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ONE VERSION OF GALERKIN-PETROV’S METHOD
WITH ITERATIONS

A. DZHISHKARIANI AND A. SVANIDZE

ABSTRACT. We consider the projective-iterative method for elliptic
boundary value problems in which in the capacity of the projective
method we take one version of the Galerkin-Petrov method. An ap-
proximate solution is sought in the form of a linear combination of
base functions of the method of finite elements, and the algebraic sys-
tem is constructed by scalar multiplication of the residual by the other
functions. The error estimates of the projective- iterative scheme are
obtained and its stability is shown. The numerical realization of the
scheme is presented.
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1. STATEMENT OF THE PROBLEM
We consider the equation of the type ([1], p. 426)
Au+Ku=f, ueD(A4), feH, (1.1)

where A is a linear self-conjugate positive definite differential operator in the
Hilbert space H = L2(Q2), Q is a bounded domain with regular boundary
00, K is a linear differential operator such that A~'K is fully continuous
in H, an energetic space Hy C D(K), Hy4 is a supplement of a dense lineal
D(A) C H by the norm ||ullsr, = [u,u]z = (Au,u)z ([1], p. 76), D(A) and
D(K) are the domains of definition of operators A and K.
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Let the base functions of the method of finite elements ¢}, = go,(ch), k=
1,2,...,n, n=n(h) belong to H4, h is a lattice pitch.

Suppose that the operator A~! is given explicitly by Green’s functions
G(z,t), i.e. a solution of equation Av = g, v € D(A), g € H is given by the
formula

v=A"'g= /G(z,t)g(t) dt. (1.2)
Q

First we find the functions
Vi = Aoy = /G(a:,t)api(t) i, i=12.. . .n (1.3)

Q

An approximate solution of equation (1.1) is sought in the form
up = Zakgok, n = n(h) (1.4)
k=1

and the algebraic system is constructed by the method of Galerkin-Petrov:
(Auh+Kuh—f, ¢l) =0, 1=12,...,n,

or
Zak [(@ka@l) + (Kgok:A_lgoi)] = (A_1f7 Qol)a i = 1727 sy e (15)
k=1

Construction of algebraic system (1.5) makes in practice difficulties in
comparison with the ordinary method of finite elements, where the system
is such that

ZWc{[‘Pka%’] + (K<Pk,§0z)} = (fa 902)7 i = 1727' . 7n(h) (16)
k=1

But system (1.5) possesses the following property: a number of condi-
tionality 6, = AmaxA,i, Of symmetric matrices in (1.5), generated by the
operator A in case of a uniform lattice with pitch h, is uniformly bounded as
h — 0 ([2], p- 104; [3], p. 240), which guarantees the stability. Numbers of
conditionality of corresponding matrices in scheme (1.6) is 3, ~ h=2™ ([3],
p. 243), where 2m is an order of the differential operator A. On the basis of
the Galerkin-Petrov method, order of convergence of the projective-iterative
scheme increases for each cycle even for ¢, €D(A).

Note that in the iteration we shall need the functions A=tpy, A=Ky,
k=1,2,...,n.

The aim of the present paper is to get an error estimate for scheme (1.5)
by iterations in the spaces Ly(Q), W2™(Q), C'(Q) and to show the stability

of the projective-iterative scheme. The numerical realization is given.
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2. PROJECTIVE-ITERATIVE SCHEME

Introduce the operator

n

Py =Y Cipr, n=n(h),
P

=1
where coefficients Cy, Cs, ..., C, are defined from the condition

n 2
Hv - ZC’kgokHH = min.
k=1
Then we can write (1.5) in the form

uUp + PhAilK’u,h = PhAilf, up € Sh, (2.1)

where S}, is the linear shell of functions @1, s, ..., ¢n, (Hy = Sh).
From (1.1) we obtain the second kind equation

u+ A Ku=A"'f (2.2)

and its Galerkin’s approximation (2.1) ([4], p. 199). If the operator I +
A7'K is invertible in H and ||P*A~'K|| = 0 as h — 0, (P, = I — P") then
for sufficiently small h equation (2.1) has a unique solution uy. Moreover,
if |[A~'KP"||;r — 0 as h — 0, then we can apply the following projective-
iterative method ([5]):

of the solution uj; we take the iteration

up = —AilK’U,h + Ailf, (2.3)
(1) calculate the residual
ro = A_lf — Eh — A‘lKﬂh

and the scalar product (ro,;), i =1,2,...,n;

(2) solve the algebraic system

Zag) I:((pk,@z) + (KSOka Ailcpl)] = (7“0,901'), i= ]-7 27 sy N, (24)
k=1

the left-hand sides of algebraic systems (1.5) and (2.4) are the same;
(3) of the solution u{” = S>"_ a{ ¢, we take the iteration
ﬂgl) = —AilKugl) + ro,
(4) summarize the results of iterations
Uy = T + 0.

