NH,

b5 JOURNAL OF
PURE AND
APPLIED ALGEBRA
ELSEVIER Journal of Pure and Applied Algebra 174 (2002) 303-309 —_—

www.elsevier.com/locate/jpaa

Finite preorders and topological descent II: ¢tale
descent

George Janelidze?, Manuela Sobral®*!

a Mathematics Institute of Georgian Academy of Sciences, I Alexidze Str., Thilisi, Georgia
b Department of Mathematics, Coimbra University, 3001-454 Coimbra, Portugal

Received 15 October 2001; received in revised form 2 January 2002
Communicated by F.W. Lawvere

Abstract

It is known that every effective (global-) descent morphism of topological spaces is an effective
étale-descent morphism. On the other hand, in the predecessor of this paper we gave examples
of:

e a descent morphism that is not an effective étale-descent morphism;
e an effective étale-descent morphism that is not a descent morphism.

Both of the examples in fact involved only finite topological spaces, i.e. just finite preorders, and
now we characterize the effective étale-descent morphisms of preorders/finite topological spaces
completely. (© 2002 Elsevier Science B.V. All rights reserved.

MSC: 18B30; 18A20; 18A99; 18B35; 18B99; 18C20; 18D05

0. Introduction

Our main purpose in [1] was to show that essentially all the results of topological-
descent theory can be motivated by their finite instances, which become very simple
and natural as soon as they are expressed in the language of finite preorders. Now, we
are making a next step in this direction by solving the finite version of the very hard
(unsolved) problem of characterizing the effective étale-descent morphisms. It is not yet
clear to us how to extend our result to the infinite spaces, but at least it shows where
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is the difficulty: roughly speaking, instead of working with the “two-step convergence”
as Reiterman and Tholen [4] one would have to deal with certain equivalence relation
for all “finite chains of convergences”. We can also say that now we really see how
far are the effective étale-descent morphisms from the descent morphisms and from the
effective descent morphisms.

We will freely use the terminology and notation from [1] (see also [2] and [3]), and
in particular the standard diagram

E (B) L E(E)

p , 0.1)
O

Desg( p)
in which:

e p:E — B is a continuous map of finite topological spaces, or equivalently a
morphism of finite preorders;

e E the class of étale maps (=local homeomorphisms) of finite topological spaces,
and accordingly E(B) and E(E) are the categories of finite étale bundles over B
and E, respectively; and

e Desg(p) the category of étale-descent data for p, and p*, U?, and K? the pull-
back functor along p, the forgetful, and the comparison functor, respectively.

Let us however recall from [1]:

e The morphism p:E — B being a morphism of preorders can also be considered as
a functor from the category E to the category B—and then the functor p* : E(B) —

op

E(E) can be identified (up to an equivalence) with the functor Sets”” : Sets®" —
SetsE“p, which sends a functor B” — Sets to its composite with the functor
p? E? — B induced by p.

e Accordingly the category Desg( p) is to be replaced by an equivalent one, namely
by the category X of pairs (X, &), where X is a functor from E to Sets, and
&=(¢, ) a family of maps &, . : X(e) — X(e’), defined whenever p(e) = p(e’)
(for e and ¢’ in E), with

&e’,e" ée,e’ = ée,e”a ée,e = 1X(e)a ée,e’X(ea e_) = X(e/’ e_/)ée_,e_’: (02)
whenever p(e) = p(e’) = p(e”), p(é) = p(¢'),e — &, and ¢’ — & in E.
e Finally, the diagram (0.1) transforms into

op
Sets” op

Sets®” Sets”

(0.3)
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where u” is again the appropriate forgetful functor, and k” is defined by
kP(A)=(4p”,1), (0.4)

denoting by 1 the family of identity morphisms 1., of A(p(e)) = A(p(e’)) for
all e,¢’ in E with p(e) = p(e').

In particular we have

Proposition 0.1. The morphism p is an effective étale-descent morphism if and only
if the functor kP above is a category equivalence.

That is, our problem of characterizing the effective étale-descent morphisms of finite
topological spaces becomes a purely categorical one, and we simplify it further using
double categories, and then give a simple solution in Section 1. The additional remarks
made in Section 2 should help to clarify the relationship between étale and global
descent.

