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Abstract

We describe a su0cient condition on a 1nitely complete and cocomplete lextensive category
X, under which the categorical smash product provides a canonical (symmetric, distributive with
respect to 1nite coproducts) monoidal structure on the category (1 ↓ X) of its pointed objects.
We also show that the ground category can be reconstructed as the category of objects with
counit in (1 ↓ X).
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

There is a straightforward way to extend the de1nition of smash product from pointed
topological spaces to pointed objects in an abstract category X with 1nite limits and
colimits: for objects (X; p) and (Y; q) in (1 ↓ X), the smash product (X; p)∧(Y; q)=(Z; r)
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is de1ned as the pushout

X +1 Y −−−−−→ 1

d

� � r

X × Y −−−−−→
s

Z;

(1.1)

where d is the canonical morphism (X; p) + (Y; q) → (X; p) × (Y; q) in the pointed
category (1 ↓ X). Equivalently it can be de1ned via the diagram

(X; p) + (Y; q) d→ (X; p)× (Y; q) s→ (X; p) ∧ (Y; q) (1.2)

in (1 ↓ X) by requiring the s to be the cokernel of d; accordingly (X; p) ∧ (Y; q) is
supposed to be equipped with a canonical morphism s : (X; p)×(Y; q)→ (X; p)∧(Y; q).
However it turns out that beyond the well-known cartesian closed case (e.g. com-

pactly generated spaces) there is no obvious categorical reason for ∧ to determine a
canonical monoidal structure, and even the notion of “canonical” is to be chosen care-
fully. In Sections 2–5 (plus Section 6, where we prove distributivity of ∧ with respect
to +) we study this problem and show that it has a perfectly satisfactory solution under
the 1rst and the third of following three conditions on X:

Condition 1.1. Finite sums (=coproducts) in X are pullback stable; in particular for
every object A in X, the product functor A× (−) :X→ X preserves 1nite sums.

Condition 1.2. Sums are disjoint, i.e. for every two objects X and Y in X, the diagram

0 −−−−−−→ Y� � j

X −−−−−→
i

X + Y;

(1.3)

in which i and j are the coproduct injections, is a pullback.

Condition 1.3. For every object A in X, the functor A × (−) :X → X preserves the
following types of pushouts for any two objects X and Y in X:

(a) of the form X +1 Y ,
(b) of the form (1.1).

The 1rst two of these conditions are well known already from old work of
A. Grothendieck; presently the categories satisfying them are called extensive, or
lextensive—referring to the existence of 1nite limits. An elegant equivalent formu-
lation of Conditions 1.1 and 1.2 are given by the requirement that the sum functor

X × X ≈ (X ↓ 1)× (X ↓ 1)→ (X ↓ (1 + 1))
is an equivalence, as discussed in [2], to which we also will refer for the basic prop-
erties of lextensive categories. The third condition needs a special explanation:
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Remark 1.4. If X is cartesian closed, then the functor A × (−) :X → X preserves
all colimits, and so Condition 1.3 holds trivially. If X is the opposite category of
commutative algebras with unit over a 1eld K , then × in X is the tensor product over
K and the functor A× (−) :X → X preserves all 1nite colimits simply because every
module over a 1eld is Lat; hence in this case Condition 1.3 holds trivially again. If
instead of a 1eld we have an arbitrary commutative ring R (with unit), then A× (−)
still preserves at least those coequalizers

f
U V

g
W 

h

in which h considered as an R-module homomorphism from W to V is a split monomor-
phism. Still, it is easy to see that this special colimit-preservation property implies Con-
dition 1.3. In fact the example of the dual category of commutative R-algebras over a
commutative ring R, i.e. the category of a7ne R-schemes, is the motivating example
of a lextensive category for our search of conditions (much weaker than preservation
of pushouts by the functors A× (−)) to ensure associativity (and distributivity) of the
smash product.
In Section 7 (under Conditions 1.1 and 1.2) we will construct a natural equivalence

X ∼ (1 ↓ X)∗ = ((1 ↓ X); (1 + 1; i);∧; �; �; �; �)∗; (1.4)

where the right-hand side denotes the category of objects with counit in the symmetric
monoidal category ((1 ↓ X); (1 + 1; i);∧; �; �; �; �) described in Section 5 (under Con-
ditions 1.1 and 1.3); we also write it as (1 ↓ X)∗ since that kind of monoidal structure
is uniquely determined up to the choice of 1nite limits and 1nite colimits in X. This
means that X can be reconstructed from (1 ↓ X), and it is at this point we will use
the full strength of extensivity.