Cycle (1)-(4) can be repeated several times. After [ cycles we obtain an
approximate solution by means of the projective-iterative method

Uny = T + 05 + -+ (2.5)
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The error of an approximate solution for sufficiently small A (similarly to
[5]) is expressed by the formula

u — ﬂh7 | =
=T+ AT'KP) " (-AT'KPy)---(I+ AT'KP,) ' (—A™' K Pyu). (2.6)

3. ERROR ESTIMATES IN H
Lemma 1. Let Hy C D(K*) and for Vv € Hy the inequality
|1 EK*v|| < Cllollaa, (3.1)
is fulfilled. Then the operator A3 K s bounded in H.
Indeed, the condition v € H4 implies that g = Asv € H, v = A_%g.
From (3.1) we have
w1
|K*A72g]| < Cligll, Vg€ H,

i.e., the operator K*A~ % is bounded in H. The operator K* is conjugate
in H, and the norm |[A 2 K|| = ||[K*A~z||.

It is well-known ([3], p. 172) that if power of the linear shell S}, of base
functions is equal to (k — 1), the base is homogeneous of order ¢, an order
of all derivatives which are connected with nodal parameters is less than
k — £, p is dimension of the domain Q and the function u € W§(Q), then
for the interpolation u; the estimate

[|lu—urlls SC’shk*sHqu, s=0,1,2...,q. (3.2)

is valid. Here we suppose that s = 0, k = 2m, where 2m is order of the
differential operator A. Then

1Pl = flu = Pralo < llu — ugllo < Coh®[lullam.  (3:3)
Lemma 2. In condition (3.3) the norm
|A~2P"|| < CR™. (3.4)
Indeed, we have
(A2 Phg, A2 Phg) = (A1 PPy, Pg) < || A7 P"|llg]?,
[A=SPY| < JAT Pr|E (A7 Pt) = Pha,
Moreover, it follows from (3.3) that
|P* A ]| < Con*™ (| A g][,,, < CH*™ ]

ie.,

|Pra=t| <Trem, T=ol, [|A'g],,, < Olg
and finally,
HA_%Ph” < (ﬁo)%hm, C = (5)_%.
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Lemma 3. If all the conditions of Lemmas 1 and 2 are fulfilled and the
operator A"YK A% is bounded in H, then

|AT K P"|| < Coh™. (3.5)
Indeed,
A7 P! < AT kAR A5 PY| < Con™,
where
Co = ||[A~' K A%||(C)*.
Note that

[P < [Pt a- i),

Theorem 1. If the operator I + A~ K is invertible in H, inequalities
(3.1) and (3.3) are fulfilled, the operator A~'K Az is bounded in H, the
ezact solution u € WF(Q), k > 2m, then for sufficiently small h the error
estimate

o =] <

<||(@+ AT KR A K AR PR AP, (3.6)
l=-1,0,1,...
is valid. When [ is fized and h — 0, the above estimate has the order
| = @n, o] = O(RFF™IFD), (3.7)

This theorem follows from (2.6), (3.2), from the above lemmas and the
fact that the operator A~1K A% is bounded.

The case | = —1 corresponds to an approximate solution u, of equation
(2.1), whereas in [4] (p. 200) we have

||u - uhH = O(h").

In particular problems we have to prove the boundedness of the operators
A"2K and A"*KAz. The boundedness of A~2 K follows from (3.1) and
the latter have to be proved. We can prove the boundedness of ATK Az
as follows: introduce the operator L = AT K — KA:. If we prove that the
operator AL is bounded, then the operator A1 K A3 = A=3K — A~'L
will be bounded as well.

