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Abstract

It is known that every e7ective (global-) descent morphism of topological spaces is an e7ective
'etale-descent morphism. On the other hand, in the predecessor of this paper we gave examples
of:

• a descent morphism that is not an e7ective 'etale-descent morphism;
• an e7ective 'etale-descent morphism that is not a descent morphism.

Both of the examples in fact involved only ;nite topological spaces, i.e. just ;nite preorders, and
now we characterize the e7ective 'etale-descent morphisms of preorders=;nite topological spaces
completely. c© 2002 Elsevier Science B.V. All rights reserved.

MSC: 18B30; 18A20; 18A99; 18B35; 18B99; 18C20; 18D05

0. Introduction

Our main purpose in [1] was to show that essentially all the results of topological-
descent theory can be motivated by their ;nite instances, which become very simple
and natural as soon as they are expressed in the language of ;nite preorders. Now, we
are making a next step in this direction by solving the ;nite version of the very hard
(unsolved) problem of characterizing the e7ective 'etale-descent morphisms. It is not yet
clear to us how to extend our result to the in;nite spaces, but at least it shows where
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is the diGculty: roughly speaking, instead of working with the “two-step convergence”
as Reiterman and Tholen [4] one would have to deal with certain equivalence relation
for all “;nite chains of convergences”. We can also say that now we really see how
far are the e7ective 'etale-descent morphisms from the descent morphisms and from the
e7ective descent morphisms.
We will freely use the terminology and notation from [1] (see also [2] and [3]), and

in particular the standard diagram

(0.1)

in which:

• p :E → B is a continuous map of ;nite topological spaces, or equivalently a
morphism of ;nite preorders;

• E the class of 'etale maps (=local homeomorphisms) of ;nite topological spaces,
and accordingly E(B) and E(E) are the categories of ;nite 'etale bundles over B
and E, respectively; and

• DesE(p) the category of 'etale-descent data for p, and p∗, Up, and Kp the pull-
back functor along p, the forgetful, and the comparison functor, respectively.

Let us however recall from [1]:

• The morphism p :E → B being a morphism of preorders can also be considered as
a functor from the category E to the category B—and then the functor p∗ :E(B)→
E(E) can be identi;ed (up to an equivalence) with the functor Setsp

op

:SetsB
op →

SetsE
op

, which sends a functor Bop → Sets to its composite with the functor
pop :Eop → Bop induced by p.

• Accordingly the category DesE(p) is to be replaced by an equivalent one, namely
by the category X of pairs (X; �), where X is a functor from Eop to Sets, and
�= (�e;e′) a family of maps �e;e′ :X (e)→ X (e′), de;ned whenever p(e) = p(e′)
(for e and e′ in E), with

�e′ ; e′′�e;e′ = �e;e′′ ; �e;e = 1X (e); �e;e′X (e; Me) = X (e′; Me′)� Me; Me′ ; (0.2)

whenever p(e) = p(e′) = p(e′′); p( Me) = p( Me′); e → Me, and e′ → Me′ in E.
• Finally, the diagram (0.1) transforms into

(0.3)



G. Janelidze, M. Sobral / Journal of Pure and Applied Algebra 174 (2002) 303–309 305

where up is again the appropriate forgetful functor, and kp is de;ned by

kp(A) = (Apop; 1); (0.4)

denoting by 1 the family of identity morphisms 1e;e′ of A(p(e)) = A(p(e′)) for
all e; e′ in E with p(e) = p(e′).

In particular we have

Proposition 0.1. The morphism p is an e3ective 4etale-descent morphism if and only
if the functor kp above is a category equivalence.

That is, our problem of characterizing the e7ective 'etale-descent morphisms of ;nite
topological spaces becomes a purely categorical one, and we simplify it further using
double categories, and then give a simple solution in Section 1. The additional remarks
made in Section 2 should help to clarify the relationship between 'etale and global
descent.