2. A simpli�ed description of (X; p) ∧ (1 + Y; iY )

For a smash product of the form (X; p) ∧ (1 + Y; iY ), where iY : 1 → 1 + Y is the
(1rst) coproduct injection, the pushout (1.1) can be rewritten as

X + Y −−−−−−→ 1

d

� � r

X × (1 + Y ) −−−−−→
s

Z;

(2.1)

where now d is the composite X + Y ≈ X +1 (1 + Y ) → X × (1 + Y ), and it is a
straightforward calculation to prove

Lemma 2.1. The morphism d in (2.1) coincides with the composite

X + Y ≈ (X × 1) + (1× Y )→ (X × 1) + (X × Y )→ X × (1 + Y ); (2.2)
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in other words

d=

[
idX i!X

p!Y j

]
: X + Y → X × (1 + Y ); (2.3)

where j is the (second) coproduct injection Y → 1 + Y .

Corollary 2.2. For Y =1, the morphism d in (2.1) coincides with the following com-
posite of canonical morphisms:

X + Y = X + 1→ X + X ≈ (X × 1) + (X × 1)→ X × (1 + 1)

= X × (1 + Y ): (2.4)

3. Unit object for the smash product

The familiar case of pointed spaces suggests that the unit for ∧ should be the object
(1 + 1; i), where i : 1 → 1 + 1 is (say) the 1rst coproduct injection. We are going to
show that this is true under Condition 1.1; more precisely, we are going to describe
a canonical morphism �(X;p) : (X; p)→ (X; p) ∧ (1 + 1; i) and then prove that it is an
isomorphism whenever so is the canonical morphism

(X × 1) + (X × 1)→ X × (1 + 1): (3.1)

Indeed, just consider the diagram

!X 

id1

1

p

Z
s 

!X +1 = 

X + 1

idX + p

X + X

 �(X,p)
(X × 1) + (X × 1)

X × (1+1)

p!X

idX

②

①

~~

X (3.2)
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in which:

• the square ① is (obviously) a pushout;
• the left hand vertical composite is the same as (2.4), and hence there is a unique

�(X;p) making ① + ② a pushout, which is the same as (1.1) for Y = 1;
• since ① and ② are pushouts, so is ② ;
• therefore whenever the morphism (3.1) is an isomorphism, so is �(X;p).

Conclusion 3.1. Clearly �(X;p) is in fact a morphism in (1 ↓ X) from (X; p) to (X; p)∧
(1 + 1; i) natural in (X; p). With the canonical symmetry isomorphism � for ∧ and
� = ��, this makes ((1 ↓ X); (1 + 1; i);∧; �; �; �) a colax symmetric magma (=“non-
associative symmetric monoidal category”), strong if the morphism (3.1) is an iso-
morphism for each (X; p) in (1 ↓ X). Note also, that since the middle horizontal
arrow in (3.2) composed with the second coproduct injection X → X + X gives idX ,
the morphism �(X;p) can be described as the appropriate composite X → X + X ≈
(X × 1) + (X × 1) → X × (1 + 1) → Z ; however this description exists only in X –
not in (1 ↓ X).

Remark 3.2. If the ground category X is pointed, and hence (1 ↓ X) can be identi1ed
with X and (1+ 1; i) with 0= 1, then (1.2) tells us that (X; p)∧ (1+ 1; i) ≈ (1+ 1; i),
i.e. (1 + 1; i) becomes the zero object for ∧ instead of being the unit.

4. Associativity

De1ning the smash product in (1 ↓ X) we could equivalently begin with an arbitrary
pointed category A with, say, 1nite limits and colimits, and de1ne smash product in it
via

A+ B d→A× B s→A ∧ B (4.1)

instead of (1.2). Let us also introduce multiple smash products as follows:

De�nition 4.1. The smash product ∧n
i=1 Ai = A1 ∧ · · · ∧ An of objects A1; : : : ; An in a

pointed category A is de1ned via the diagram

n∑
i=1

∏
j �=i

Aj
d→

n∏
i=1

Ai
s→ n∧

i=1
Ai; (4.2)

by requiring s to be the cokernel of d. If A has (1nite products, 1nite coproducts, and)
all cokernels of this form, we will say that A is a category with smash products.
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For three objects A; B; C in A, consider the diagram