4. STABILITY

In [6] we can find definitions of stability of the projective-iterative scheme
for the second kind equation (I +T)u = f, u, f € H. For the j-th cycle, a
non-perturbed approximate equation has the form

uZL-i—PnTqu:Pnrj_l, U{LEH’na jZO,l,...,l, (41)

_ 0o _ _ ~ _
Ty =f, Uy =Un, Tj1 = f—Upj — Tlpj 1,
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and a perturbed approximate equation has the form
(I + P,T + Ap)v), = Porj1 + Py (Fj1 —1j—1) + A(Parj—1),  (4.2)
vp € Hyy 7=0,1,...,01, v =uv,,
Tici =f—Unjo1 —TUpj—1, To1 =711 =f.

To the operator (I+P,T) : H,, — H,, there corresponds the matrix B,, =
((I+T)pk, %)Ef,?:l and to the operator A, : H, — H,, there corresponds the
error matrix I'), = ('yki)g;)zl. They are independent of the norm of cycle j.

Here we cite Definition 2 from [6] which concerns the stability.

The projective-iterative method is said to be stable from the space 15”)
to the space H, if there exist independent of n constants r > 0, C’l(l) >0

and 02(1) > 0 such that perturbed equations (4.2) for ||I',|| < r have unique

solutions v}, j = 0,1,...,l and the estimate
~ —(mk)
< .
[0t = Tnilly < €1 max (|87 + CoTallyy  (43)
n
is valid; the vector r(") ¢ lgn), the norm ||7'(")|| = (E 2)!/2, the norm of

i, 1

n), k=—-1,0,1,...,1—1.
—1 is the stablhty of the initial projective method

(Fka%) (FIHSO?) )
The case | = 0 k
without iteration.
Here we quote Theorem 2 from [6] (p. 1040). Uniform linear indepen-
dence (almost orthonormalization) of the base system ¢1,¢s,... in H is
sufficient for the projective-iterative method to be stable in a sense of De-
finition 2.
If p1,092,...,0n, n =n(h), YVn € N are uniformly linearly independent,

the matrix ||T,|| < ( 3 v%)"/? and 5*) is the error of the scalar products
k=
(Tr,

i.e., eigen numbers of symmetric matrices (gok,goi)g?zl, Vn(h) satisfy the
conditions
0< o <A <o <A < A,

then the numbers of conditionality of these matrices is s, = /\(n)( 5n)) <
AoXy !, and vice versa, if numbers of conditionality of matrices (¢y, cpl)g n) 19
are s, < s, Vn(h), then the functions g = (/\§ )) 2o, k=1,2,...,n(h),

n(h) € N are uniformly linearly independent.

Indeed, eigen numbers of the matrix (@, P:)i k=1 are bounded below
/\,(c ), kE=1,2,...,n(h), XE”) = )\gn)()\gn))_l = 1 and bounded above XE:L) =
A MY =1 = 5, < 50, Vn(h) € .

Normalization of base functions does not change approximate solutions

' vl j=0,1,...,1, it changes only solutions of algebraic systems.
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As is mentioned in §1, numbers of conditionality of matrices generated
by the operator A in scheme (1.5) are uniformly bounded. The operator
A7'K is fully continuous in H. If we take the normalized base functions
Pk = (lﬁn))_%gok, k=1,2,...,n, the conditions of Theorem 2 from [6] will
be fulfilled. Therefore the following theorem is valid.

Theorem 2. The suggested projective-iterative scheme is stable from lgn)
to H.

Note that the definition of the stability of the projective method on the
basis of strong minimality of the base system in Ha ([7], p. 62) admits the
norm perturbation ||T'yl] < r, Vn € N where r > 0 is the fized number.

In an ordinary method of finite elements (scheme (1.6)), eigen numbers of

the basic matrices ([gok,goi])grz)zl are not simultaneously bounded below and

above as n. — oo(h — 0).
5. RESIDUAL ESTIMATE
From (1.1) we have
(I+KA YAu=f, Aucf, feH. (5.1)
An approximate solution u satisfies the equation
(I+ A 'KPy)iu, = A f,
which can be verified directly by means of (2.1) and (2.3). Therefore

(I + KP, A=Y Auy, = f. (5.2)
Equations (5.1) and (5.2) yield
(I + KP,A Y (Au — Afip) = —KP"u. (5.3)

If the operator I + KA~! is invertible in H and |KP"A"!|| — 0 as
h — 0, then just in the same way as in (2.6) we get

Au — Auyp, =
(I + KPLA™Y Y (=K P, A™Y - (I + KPLATY) (=K Pu), (5.4)
ie.,
[ Au — Atp, || < (T + KPR A™HTHFH K PPATH| || K PP, (5.5)

1=0,1,...,(h < hy).
Let an energetic norm
I ez < Cl- llm (5.6)

and N
lull2m < CllAu]|, uw € D(A). (5.7)
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Note that estimates (5.6) and (5.7) are fulfilled in elliptic problems when
coefficients of the operator A have certain smoothness. Moreover, let

I PP ul| < || KA 2|42 Phul. (5.8)
Then the following theorem is valid.