1. Characterization of e�ective �etale-descent morphisms

For an arbitrary category C, let S(C) be the double category of commutative squares
in C. Recall that for such a square

a
f−→ b

g
� � h

c −→
k

d

the horizontal domain and codomain are g and h, respectively, and the vertical ones
are f and k. In particular the sets S(C)10 and S(C)01 of vertical and horizontal arrows
in S(C) are the same.
The functor S :Cat → DoubleCat has a left adjoint Z , which can be described as

follows:
For a double category D we take

• D0 to be the discrete category with objects as in D;
• Dh and Dv to be the categories with the same objects and the morphisms to be,
respectively, the horizontal and vertical arrows of D; and

• D+ the pushout in Cat of the embeddings D0 → Dh and D0 → Dv;

after that, for every square

a
f−→ b

g
� s

� h

c −→
k

d

in D, the pairs (h; f) and (k; g) become morphisms in D+ from a to d, and we
construct Z(D) as the quotient category D+= ∼ under the smallest congruence ∼ for
which (h; f) ∼ (k; g) for all such pairs (h; f) and (k; g).
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Note that every morphism in Z(D) can be presented as the equivalence class of a
morphism in D+, say, of the form

(1.1)

where f1; : : : ; fn and g1; : : : ; gn−1 are n horizontal and n − 1 vertical arrows in D,
respectively. This suggests to call Z(D) the category of zigzags in D.
Let C be a category with pullbacks and D an internal category in C. For a (pseudo-)

functor F :Cop → Cat, one de;nes a category FD of internal actions of D in F , and
the category DesE(p) above is a special case of such an FD with D = Eq(p), the
equivalence relation on E determined by p—see [3] for details. For C=Cat it is easy
to see that:

• an internal category in C is nothing but a double category (a well-known fact!);
• for a functor of the form C? :Catop → Cat (where C is an arbitrary category) an
internal action of D in C? is nothing but a morphism of double categories from
D to S(C), and therefore the same as a functor from Z(D) to C.

Moreover, it is then easy to conclude that the diagram (0.3) can be identi;ed with

(1.2)

where p = ’ is what one might call a canonical factorization of p. Explicitly,
’ :Z(Eq(p))→ B is the unique functor that coincides with p on objects, and  :E →
Z(Eq(p)) is the unique functor with  (e) = e on objects.

Theorem 1.1. The following conditions are equivalent:
(a) the morphism p :E → B is 4etale conservative in the sense of [2]; i.e. the com-

parison functor Kp :E(B)→ DesE(p) is conservative;
(b) Kp is faithful;
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(c) p :E → B is essentially surjective on objects (i.e. for every element b in B there
exists an element e in E with p(e)→ b and b → p(e)).

Proof. According to the previous remarks we can replace Kp :E(B) → DesE(p) by
kp; i.e. by Sets’

op

:SetsB
op → SetsZ(Eq(p))

op

; which makes (a) ⇔ (b) ⇐ (c) obvious;

and gives (b)⇒ (c) since B is a preorder. Let us only sketch the proof of (b)⇒ (c):
We observe that any B-indexed family S = (Sb; sb)b∈B of pointed sets with Sb = Sb′

whenever b → b′ and b′ → b in B, yields a functor QS : Bop → Sets with QS(b)= Sb and

QS(b → b′) =

{
the identity map of Sb if b′ → b in B;

the constant map Sb′ → Sb with the image {sb}; if not:
(1.3)

Moreover, every map S → T of such families determines a natural transformation
QS → QT , and if the condition (c) does not hold it is easy to ;nd two such natural
transformations ! and !′ with ! 
= !′ and !p = !′p (say, whenever each Sb and each
Tb has at least two elements)— in contradiction with (b).

The same result can be quickly deduced from the observations made in [2]—which
is not at all the case for

Theorem 1.2. The morphism p :E → B is an e3ective 4etale-descent morphism if and
only if the functor ’ :Z(Eq(p))→ B is a category equivalence.