(A× B) + (A× C) + (B× C) d−−−−−→ A× B× C s−−−−−→ A ∧ B ∧ C

u

� ① v

� ②
� w

A ∧ (B+ C) −−−−−−−−−−−−−−→
idA∧d

A ∧ (B× C) −−−−−→
idA∧s

A ∧ (B ∧ C);

(4.3)

where:

• u is induced by the composite (A × B) + (A × C) → A × (B + C) → A ∧ (B + C)
and the zero morphism B× C → A ∧ (B+ C);

• v is the composite A×B×C ≈ A× (B×C)→ A∧ (B×C), which makes the square
① commutative since so is the diagram

(A× B) + (A× C) −−−−−→ A× B× C� �
A× (B+ C) −−−−−−→ A× (B× C)

and the composite B× C → A× (B× C)→ A ∧ (B× C) is zero;
• w is the induced morphism making the square ② commute.

De�nition 4.2. A category A with smash products is said to be ∧-associative if for
every three objects A; B; C in A, the morphism A ∧ B ∧ C → A ∧ (B ∧ C) of (4.3) and
the similar morphism A ∧ B ∧ C → (A ∧ B) ∧ C are isomorphisms.
Some important examples will be mentioned at the beginning of Section 8; the ones

presented here are rather simple but “strange”:

Example 4.3. There are many categories in which all smash products are zero, and
hence those categories are trivially ∧-associative. This applies to all categories (with
1nite products and coproducts) enriched in abelian monoids and in particular to additive
categories, to Bourn protomodular categories, to pointed (quasi-)varieties of universal
algebras having a binary term t with t(0; x) = x = t(x; 0), etc.

Example 4.4. Let A be a variety of universal algebras having a distinguished null-ary
operation 0 and satisfying the identities !(0; x2; : : : ; xn) = !(x1; 0; : : : ;
xn) = · · · = !(x1; : : : ; 0; xn) = !(x1; : : : ; xn−1; 0) = 0 for each basic n-ary operation
!(n=0; 1; : : :). It is then easy to see that the forgetful functor from A to the category
of pointed sets preserves smash products, and then to deduce that A is ∧-associative.

Example 4.5. Let X be a category with 1nite limits and colimits satisfying Condition
1.1. The forgetful functor (1 ↓ X)→ X has a left adjoint, and the corresponding Kleisli
category X+ can be identi1ed with the full subcategory in (1 ↓ X) with objects all
pairs (isomorphic to) (1 + X; iX ) for some X in X. Using Condition 1.1, the diagram
(2.1), and Lemma 2.1 it is easy to show that X+ is closed under 1nite products (and



A. Carboni, G. Janelidze / Journal of Pure and Applied Algebra 183 (2003) 27–43 33

coproducts) and smash products in (1 ↓ X) by proving that (1 + X; iX ) ∧ (1 + Y; iY ) ≈
(1 + X × Y; iX×Y ) for all X; Y in X. Another simple calculation shows that X+ is
∧-associative.
Instead of (4.3), consider now the diagram

d d d 

s s s

idA + d idA + s

idA × sidA × d

idA × 0

idA+ 0

idA∧ d idA∧ s

A + (B × C ) A + (B ∧ C ) 

A × (B ∧ C ) 

A ∧ (B ∧ C );

A × (B × C ) 

A ∧  (B × C ) 

 A + (B + C ) 

 A × (B + C )

A ∧  (B + C )
idA∧ 0 = 0

(4.4)

since its columns are cokernel diagrams, and the top row is a coequalizer diagram, we
obtain:

Lemma 4.6. Let A; B; C be objects in a category A with smash products. Then:

(a) if the second row in (4.4) is a coequalizer diagram, then so is the third one;
(b) if the third row in (4.4) is a coequalizer diagram, then the object A ∧ (B ∧ C)

together with the canonical morphism from A× (B× C) into it can be described
as the colimit of

d 

idA × d

idA × 0

A + (B × C )

A × (B × C ),  A × (B + C )

0 (4.5)

or, equivalently, as the cokernel of (A× (B+ C)) + (B× C)→ A× (B× C).