Theorem 3. If the operator I+ KA~ is invertible in H, the domain Q is
a P-dimensional cube, the norm of the differential operator is 2m, the exact
solution u € W¥(Q), k > 2m, base functions o € Ha, k = 1,2,...,n(h),
a number of projective-iterative cycles l is fixed, and the mesh pitch h — 0,
then the following estimate is valid:

|Au — Atip, || = O(hFFmI=1)) (5.9)
(k — 1 is the power of the subspace S,), 1 =0,1,....
Proof. For k = 2m and s = m estimate (3.2) results in
147 g = (A7 g)rllm < Conh®™ ™| A7 glorm. (5.10)
Next, from (3.2) and (5.7), with regard for the inequality
A7 g — PoA™ gllo < [lA7 g — (A 9)ll,
we obtain
(A7 g)1 = PoA™ gllo < I(A7 g)r — A7 gllo + |47 g — PoA™ gl <

< 24" — (A~ g)s]l < 2000 g]lo. (5.11)
The functions uy, P,u € S;, and therefore inequality (2.14) from [8] (p. 37)
lur — Pyul?,y < P-4C*(k — 1)h?|ur — Pyul?,
1<a+1<q, C*(k—1)=(Ck-1)°

(¢}
is valid for these functions. The norm ||-||2 = Y |-|2, ||« is the half-norm.
k=0

Therefore
lur = Prullagy < (h° + p4C? (k — 1)) b |lur — Pyul|2,
whence

/2,
P Ulur — Pyul]a,

llur — Phul|a+r < (h2 +40%(k — l)p)
which for a« =0, ] = m gives
llur — Phullm < Dimh™™||ur — Phul|o, (5.12)
where the pitch
Dp =2 2 +4pC*(k—1))2, h<27h
Estimates (5.12) and (5.11) yield

(A" 9)r = PoA™"gllm < Dy - 2CoCh™||g]o- (5.13)
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Further, on the basis of (5.6), (5.10) and (5.13) we have
IKP"A  g|| < KA E|[[|AZP" A g|| < |[KA ||| P"A g <
<[IEAC(|A g = (A7 g)rllm + (A g)r — PaA™ gllm) <
< |KA™H|C(Cnh™C + Dy, - 2CoCH™)|g]l, (5.14)

ie.,
|KP"A7Y| < Eph™,
where B
Ep = |KATY?||CC(Cm + Dy - 2C5).

If the exact solution u € WF(Q), k > 2m then again by virtue of (3.2) we
have

llur = Paullo < [l — ugllo + lu — Pyullo < 2Coh* |Julls. (5.15)
By (5.6),
| Phul| < || KA™2[[| A2 PPul| < || KA~ 2||C|[P . (5.16)
Inequalities (5.12) and (5.15) yield
lur — Putllm < Db ™ - 2Coh" ||ulli. (5.17)
Thus we have
1P ullm < [lu = wrllm + [[ur = Prulm. (5.18)
On the basis of (5.18), (3.2) and (5.17), inequality (5.16) leads to
1K PPul| < Froh¥="lull, (5.19)

where
L~
F, =||[KA 2||C(Cy + 2D, Cy).
Finally, by virtue of (5.14) and (5.19), from inequality (5.5) we obtain esti-
mate (5.9). Thus Theorem 3 is proved. O

For the residual we have
1f = At — Kanll < (T + |KAT )| Au = Atip, || = O(RFFHD),

6. THE UNIFORM ESTIMATE

From the known multiplicative inequalities and embedding theorems we
obtain the following inequality (][9], p. 46):
_P P
ollem < Cllvlly ™ lvlsn, o ews™@), (6.1)
here 4m > p, p is dimension of the domain 2, 2m is the order of the
differential operator A, || -|lo = || - ||L2(Q), [l ll2m = || - | %"7’2(9)‘
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Theorem 4. In the conditions of Theorems 1 and 3 the uniform estimate
_ m _ P
e~ “hJHC(Q) = O(pHHmt =) (6.2)

is valid, where (k — 1) 4s power of the subspace of base functions, | is a
number of projective-iterative cycles, p is dimension of the cube §Q, the exact
solution u € W¥(Q), k> 2m, 4m > p, 1 =0,1,..., is fived, h — 0.