1. Characterization of effective étale-descent morphisms

For an arbitrary category C, let S(C) be the double category of commutative squares
in C. Recall that for such a square

b

ol

—  d

the horizontal domain and codomain are g and #, respectively, and the vertical ones
are f and k. In particular the sets S(C);o and S(C)o; of vertical and horizontal arrows
in S(C) are the same.

The functor §:Cat — DoubleCat has a left adjoint Z, which can be described as
follows:

For a double category D we take

e D, to be the discrete category with objects as in D;

e Dy and D, to be the categories with the same objects and the morphisms to be,
respectively, the horizontal and vertical arrows of D; and

e D, the pushout in Cat of the embeddings Dy — Dy and Dy — Dy;

after that, for every square

a—>b

JR

c‘>d

in D, the pairs (%, ) and (k,g) become morphisms in D, from a to d, and we
construct Z(D) as the quotient category D,/ ~ under the smallest congruence ~ for
which (4, f) ~ (k,g) for all such pairs (4, f) and (k,¢).
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Note that every morphism in Z(D) can be presented as the equivalence class of a
morphism in D, say, of the form

fi

a—— b,
g]l

gzl (1.1)

where f1,...,fn» and gi,...,g,—1 are n horizontal and n — 1 vertical arrows in D,
respectively. This suggests to call Z(D) the category of zigzags in D.

Let C be a category with pullbacks and D an internal category in C. For a (pseudo-)
functor F:C% — Cat, one defines a category F” of internal actions of D in F, and
the category Desz(p) above is a special case of such an FP with D = Eq(p), the
equivalence relation on E determined by p—see [3] for details. For C=Cat it is easy
to see that:

e an internal category in C is nothing but a double category (a well-known fact!);

e for a functor of the form C’:Cat” — Cat (where C is an arbitrary category) an
internal action of D in C’ is nothing but a morphism of double categories from
D to S(C), and therefore the same as a functor from Z(D) to C.

Moreover, it is then easy to conclude that the diagram (0.3) can be identified with

op
op Sets”

Sets” SetsE”

(1.2)

Sets”" Sets””

Z(E X4
Sets (Eq(p))

where p = @y is what one might call a canonical factorization of p. Explicitly,
¢@:Z(Eq(p)) — B is the unique functor that coincides with p on objects, and ¥ : E —
Z(Eq(p)) is the unique functor with /(e) = e on objects.

Theorem 1.1. The following conditions are equivalent:

(a) the morphism p:E — B is étale conservative in the sense of [2], i.e. the com-
parison functor K? :E(B) — Desg(p) is conservative;

(b) K7 is faithful;
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(¢) p:E — B is essentially surjective on objects (i.e. for every element b in B there
exists an element e in E with p(e) — b and b — p(e)).

Proof. According to the previous remarks we can replace K?”:E(B) — Desg(p) by
kP, ie. by Sets?” :Sets”” — Sets” ") \which makes (a) < (b) < (c) obvious,
and gives (b) = (c) since B is a preorder. Let us only sketch the proof of (b) = (c¢):

We observe that any B-indexed family S = (Sb,sb)beg of pointed sets with S, = S/
whenever b — & and b’ — b in B, yields a functor S : B” — Sets with S(b) =S} and

the identity map of S if 4’ — b in B;

S‘(b—>b’):{ (1.3)

the constant map Sy — S with the image {s,}, if not.
Moreover, every map S — T of such families determines a natural transformation
S — T, and if the condition (c¢) does not hold it is easy to find two such natural
transformations ¢ and ¢’ with ¢ #¢’ and op = ¢'p (say, whenever each S, and each
Tp has at least two elements)—in contradiction with (b). [J

The same result can be quickly deduced from the observations made in [2]—which
is not at all the case for

Theorem 1.2. The morphism p:E — B is an effective étale-descent morphism if and
only if the functor ¢ :Z(Eq(p)) — B is a category equivalence.