Let us explain the last sentence in 4.6(b): Since A+(B×C) vanishes in the colimit
above and hence so does A, to make idA × d equal to idA × 0 is the same as to make
it equal to zero. Therefore the colimit coincides with the cokernel of (A× (B+C)) +
A+(B×C)→ A× (B×C); but then the middle A can be omitted since it is “smaller”
than A× (B+ C).

Theorem 4.7. Let A be a category with smash products satisfying the following con-
ditions for every triple A; B; C of its objects:

(a) The canonical morphism (A× B) + (A× C)→ A× (B+ C) is an epimorphism;
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(b) The functor A ∧ (−) :A → A preserves the cokernel of the canonical morphism
B+ C → B× C.
Then the category A is ∧-associative; the same is also true if we replace (b)

with the following condition:
(c) The functor A× (−) :A → A preserves the coequalizer of the canonical and the

zero morphisms from B+ C to B× C, or, equivalently preserves the pushout

B+ C −−−−−−−→ 0

d

� �
B× C −−−−−→

s
B ∧ C;

(4.6)

Proof. By Lemma 4.6, any of the conditions (b) and (c) imply that the canonical
morphism A × (B × C) → A ∧ (B ∧ C) is a cokernel of (A × (B + C)) + (B × C) →
A×(B×C); and since (a) tells us that A×(B+C) can be replaced with (A×B)+(A×C),
we conclude that the canonical morphism A∧B∧C → A∧ (B∧C) is an isomorphism.
Using similar arguments we can also prove that A ∧ B ∧ C → (A ∧ B) ∧ C is an
isomorphism (for all A; B; C) and so A is ∧-associative.

Corollary 4.8. Let X be a category with ;nite limits and ;nite colimits satisfying
Condition 1.3. Then (1 ↓ X) is ∧-associative.

Proof. Condition 1.3(b) implies that (1 ↓ X) satis1es the condition 4.7(c). Therefore
we only need to show that (1 ↓ X) satis1es the condition 4.7(a), i.e. to show that
for every triple (X; p); (Y; q); (Z; r) of objects in (1 ↓ X), the canonical morphism
(X × Y ) +1 (X × Z)→ X × (Y +1 Z) is an epimorphism. However this follows from
the fact it is equal to the composite of the regular epimorphism (X × Y ) +1 (X ×
Z) → (X × Y ) +X (X × Z) = (X × Y ) +X×1 (X × Z) and the canonical morphism
(X × Y ) +X×1 (X × Z)→ X × (Y +1 Z), which is an isomorphism by 1.3(a).

Remark 4.9. This approach to associativity in (1 ↓ X) is quite diQerent from the
standard one that works in the cartesian closed case and goes back at least to Eilenberg
and Kelly [3] (see also Section VII.9 in S. Mac Lane’s book [4]). In the general case
there could also be other possibilities, for instance de1ning the triple smash product
via

(A× (B+ C)) + (B× (A+ C)) + (C × (A+ B))→ A× B× C → A ∧ B ∧ C

instead of the top row in (4.3), which would coincide with our de1nition in the dis-
tributive case.

5. Coherence

Let X be a category with 1nite limits and 1nite colimits satisfying Conditions 1.1
and 1.3 as in Corollary 4.8. We make (1 ↓ X) a symmetric monoidal category
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((1 ↓ X); (1 + 1; i);∧; �; �; �; �) as follows:

• ∧ is the smash product as de1ned in Introduction (see (1.1) and (1.2)); this de1nition
of course agrees with the one used in Section 4 (see (4.1)) for A = (1 ↓ X).

• (1+1; i) and � are as in Section 3 (see Conclusion 3.1). The readers should forgive
us for using the “wrong direction” for �; those who will not, should use �−1 instead
of it.
• �A;B;C :A ∧ (B ∧ C) → (A ∧ B) ∧ C is the composite of canonical isomorphisms

A ∧ (B ∧ C) ≈ A ∧ B ∧ C ≈ (A ∧ B) ∧ C; it is well de1ned since (1 ↓ X) is
∧-associative by Corollary 4.8.

• �, the symmetry isomorphism for ∧, is induced by the symmetry isomorphisms for
+ and × in (1 ↓ X).
• �= �� as in Conclusion 3.1, i.e. �A :A→ (1 + 1; i) ∧ A is the composite of �A and
the symmetry isomorphism A ∧ (1 + 1; i) ≈ (1 + 1; i) ∧ A (again, those readers who
will use �−1 instead of �, should also use �−1 instead of � of course).