Proof. Replacing again Kp :E(B) → DesE(p) by kp (or; say; using Proposition 0.1)
we see that the morphism p is an e7ective 'etale-descent morphism if and only if the
functor kp; i.e. the functor Sets’

op

:SetsB
op → SetsZ(Eq(p))

op

; is a category equivalence.
After that we can use standard arguments:

• if Sets’op :SetsBop → SetsZ(Eq(p))
op

is an equivalence; then so is its left adjoint
L :SetsZ(Eq(p))

op → SetsB
op

;
• since L composed with the Yoneda embedding of Z(Eq(p)) is isomorphic to the
Yoneda embedding of B composed with ’ :Z(Eq(p))→ B; we then conclude that
’ is full and faithful;

• together with Theorem 1.1 this tells us that if Sets’
op

is an equivalence; then so
is ’—and; and

• the converse is trivial.

Corollary 1.3. The morphism p :E → B is an e3ective 4etale-descent morphism if and
only if the following conditions hold:
(a) the map p :E → p(E) induced by p is a quotient map;
(b) Z(Eq(p)) is a preorder; and
(c) p :E → B is essentially surjective on objects.

Proof. Just observe that the conditions (a) and (b) hold if and only if the functor
’ :Z(Eq(p))→ B is full and faithful; respectively.
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2. Additional remarks

Let us consider again the zigzag (1.1), and call it now an (n − 1)-zigzag a1 → bn

in Eq(p) if D=Eq(p). In this case the morphisms f1; : : : ; fn and g1; : : : ; gn−1 are
uniquely determined by their domains and codomains, and it is convenient to write

fi = [aia1; bi]; gi = (bi; ai+1) (for each appropriate i): (2.1)

With this notation the category Z(Eq(p)) is to be described as the quotient category
Eq(p)+= ∼ under the smallest congruence ∼ for which

(e′; Me′)[e; e′] ∼ [ Me; Me′](e; Me); (2.2)

whenever p(e) = p(e′); p( Me) = p( Me′); e → Me, and e′ → Me′ in E.

Proposition 2.1. For every two elements e and e′ in E every two 1-zigzags e → e′ in
Eq(p) are equivalent (under ∼).

Proof. Let (e → x → y → e′) = [y; e′](x; y)[e; x] and be (e → u → v → e′) =
[v; e′](u; v)[e; u] be 1-zigzags. Applying (2.1) twice we obtain [y; e′](x; y)[e; x] = [v; e′]
[y; v](x; y)[e; x] ∼ [v; e′](u; v)[x; u][e; x] ∼ [v; e′](u; v)[e; u].

Since any n-zigzag (n¿0) can obviously be presented as a composite of n 1-zigzags,
we conclude.

Corollary 2.2. If every 2-zigzag in Eq(p) is equivalent to a 1-zigzag; then Z(Eq(p))
is a preorder.

Let us now recall from [1, Proposition 3.4] that p is an e7ective descent morphism
if and only if it is surjective on composable pairs, i.e. for every b0 → b1 → b2 in B
there exists e0 → e1 → e2 in E with p(ei) = bi(i = 0; 1; 2). We have

Proposition 2.3. If p is surjective on composable pairs; then every 2-zigzag in Eq(p)
is equivalent to a 1-zigzag.

Proof. For a 2-zigzag (e → x → y → z → t → e′) = [t; e′](z; t)[y; z](x; y)[e; x] in
Eq(p) we take b0 to be p(e) = p(x); b1 = p(y) = p(z); and b2 = p(t) = p(e′); then
b0 → b1 → b2 in B; and we choose e0 → e1 → e2 in E as above. After that we have
[t; e′](z; t)[y; z](x; y)[e; x] = [t; e′](z; t)[e1; z][y; e1](x; y)[e; x] ∼ [t; e′][e2; t] (e1; e2)(e0; e1)
[x; e0][e; x] ∼ [e2; e′](e0; e2)[e; e0] as desired.

As shown in [2], every e7ective descent morphism is an e7ective 'etale-descent mor-
phism, and it is natural to ask if this fact (restricted to ;nite spaces of course!) can
easily be deduced from our characterizations of those classes of morphisms, namely
from [1, Proposition 3.4] and Corollary 1.3. The aGrmative answer clearly follows
from Proposition 2.3 and Corollary 2.2. On the other hand, using Corollary 1.3. one
could simplify our arguments in [1] on counter-examples for “descent implies e7ective
'etale-descent” and for the converse, and easily construct many other counter-examples.
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