Estimate (6.2) follows from (6.1) by virtue of estimates (3.7) and (5.9).

Corollaries of Theorem 4:

(1) if A is the second order differential operator, K is the first order
differential operator, 2 = [0, 1], as the base system are taken piecewise linear
finite functions (m =1, p = 1, k = 2), and the exact solution u € WZ(0, 1),
then

| — uh,l||c@ = 0>, 1=0,1,...,
lis fixed, h — 0, for @ =[0,1] x [0,1] (p = 2)
(s Hh,l”c@) = O(h**),
for Q = [0,1] x [0,1] x [0,1] (p = 3)
”“ - HhJ“c(ﬁ) = O(h%H)?
(2) if as the base system are taken piecewise cubic Hermitian finite functions
(k = 4), then for u € WZ(Q), for p=1

= Tn ||C(§) = 0(h**)

forp=2
(s Hh,l“c(ﬁ) = O(h™),
forp=3

v = Tn. ||C(§) = O(h*™).

7. NUMERICAL REALIZATION

Let us consider the boundary value problem
—u"(z) + p1(z)u' (z) + p2(2)u(z) = f(r), 0 <z <1, (7.1)
u(0) = u(l) =0.
We take the space H = L2(0,1). The operator Au = —u"(z), u(0) = u(1) =
0, and the operator Ku = pyu’ + pou. The scalar product in the energetic
space H 4 is [u,v] = fol u'v'dz.
Let p}, po € C[0,1]. For Vu, v € Hy,
(KU,U) = (plul +p2u”7v) = (_plvl + (p2 _pll)vau)a
ie.,
K*v = —p1v' + (p2 — py)v
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(u and v satisfy the boundary conditions).
Further,

|K*|| = [(B, +B;) -2 2]V, VYve Ha,
where p; = ;él{%’iﬂp(wﬂ are analogous to P, and p}. Therefore the operators

)

K*A~% and A~: K are bounded.
Green’s function of the operator Au = —u"(z), u(0) =u(1) =0,

Gl t) = {5:1(1 —xi; Z;i z,t € [0, 1].
Introduce the operator
Lv=—KA*v+ A*Kv, Vv e D(A).
The operator
AV2p = —iv!, Av = AYV2(AV20) = =", Lwv=A
We have

1
1LU:/G [ —i(piv' + pho)] dt.
0

Taking into account that Gj}(z,t) is discontinous of the first order for x(t),
G(z,t) is continuous; they are bounded (almost everywhere) by the number
1, and hence we have

A7 Lol < By + B +1)loll, Yo € D(A). (7.2)
Therefore we find that the operator A~'KA'/? is bounded for p{, ph €
co,1].
Now we take the uniform mesh h = % and the piecewise linear finite
functions

o, =h Nz —wp_1), T € [Tho1, TR,
o) = el =00 = B (@ — ), @ € [oh, The),
0, T E[Tp—1,Tpt1]-

We need the functions

1
A gy = /G(z,t)gok / G(z,t)p )dt—l—
0

Th+1

+ / Gla, )\’ (2)dt, k=1,2,..., n—1, n=h"'.  (7.3)

Thus
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(1) for x < Tg—1,

Tr Th41
Ailcpk =z / (]_ —t)hfl(t—a:k,l)dt-l-a: / (]. —t)h71($k+1 —t) dt,
Tr—1 Tp

(2) for x € [zp_1,x1],

T

AV = (1—2) / th(t — zp_1) dt+

Tr—1
Th Thg1
+z /(1 —t)h (t —xpp)dt + / (1—=t)h H2pyr —t) dt,
T Tr
(3) for x € [, Tp41],
Tk
Al =1 —1) / th™ (t — zp_q) dt+
Th—1
z Tht1
+(1 —2) /tffl(a:,c+1 —t)dt +x / (1 =t)h Hzppr —t)dt,
e z
(4) for x > zpy1,
T Th+41
Alpp = (1— ) / th V(- 2o ) dt + (1 — 2) / th=Y (i1 — ) db.
Th—1 T