We have to check that these data satis1es the coherence conditions required in the
de1nition of monoidal category. For, we 1rst observe that since � and � are in fact
induced by the associativity and symmetry isomorphisms for ×, the coherence con-
ditions on ∧ involving only � and � follow from the similar conditions on ×. What
remains is the commutativity of the triangle ④ in the diagram

|(X,p)∧ (1+1,i)) × (Y,q)|

|((X,p)∧ (1+1,i)∧ (Y,q)|

 ③ ④

 

|(X,p) × ((1 + 1,i) × (Y,q))|

X × ((1+1) × Y ) 

X × (Y × (1+1)) 

X × ((Y×1) + (Y×1)) 

X × (Y + Y ) (X + X) × Y

((X × 1) + (X × 1)) × Y

(X × (1+1)) × Y

|((X,p) × (1+1,i)) × (Y,q)|

|(X,p) × (1+1,i))∧ (Y,q))|

|(X,p)∧ ((1+1,i)∧ (Y,q))|
|α(X,p),(1+1,i),(Y,q)

|

|ρ(X,p)∧ id(Y,q)
|

|ρ(X,p) × id(Y,q)
|

|id(X,p)∧λ (Y,q)
|

|id(X,p) × λ(Y,q)
|

|(X,p)∧ (Y,q)|

|(X,p) × (Y,q)|

X × Y

②

①

⑤ ⑥

where the bottom arrows are induced by the second coproduct injections Y → Y + Y
and X → X +X , respectively, the other unnamed arrows are the appropriate canonical
isomorphisms, and |(X; p) × (Y; q)| denotes the underlying object in X of the object
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(X; p)× (Y; q) of (1 ↓ X), etc. However we have:

• the commutativity of the enveloping square can be shown by a straightforward cal-
culation;
• ① commutes because � is induced by the associativity isomorphism for × as already
mentioned;
• the commutativity of ② and ⑥ follows from the description of �(X;p) (in X) as the
composite X → X + X ≈ (X × 1) + (X × 1) → X × (1 + 1) → Z mentioned in
Conclusion 3.1;
• ③ and ⑤ commute because the s in (1.2) is obviously natural in both arguments;
• hence the triangle ④ also commutes.

6. Distributivity

In a category A with smash products, consider the commutative diagram

(A+ B) +A (A+ C) d+d−−−−−→ (A× B) +A (A× C) s+s−−−−−→ (A ∧ B) +A (A ∧ C)� � �
A+ (B+ C) −−−−−→

d
A× (B+ C) −−−−−→

s
A ∧ (B+ C)

where the vertical arrows are appropriate canonical morphisms. Since its rows are
cokernel diagrams and the 1rst vertical arrow is an isomorphism, we conclude: if the
second vertical arrow is an isomorphism, then so is the third one. Since the morphisms
from A to (A ∧ B) and to (A ∧ C) used in the pushout (A ∧ B) +A (A ∧ C) are zeros,
we have (A ∧ B) +A (A ∧ C) ≈ (A ∧ B) + (A ∧ C), and for A = (1 ↓ X) we obtain:

Proposition 6.1. Let X be a category with ;nite limits and ;nite colimits satisfying
Condition 1.3(a). Then the smash product in (1 ↓ X) is distributive with respect to
(;nite) coproducts.

7. Recovering X from (1 ↓ X)

De�nition 7.1. Let A be a category with smash products, I an object in A, and for
each object A in A; �A a 1xed isomorphism from A to A∧ I , natural in A. A morphism
e :A→ I is said to be a (the) counit of A if the diagram

A∧ A A∧ I 

∆A �A

A

idA∧ e

(7.1)
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where "A is the composite A → A× A → A ∧ A of the diagonal morphism of A with
the canonical morphism into A ∧ A, commutes. The full subcategory of (I ↓ A) with
objects all pairs (A; e), with e a counit of A, will be denoted by A∗.