Proof. Replacing again K?:E(B) — Desg(p) by k? (or, say, using Proposition 0.1)
we see that the morphism p is an effective étale-descent morphism if and only if the
functor k?, i.e. the functor Sets”” :Sets®” — Sets?Z")” is a category equivalence.
After that we can use standard arguments:

o if Sets”” :Sets”” — Sets” """ is an equivalence, then so is its left adjoint
L:Sets”F4P)” _, Sets®”;

e since L composed with the Yoneda embedding of Z(Eq(p)) is isomorphic to the
Yoneda embedding of B composed with ¢ : Z(Eq(p)) — B, we then conclude that
¢ is full and faithful;

e together with Theorem 1.1 this tells us that if Sets”” is an equivalence, then so
is ¢ —and; and

e the converse is trivial. [J

Corollary 1.3. The morphism p:E — B is an effective étale-descent morphism if and
only if the following conditions hold:

(a) the map p:E — p(E) induced by p is a quotient map;

(b) Z(Eq(p)) is a preorder; and

(¢) p:E — B is essentially surjective on objects.

Proof. Just observe that the conditions (a) and (b) hold if and only if the functor
¢ :Z(Eq(p)) — B is full and faithful, respectively. [
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2. Additional remarks

Let us consider again the zigzag (1.1), and call it now an (n — 1)-zigzag a; — b,
in Eq(p) if D=Eqg(p). In this case the morphisms f4,..., f, and ¢i,...,9,—1 are
uniquely determined by their domains and codomains, and it is convenient to write

fi=laia1,bi], gi=(bi,a;+1) (for each appropriate 7). (2.1)

With this notation the category Z(Eq(p)) is to be described as the quotient category
Eq(p)./ ~ under the smallest congruence ~ for which

(e',é)e '] ~[é¢é](eé), (2.2)

whenever p(e) = p(e'), p(é) = p(é'),e — &, and ¢’ — & in E.

Proposition 2.1. For every two elements e and e’ in E every two 1-zigzags e — €' in
Eq(p) are equivalent (under ~).

Proof. Let (¢ - x — y — &) =[y,€e](x,y)e,x] and be (¢ — u — v — €)=
[v,e'1(u, v)[e,u] be 1-zigzags. Applying (2.1) twice we obtain [y, e'](x, y)[e,x] =[v,€’]
[y, v1Cx, y)le, x] ~ [v,e'](u, v)[x, ulle, x] ~ [v,e')(u, v)[e,u]. T

Since any n-zigzag (n>0) can obviously be presented as a composite of n 1-zigzags,
we conclude.

Corollary 2.2. If every 2-zigzag in Eq(p) is equivalent to a 1-zigzag, then Z(Eq(p))
is a preorder.

Let us now recall from [1, Proposition 3.4] that p is an effective descent morphism
if and only if it is surjective on composable pairs, i.e. for every by — by — b, in B
there exists ey — e;] — e, in E with p(e;) =b;(i =0,1,2). We have

Proposition 2.3. If p is surjective on composable pairs, then every 2-zigzag in Eq(p)
is equivalent to a 1-zigzag.

Proof. For a 2-zigzag (e - x — y — z — t — €)= [t,e](z0)[y,z](x, y)[e,x] in
Eq(p) we take by to be p(e) = p(x), by = p(y) = p(z), and by = p(t) = p(e'); then
by — by — by in B, and we choose ¢y, — e — e, in E as above. After that we have
[t,e'](z )y, 2](x, v)le, x] = [t,€'](z, t)[er, ][y, er](x, y)[e,x] ~ [t,€'][e2, 1] (e1,2)(e0, 1)
[x,eo0lle,x] ~ [e2,€'1(e0,e2)[e, e0] as desired. []

As shown in [2], every effective descent morphism is an effective étale-descent mor-
phism, and it is natural to ask if this fact (restricted to finite spaces of course!) can
easily be deduced from our characterizations of those classes of morphisms, namely
from [1, Proposition 3.4] and Corollary 1.3. The affirmative answer clearly follows
from Proposition 2.3 and Corollary 2.2. On the other hand, using Corollary 1.3. one
could simplify our arguments in [1] on counter-examples for “descent implies effective
¢tale-descent” and for the converse, and easily construct many other counter-examples.
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