Our calculations show that
(1) for z S Tk—1,

A gy = x[h2(—k) +hl,
(2) for z € [xg_1, k],

Al =

3 h? 1
- h_l{ - % + xk;1x2 +x[h3(—k) + 5 (-F +2k+1)] + 61721}7

(3) for z € [k, Trt1],
Ailgok =

3 2 12
:h_l{% - $k2+1$2+a:[h3(—k)+7h (k+1)

(4) for z > wpy1,

Lig3, 1,3 3
- - - _1
] 3hk+6h(k )¢,

Ao = (1 — x)h%k.
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Next we consider a particular type of the operator K, Ku = zu’ + u.
The right-hand side f = —42® + 322 4+ 62 — 2 and the exact unique solution

u=2x%—z3
We have
h=t, x €lwp_1,zk],
Yr =4 —h7" @ €lay, wppa
0, $€[$k,1,$k+1].

For A='tp}, k=1,2,...,n— 1, similarly to A7 ¢}, we find that
(1) for x < Tg—1,

A7) = x(—=h + h? - 2k),

(2) for x € [zp_1, 71],

ht h ht
AithO;c = —?.’173 + .'17|:h2 . 2]{? + 5(]62 — 2]{? — 1)] — ?.’172_1,

(3) for x > zpy1,

h=! h
—1y 0 _ 3 2 97 1
A"ty = 5 < —l—a:[h 2k 5

2
(k + 1)2] + %(k3 +3k* -3k +1),
(4) for z > wpy1,
A7) = (1 — 2)h*(—2k).

The expression

5 4
PEPSE AN R
f 3 T +z +20
We take the pitchh:%. Then:
(2 3
—5173 + 6% x € [0, h],
_ 2 7 1

Al = §x3—x2+1—6x—4—8, z € [h,2h],
1 1
— — 2h,1
(16~ 16" @€ 2,1,
(1
3% x € [0, h],

2., 1, 1

St By B h, 2h

R 37 +237 +96’ z € [h,2h],

o 23—§x2+a:—i x € [2h,3h]

37 T2 32’ 2
1 1
\g - gﬂ?, T € [3h, 1]
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4 1 h
1_6x7 S [072 ]7
2 7 1
A lpy =L 2 - = 2
3 3:U + 22 16a:+ x € [2h, 3h],
29 23
_3t 4+ o2 3h,1]3
(37 Tt TEBRI]
(2
—§x3—§, z € [0, h],
2 3 1
A7l =4 22 — o+ — h,2h
L= 3T m gty TEA
11
“p— 2h,1
37~ g € [2h,1],
(0, z € [0, ],
2., 1 1
-z R h,2h
A Lol 23m +78m 548’ =
P2 = 3
e B 2h, 3h
37 T8 T e € [2h, 3h],
11
\Zm Za € [Sha]-]a
(1
g% x € [0,2h],
_ 2 5 1
At =< —Zad 4 S — = 2h, 3h
903 31' + 81' 67 € [ 73 ]7
2., 13 23
Sgt o 2 1].
'3 83: 51 € [3h,1]

To construct the algebraic system (1.5) we shall need the following ma-
trices:

3) 3
M, E(sok,%)gk) 1 Mo E(tsok,A 1%)5, =4 1t<p§c,<pi)§,,3:1,

(A ‘Pk:‘Pz)E?) 1

The matrix M; is known ([2], p. 104). We calculate the matrices Mo
and M5 and obtain

13 1
o _ _ 1
g 2 U 5-162  5-162 16
[V I R I DSt SRt 109
Tl s om| 30-162  5-16° 30-162 |’
A 1 53 7
S 816 15-16> 5-162
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31 59 1
15-16%2 30 - 162 162
99 46 99

M =

)

30-16% 15-162 30-162
1 59 31

162 30-162 15-162
The matrix M = M1 + MQ -+ M3,

79 373 3

30-16 30-162 162

_ 134 647 244
15-162 15-162 15-162 |’

1 273 692

16 30-16% 15-162
The right-hand side of the algebraic system (1.5)
b(3) = (b13b27b3)T7 bl = (A_lf,QOi), i = 172737
by = 0,015137, by = 0,033545, by = 0,033396.