Remark 7.2. (a) Since the “comultiplication”"A is obviously cocommutative, the right
counit condition we in fact require is equivalent to the left one—and this is why we
do not need to require both of them. This also tells us that A∗ can be identi1ed with
a subcategory in A.
(b) Of course the category A∗ is determined by A alone uniquely up to an isomor-

phism.
In the rest of this section we assume X to be a lextensive category with 1nite

colimits. For a morphism e : (X; p)→ (1 + 1; i) (where (1 + 1; i) is the unit object for
∧—see Section 3) in (1 ↓ X) consider the commutative diagram

1
p 

X

e

X1e X2e 

e~

1 1
i

i1e

j

i2e

1+1

(7.2)

where the rows are coproduct diagrams and hence the two squares are pullbacks, and ẽ
is determined by the universal property of the 1rst of them. Since (by lextensivity [2])
(X; e) corresponds to the pair (X1e; X2e) under the equivalence between the categories
(X ↓ (1 + 1)) and X × X ≈ (X ↓ 1)× (X ↓ 1), we obtain:

Lemma 7.3. There is an equivalence of categories ((1 ↓ X) ↓ (1+1; i)) ∼ (1 ↓ X)×X,
under which:

(a) ((X; p); e) �→ ((X1e; ẽ); X2e) in the notation of (7.2);
(b) an object ((U; f); V ) in (1 ↓ X)×X corresponds to the object ((U+V; kf); !U+!V ),

where k :U → U + V is the ;rst coproduct injection.

In order to prove our main result (Theorem 7.7 below) we need three more technical
lemmas:

Lemma 7.4. In the notation of (7.2), the composite

  

 
X XX × X

idX × e
X × (1 + 1) ∼  X + X ∼

idX

p!X

diagonal
(7.3)
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has the following properties:

(a) it can be described as the unique morphism ê :X → X with êi1e = p!X1e and
ê i2e = i2e;

(b) it is an endomorphism of (X; p) in (1 ↓ X).

Proof. (a) Use the obvious commutative diagram

X1e −−−→ X ←−−− X2e� � �
X × X1e −−−→ X × X ←−−− X × X2e� � �
X + 1 −−−→ X + (1× 1) ←−−− X + 1� � �

X −−−→ X + X ←−−− X� � �
1 −−−→ X ←−−− X

(b) just needs another straightforward calculation.

Lemma 7.5. The morphism ê : (X; p)→ (X; p) above makes the diagram

(X; p) ∧ (X; p)
id(X;p)∧e−−−−−→ (X; p) ∧ (1 + 1; i)

"(X;p)

� � �(X;p)

(X; p) −−−−−−−−−→
ê

(X; p);

(7.4)

where " is as De;nition 7.1, commute.

Proof. Comparing the composite (7.3) with the square ② in (3.2), we conclude that
�(X;p)ê coincide with the composite (X; p) → (X; p) × (X; p) → (X; p) × (1 + 1; i) →
(X; p) ∧ (1 + 1; i) and hence with (X; p) → (X; p) × (X; p) → (X; p) ∧ (X; p) →
(X; p) ∧ (1 + 1; i), i.e. with (id(X;p)∧e)"(X;p), as desired.



A. Carboni, G. Janelidze / Journal of Pure and Applied Algebra 183 (2003) 27–43 39

Lemma 7.6. The following conditions are equivalent:

(a) the diagram

(X,p)∧ (X,p) (X,p)∧ (1+1,i)

∆(X,p)
ρ(X,p)

(X,p)

id(X,p)∧ e

(7.5)

where "(X;p) is as in (7.4), commutes; that is, e : (X; p) → (1 + 1; i) is a counit
of (X; p) in the sense of De;nition 7.1;

(b) ê = idX , where ê is as in Lemma 7.4;
(c) i1e = p!X1e , in the notation of (7.1) and 7.4(a);
(d) ẽ in (7.2) is an isomorphism;
(e) X1e ≈ 1, where X1e is as in (7.2);
(f) the diagram

1
i1e−−−−−→ X∥∥∥ � e

1 −−−−−→
i

1 + 1

is a pullback;
(g) the morphism e : (X; p)→ (1 + 1; i) (in (1 ↓ X)) has zero kernel.

Proof. (b) ⇒ (a) follows from Lemma 7.5, and since �(X;p) is an isomorphism, the
same is true for (a) ⇒ (b). (b) ⇒ (c) follows from 7.4(a), and since idX i2e = i2e,
the same is true for (c) ⇒ (b).
(c) ⇒ (d): Since i1e is a monomorphism (being a coproduct injection in a lextensive

category), (c) implies that !X1e also is a monomorphism; since !X1e ẽ = id1 (see (7.2)),
this implies that ẽ is an isomorphism.
(d) ⇒ (c): If ẽ is an isomorphism, then i1e = p!X1e follows from the equalities

!X1e ẽ = id1 and i1eẽ = p that determine ẽ in (7.2).
(d) ⇔ (e) is obvious from (7.2), and (e) ⇔ (f ) follows from the fact that the

left-hand square in (7.2) is a pullback. (f ) ⇔ (g) is trivial.

