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A NEW COMPUTATIONAL ALGORITHM OF SPECTRAL
FACTORIZATION FOR POLYNOMIAL
MATRIX-FUNCTIONS

L. EPHREMIDZE, G. JANASHIA, AND E. LAGVILAVA

ABSTRACT. In the present paper we describe the calculation pro-
cedure for approximate spectral factorization of polynomial matrix-
functions. The algorithm depends on a new general method of mul-
tivariate spectral factorization developed in Studia Math. 137, 1999,
93-100. For simplicity, we consider only the second order matrix case.
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1. INTRODUCTION

Spectral factorization is the representation of a positive definite matrix-
function S(t) = (fij); j—77 [t| = 1, as a product

St =x") - (1), (1)

where xT is an outer analytic matrix-function defined inside the unit circle
and (xT)* is its adjoint. This is the procedure arising in many system-
theoretic applications.

In general, it is assumed that the entries of S(t) are integrable functions,
fij € L1(T), and the entries of the factor matrix-function x* belong to the
Hardy space Hs. In that case, the condition

logdet(S(t)) € Ly (2)

is necessary and sufficient for factorization (1) to exist.

Factor matrix-functions are defined up to a constant right unitary multi-
plier. x* is unique if we require that x*(0) be positive definite and in this
case the factorization is called canonical.
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In the one-dimensional case, where S(t) is a usual positive function, the
factorization can be explicitly written by

X+(z)exp{%/t—i_'zlogS(t)dm(t)}, 2 < 1. (3)
T

t—=z

No analog of this formula is valid in the multi-dimensional case since the
logarithm of a matrix-valued function cannot be defined in any meaningful
sense.

Formula (3) is inconvenient for practical calculations even when the den-

n

sity function S(t) is a trigonometric polynomial, S(t) = > qit*. There-
k=—n
fore a variety of methods have been developed for approximate calculations
of coefficients of the spectral factor (see [3]). The last breakthrough in
this area has been made recently by using the Fast Fourier Transform (see
[2]). Some of these methods can be extended to the more demanding vector
case. However, the restriction on the matrix-function S(¢) to be rational is
essential in these situations. Neither of these algorithms is considered to be
exhaustive since some of the difficulties arise in dealing with specific cases.
Namely, even for polynomial matrix-functions, if the determinant has zero
close to the boundary, then the existing algorithms have bad convergent
properties.

A completely new approach to the factorization problem was introduced
in [1]. Without imposing any additional restrictions on the matrix-function
S(t), apart from the necessary and sufficient condition (2), the authors pro-
pose an effective spectral factorization algorithm. The algorithm is not of it-
erative type, but the achievement of any preassigned accuracy is guaranteed
by the strict mathematical statements. The procedure involves calculations
of a number of Fourier coefficients, which still needs certain computational
time. Hence, in general, the algorithm is more appropriate to achieve an
exact rather than a fast result. In spite of the evident improvement by
the proposed algorithm — that it solves problem in the most general setting
— the question naturally arises if the same algorithm has some additional
advantages when it is applied to the cases where the spectral density is of
more simple form.

The aim of the present paper is to demonstrate the fitness of the algo-
rithm [1] when it is applied to polynomial matrix-functions. In this situa-
tion, the Fourier coefficients required by the algorithm can be found without
calculating any integral. Moreover, one can immediately obtain as many
number of them as necessary to achieve the desired accuracy. Below we
describe the steps of the procedure for an approximate calculation of the
spectral factor in the case of polynomial matrix-valued density function.
We avoid any mathematical justification for which the interested reader is
referred to [1].
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We restrict ourselves to considering the second order matrices

A(t)  B()
50= (50 c) W

This particular case illustrates all the difficulties arising when one deals with
matrix-valued densities rather than scalar valued ones. Dimensions higher
than two do not cause any additional difficulty, just the volume of necessary
calculations increases proportionally to the dimension.

2. NOTATIONS AND DEFINITIONS

n
For a positive trigonometrical polynomial A(t) = > axtk, A(t) > 0
k=—n
when [¢| = 1, there exists a unique analytic polynomial

Pl =3 putt (5)
k=0

positive at the origin and without zeros inside the unit circle, such that
A(t) = P(t) - P*(¢t).

We denote P(t) := v/A(t) and, having the coefficients of A, we refer to the
process of finding the coefficients of v/A as the one-dimensional polynomial
spectral factorization.