All calculations are performed to within the accuracy 106,
The algebraic system (1.5) is written in the form

Ma® =p® (7.4)
its solutions
ay = 0,042240, ay =0,129767, a3 = 0,160635.
By the method of Galerkin-Petrov, the third approximation

3
uz(z) = Zakgok(a:). (7.5)
k=1
One iteration

3
Uy =—A"'Kus+ A f == ap(A 7't} + A o) + AT
k=1

Taking into account the expressions A~' gy, A7 o}, k = 1,2,3 we obtain
(1) for = € [0, h],

+ax: 5 +az —;

3
) rar g ras g

4 1
A Kus = al(— 5173 + 1—635

(2) for = € [h,2h],

AilK’U@:
4 1 1 4 1 1 1 3z
:a1(§x3—w2+1—6w+ﬁ)+a2(—§w3+§w2+§w—%)+a3-1—6;
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(3) for x € [2h,3h],

N R T

1 1
ta( - e N UL S 5)

3 16" 2
(4) for = € [3h,1],
A Kus =
c(fga= f5) +on (b ) (-2 e )
Finally,
Uy = —A Kug + A7, (7.6)

where A= Kug are defined above; it depends on the interval [zx_1, %],
k=1,2,3,4, and the polynomial A~! is added. Expressions (7.5) and (7.6)
for uz(z) and uz(z) depend on the interval. This naturally belongs to the
ordinary method of finite elements.

The order of convergence in L»(0,1) is

llu —unll = O(h?), |lu—anll = OR®).

If instead of {¢} in the capacity of the base system we take {Py},
where @y = h~'/2, then approximate solutions us and s do not vary.
Instead of the matrix M; we have h='M; and analogously h='M, and
h~'Mj; in the right-hand side we have A='/2b(3) and hence there take place
their perturbations. The system of elements {$y} is uniformly linearly
independent, and the condition of the stability of the projective-iterative
method is fulfilled.

In the table below, in the discrete points x; we present the values of the
exact solution u, an approximate solution ug, an approximate solution with
one iteration w3, and the errors u —us and u —u3. At the end of the interval
they are zeros.

In the norm L5(0,1) the relative errors are

[l — us|
[[u]

[lu — |

~9,9% 11— 21
[lull

~ 0,6%.
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x; U U3 us u— Ug u — Us
1/810,013672 | 0,021120 | 0,013854 | —0,007448 | —0,000182
1/410,046875 | 0,042240 | 0,047229 | 0,004635 | —0,000354
3/8 | 0,087891 | 0,086004 | 0,088254 | 0,001887 | —0,000363
1/2]0,125000 | 0,129767 | 0,125533 | 0,004767 | —0,000533
5/8 | 0,146484 | 0,145202 | 0,147134 | 0,001282 | —0, 000650
3/4 | 0,140625 | 0,160635 | 0,141996 | —0,020010 | —0,001371
7/8 | 0,095703 | 0,080318 | 0,095756 | 0,015385 | —0,000053
REFERENCES

. S. G. Mikhlin, Variational methods in mathematical physics. (Russian) Nauka,
Moskva, 1970.

. G. I. Marchuk and V. I. Agoshkov, Introduction to the projective-difference methods.
(Russian) Nauka, Moskva, 1981.

. G. Strang and J. Fix, Theory of the method of finite elements. (Russian) Mir, Moskva,
1977.

. M. A. Krasnosel’sky, G. M. Vaynikko, P. P. Zabreiko et al., An approximate solution
of operator equations. (Russian) Nauka, Moskva, 1969.

. D. Porter and D. S. G. Stirling, The re-iterative Galerkin method. IMA J. Number
Anal. 13(1993), 125-139.

. A. V. Dzhishkariani, Stability of projection-iterative methods. (Russian) Zh. Vychisi.
Mat. i Fiz. 39(1999), No. 7, 1074-1084.

. S. G. Mikhlin, Numerical realization of computational methods. (Russian) Nauka,
Moskva, 1966.

. A. Dzhishkariani and A. Svanidze, On the residual convergence in projective and
projective-iterative methods. Proceedings of A. Razmadze Mathematical Institute,
124(2000), 31-54.

. L. A. Oganesyan and L. A. Rukhovets, Variational-difference methods of solution of
elliptic equations. (Russian) Akad. Nauk, Arm. SSR, Yerevan 1979.

(Received 08.11.2002)

Author’s address:

A. Razmadze Mathematical Institute
Georgian Academy of Sciences

1, M. Aleksidze St., Thilisi 0193
Georgia



