interval. This naturally belongs to the

ordinary method of �nite elements.

The order of onvergene in L

2

(0; 1) is

ku� u

h

k = O(h

2

); ku� eu

h

k = O(h

3

):

If instead of f'

k

g in the apaity of the base system we take fb'

k

g,

where b'

k

= h

�1=2

, then approximate solutions u

3

and bu

3

do not vary.

Instead of the matrix M

1

we have h

�1

M

1

and analogously h

�1

M

2

and

h

�1

M

3

; in the right-hand side we have h

�1=2

b

(3)

and hene there take plae

their perturbations. The system of elements fb'

k

g is uniformly linearly

independent, and the ondition of the stability of the projetive-iterative

method is ful�lled.

In the table below, in the disrete points x

i

we present the values of the

exat solution u, an approximate solution u

3

, an approximate solution with

one iteration eu

3

, and the errors u�u

3

and u�eu

3

. At the end of the interval

they are zeros.

In the norm L

2

(0; 1) the relative errors are

ku� u

3

k

kuk

� 9; 9%

ku� eu

3

k

kuk

� 0; 6%:



ONE VERSION OF GALERKIN-PETROV'S METHOD WITH ITERATIONS 87

x

i

u u

3

eu

3

u� u

3

u� eu

3

1=8 0; 013672 0; 021120 0; 013854 �0; 007448 �0; 000182

1=4 0; 046875 0; 042240 0; 047229 0; 004635 �0; 000354

3=8 0; 087891 0; 086004 0; 088254 0; 001887 �0; 000363

1=2 0; 125000 0; 129767 0; 125533 0; 004767 �0; 000533

5=8 0; 146484 0; 145202 0; 147134 0; 001282 �0; 000650

3=4 0; 140625 0; 160635 0; 141996 �0; 020010 �0; 001371

7=8 0; 095703 0; 080318 0; 095756 0; 015385 �0; 000053
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