Since the 0-th coefficient of (5) is different from 0, we can define the
formal infinite polynomial

Pt =) aith, (6)
k=0

which satisfies the condition P(¢) - P~1(t) = 1. (It is always assumed that
the coefficients of the product are well defined if at least one factor is a finite
polynomial.) Obviously, the coefficients gi of (6) can be easily determined
by a simple algebraic expression in the recurrent way. When we know that
(5) does not have zeros inside the unit circle, we can conclude that the
formal series (6) is convergent inside the unit circle. Furthermore, to make
our calculation procedure described below consistent with the theoretical
justification given in [1], we have to bear in mind the validity of the following
simple

Lemma. Let Q(t) and P(t) be two trigonometric polynomials where
P(t) is analytic, not containing zeros inside the unit circle. If Q(t)/P(t) is
integrable on the unit circle (to clarify, the latter condition means that if to
is zero of the polynomial P(t) of multiplicity mqy and |to| = 1, then it is also
zero of the polynomial Q(t) of multiplicity m1 > mg). Then the Fourier
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coefficients of function Q(t)/P(t), |t| = 1, can be determined by the formal
product

Q) P (0).
If we have a formal infinite polynomial R(t) = 3. cxt*, then [R(2)]}
n kz*oooo
denotes the analytic polynomial Y cxt* and R*(t) = >, c—gt".
k=0 k=—o00

I stands for the identity matrix of order V.

3. DATA OF THE PROBLEM

It is well-known that if the spectral density S(t) is a trigonometric polyno-
mial of order n, then the factor matrix-function x*(¢) is an analytic polyno-
mial of the same order n. Thus, having as initial data the coefficients of three

polynomials A(t) = Y a,t", B(t) = 3. btk and Ct) = > ctF
k=—n

k=—n k=—n
(see (4)), which satisfy the conditions A(t) > 0 and (AC — BB*)(t) > 0,
|t| = 1, we have to obtain the coefficients of four analytical polynomials

n ..
xii(t) = > 17tF, 1 <d,j < 2, as a final result. Obviously, the desired

k=0
coefficients can be calculated only approximately.

4. CALCULATION PROCEDURE

First, we have to fix a large positive integer N which specifies the ac-
curacy of the calculated coefficients. Theoretically, one can determine the
dependence of the approximation on N. But, in practice, one can take IV
so large as to reliably solve the system of N x N linear algebraic equations
with a positive definite coefficient matrix, all eigenvalues of which exceed 1.

Step 1. Perform the one-dimensional factorization to obtain the analytic
polynomials

P(t)

VA(t) and F(t) = VAC — BB*(t)

which are of order n and 2n, respectively.
Step 2. Calculate do,ds,...,dy, the first N+1 coefficients of the (infi-
nite) polynomial

(oo}
PTIR(t) =Y dit",
k=0
and 79,71, - .. YN, the first N + 1 non-negative coefficients of

P'B(t) = > wth.

k=—n
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Step 3. Define the matrix © = (0[i, j]); ;g by the formula

N—(i+5)
.. .. dipYivjrr when i+ j < N
0li ] = 0[5, ] = kz::o o
0 otherwise

and let
A=06 '6+I(N+1).
Note that © - © is positive definite since © is symmetric and © = ©*. Thus

A is a positive definite matrix function with all eigenvalues exceeding 1.
Step 4. Solve the system of algebraic linear equations

A-X =1,

where X is the N+1 column vector with unknown variables and 1 is the
N+1 column vector which has the first entry equal to 1 and all other entries
to 0.

The solution is assumed to be xg,x1,...,ZN-
Then determine the column vector Y = (yo,91,...,yn)" by the formula
Y=06 X

N N 1
Step 5. Calculate M = (‘ > xk‘2+| > yk‘Q) * and define the analytic
k=0 k=0

polynomials of order N

N N

1 1

an(t) = Y g zpt® and fy(t) = Y E yth.
k=0 k=0

Step 6. Obtain the result

x1,1(t) = [Pan(®)]5, x1.2(t) = [PBN(1)]5,
X21(t) = [(P7'B)*an — F(Bn)"]y,  Xe2(t) = [(P7'B)* By + F(an)*], .-

We have to multiply the result by the corresponding constant unitary
matrix if we need to get the canonical factorization.

5. CONCLUSION

It is proved in [1] that if we let N tend to infinity, then the limiting result
will be exact. In practice, we have approximate results when performing
Steps 1 and 4. Thus, in the polynomial case, the multivariate factorization
problem is reduced to the one-dimensional case and to the problem of solving
linear algebraic equations. Both of these techniques are extremely well
developed as compared with the methods of solving of the original problem.
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