Theorem 7.7. Let X to be a lextensive category with ;nite colimits. Then the functor
X → (1 ↓ X)∗ de;ned by X �→ ((1 + X; iX ); id1+!X ) (where iX is the ;rst coproduct
injection) is a category equivalence.

Proof. The equivalence described in Lemma 7.3 induces an equivalence between the
full subcategory in ((1 ↓ X) ↓ (1 + 1; i)) with objects all ((X; p); e) having ẽ : 1→ X1e
an isomorphism and the category X. The equivalence (a) ⇔ (d) in Lemma 7.6 then
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tells us that full subcategory in ((1 ↓ X) ↓ (1 + 1; i)) is nothing but (1 ↓ X)∗. The fact
that the equivalence is given by X �→ ((1 + X; iX ); id1+!X ) follows from 7.3(b).

8. Final remarks

Both of our main results, namely the existence of the symmetric monoidal structure
on (1 ↓ X) described in Section 5 (and satisfying Proposition 6.1) and Theorem 7.7,
do apply whenever the ground category X satis1es Conditions 1.1, 1.2, and 1.3. And
as we already mentioned, among categories satisfying these conditions we have

• any lextensive cartesian closed category with 1nite colimits, the category of com-
pactly generated topological spaces, and the categories of all categories, of groupoids,
of (pre)ordered sets, etc.; in particular, since not all colimits are needed for the
smash product but just those appearing in the de1nition, the reader can verify that
any pretopos has them and satis1es Conditions 1.1, 1.2, and 1.3;
• the opposite category (R ↓ CommRings)op ≈ ((CommRings)op↓R) of commutative

R-algebras over a commutative ring R; here rings and algebras are supposed to
be associative and to have the unit element, and homomorphisms are supposed to
preserve it.

However we do not really know how far are our conditions from being neces-
sary, and at the moment we are not able to answer many natural questions related to
this–including those on general topological spaces. Still, we should certainly make the
following:

Remark 8.1. (a) In contrast to Examples 4.3 and 4.4, it is easy to show that the
opposite categories of groups, of (non-commutative) rings without unit, and many
other similar categories are not ∧-associative. The category of commutative R-algebras
without unit is ∧-associative, which follows from any of the following two
observations:

• this category is equivalent to (1 ↓ X), where X = (R ↓ CommRings)op;
• in this category the smash product ∧ is nothing but the tensor product over R.

Hence it looks like we have no “natural” example of a lextensive category X with
1nite colimits for which (1 ↓ X) is not ∧-associative. However there are “unnatural
ones”:
Let X = Fam(A) be the category of families (or of 1nite families) of objects in

a category A that is pointed and has 1nite limits and 1nite colimits, but which is
not ∧-associative. Then X and (1 ↓ X) also have 1nite limits and 1nite colimits, and
moreover, the canonical functor A→ (1 ↓ X) preserves them. Therefore (1 ↓ X) cannot
be ∧-associative.
(b) Let A be as in Example 4.4. Then it is ∧-associative, but does ∧ have a unit

object “similar” to (1 + 1; i) in (1 ↓ X), which would make A a monoidal category?
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In fact it is easy to see that such an object must have a two-element underlying set,
say {0; a}, with

!(x1; : : : ; xn) =

{
0 if either at least one of x1; : : : ; xn is 0 or n= 0;

a if n �= 0 and x1 = · · ·= xn = a

for each basic n-ary operation !. And the answer is a0rmative if and only if the
variety A contains this two-element algebra.
(c) The equivalence described in Theorem 7.7 is of course a special type of descent

construction. In the language of descent theory we could say that whenever X (has
1nite colimits and) is lextensive, the morphism 0 → 1 in it is an eQective codescent
morphism—or, equivalently that the left adjoint of the forgetful functor (1 ↓ X) → X
is comonadic. However if we only require that comonadicity (without lextensivity),
there is no way to describe descent data as objects with counits as in Theorem 7.7,
and to obtain various reformulations as in Lemma 7.6. It is interesting to compare this
with another instances of those descent data described in [1]. Let us also recall that the
existence of unit object in (1 ↓ X) needs only the preservation of 1nite sums (actually
just of 1+1) mentioned in Condition 1.1, and the ∧-associativity of (1 ↓ X) needs only
Condition 1.3; it is interesting that this (obviously) includes the case of an additive X,
and hence the situation of [1], eventhough the smash product is trivial there.
As Lemma 7.6 is mentioned in 8.1(c), the reader would probably ask, what are these

ê and ẽ involved in its formulation, and what does Lemma 7.6 really say about them
in concrete examples? Let us consider two simple cases:

Example 8.2. For X=Sets, we have (1 ↓ X)=Pointed Sets; we will write the objects
of this category as pairs (X; x0), where x0 is an element in X . The object (1 + 1; i)
of (1 ↓ X) can then be written as ({0; 1}; 0), and giving a morphism e : (X; x0) →
({0; 1}; 0) is to give a subset E of X containing x0 (which is the inverse image of 0
under e). In this notation the diagram (7.2) becomes

0 # x0 

X

e

E X \E 

e~

{1},{0}

{0}

{0,1}

where all horizontal arrows are the inclusion maps, and so ẽ(0)=x0. Since from 7.4(a)
we obtain

ê(x) =

{
x0 if x is in E;

x if x is not in E;

it is easy to check that each of the conditions (a)–(g) in Lemma 7.6 says that E must
be equal to {x0}.
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Example 8.3. For X = (R ↓ CommRings)op, we will still write (X; p) for the objects
in (1 ↓ X), although here p is a (unit preserving) ring homomorphism from X to R.
The diagram (7.2) displayed in the category of commutative rings becomes

p

X

e

X(1-e0)

e~

R

Xe0 

R R,R × R

x # (1-e0)xe0x ∀ x

where e0=e((1; 0)), and the bottom horizontal arrows are the product projections. Note
that:

• the units in Xe0 and X (1− e0) are e0 and (1− e0), respectively;
• e0 is an idempotent in X with p(e0) = 1 and every such an idempotent uniquely
determines the corresponding e via e((r1; r2)) = r1e0 + r2(1− e0);
• for x in Xe0 we have ẽ(x) = p(x) = p(e0x).

Now 7.2 gives e0ê(x)=p(x)e0 and (1−e0)ê(x)=(1−e0)x, and so ê(x)=p(x)e0+(1−
e0)x. In order to translate Lemma 7.6 in the “language of elements” let us also observe
that under the equivalence of (1 ↓ X) with the category of commutative R-algebras
without unit the (X; p) corresponds to the kernel of p, and diagram (7.5) transforms
into the following diagram of ring homomorphisms:

∼∼

 Ker(p)   RKer(p)  Ker(p)   RR
idKer(p)     Re ′ 

Ker(p),

multiplication

(8.1)

where e′ is the homomorphism from R ≈ Ker(R × R → R) to Ker(p) induced by e,
and since R is identi1ed with Ker(R×R→ R) via r#(0; r), we have e′(r)=r(1−e0). It
is easy to see now that the equivalent conditions of Lemma 7.6 translate, respectively,
as the following conditions on an idempotent e0 in X satisfying p(e0) = 1:

(a) the diagram (8.1) commutes, i.e. x(r(1− e0)) = xr for all x in Ker(p) and r in R
- or, equivalently, xe0 = 0 for all x in Ker(p), which means that 1− e0 is a (the)
unit in the ring Ker(p);

(b) x = p(x)e0 + (1− e0)x for all x in X ;
(c) xe0 = p(x)e0 for all x in X ;
(d) the map Xe0 → R induced by p is bijective;
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(e) Xe0 ≈ R;
(f) the diagram

R
p←−−−−− X

∥∥∥ � r1e0 + r2(1− e0)
&

(r1; r2)
R ←−−−−−−−
1rst projection

R× R

is a pushout;
(g) the morphism R→ Ker(p) de1ned by r#r(1− e0) has zero cokernel.

Finally, note that most of the translations above can be repeated for commutative
semirings (with unit) since their opposite category also is lextensive; however instead
of specifying e0 we would have to specify a pair (e0; e1) with e0 + e1 = 1, and we
would have nothing like the equivalence with rings without unit mentioned in 8.1(a)
and used for (8.1) and for the translation of 7.6(g).
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