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Abstract. We introduce the second non-abelian cohomology of Lie algebras
with coefficients in crossed modules using the generalised notion of Lie algebra
of derivations, and establish a relationship of this cohomology with Lie algebra
extensions by crossed modules. We extend the seven-term exact non-abelian
cohomology sequence of Guin to a nine-term exact sequence.
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1. Introduction

From the 1960s, many authors have attempted to answer the question of what
we should mean by non-abelian cohomology of various algebraic structures (see
[6, 7, 18, 19]). A convincing answer for groups and Lie algebras was given by
Guin [9, 10] in the 1980s. More recently, in the case of groups, H. Inassaridze
[13, 14, 15] has demonstrated how Guin’s definition can be naturally extended to
higher dimensions. His non-abelian cohomology theory differs from that of Serre
[19] and from the setting of various papers on non-abelian cohomology of groups
[4, 5, 6].

In [17], using the non-abelian tensor product of Lie algebras of Ellis [8]
and its non-abelian left derived functors, we introduced and investigated the non-
abelian homology of Lie algebras, generalising the classical Chevalley-Eilenberg
homology and Guin’s low dimensional non-abelian homology of Lie algebras [10].
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In that paper we gave an application to cyclic homology. Namely, we established
a relation of cyclic homology with Milnor cyclic homology of non-commutative
associative algebras in terms of the long exact non-abelian homology sequence of
Lie algebras.

This work is a continuation of [17] for setting up a theory of non-abelian
(co)homology of Lie algebras similar to the non-abelian (co)homology theory
of groups [9, 13, 14, 15, 16, 11]. Our aim is to construct the second non-
abelian cohomology of Lie algebras, extending the zero and the first non-abelian
cohomology of Guin [10], and to describe it by extensions of Lie algebras.

Further generalisation of non-abelian cohomology of Lie algebras is possi-
ble pursuing the line of [14, 15], that is, to make a definition in any dimension
and for a wider class of coefficients.

The rest of the paper is organized as follows. Immediately below, we re-
view some basic notations and conventions. In Section 2, for given Lie algebras
P and R , we introduce the notions of P -(pre)crossed R-modules and we also
generalise the construction of [10] of Lie algebra of derivations. In Section 3,
following [10] and using ideas from [13], we introduce the second non-abelian co-

homology H2(R,M) and the second non-abelian quasi-cohomology H̃2(R,M) of
a Lie algebra R with coefficients in a crossed R-module (M,µ), which generalise
the classical second Chevalley-Eilenberg cohomology of Lie algebras. Then, for a
coefficient short exact sequence of crossed R-modules having a linear splitting,
we extend the seven-term exact non-abelian cohomology sequence of Guin [10] to
a nine-term exact cohomology sequence. In Section 4, we define extensions of Lie
algebras by crossed modules and describe the relationship between the pointed
set of equivalence classes of extensions and our second non-abelian cohomology
in terms of the short exact sequence of pointed sets.

Notations and Conventions. We denote by Λ a unital commutative ring. We
use the term Lie algebra to mean a Lie algebra over Λ and [ , ] to denote the
Lie bracket. We use | | to denote a coset of a quotient Lie algebra or a quotient
set. For any Lie algebra P , Z(P ) denotes the center of P . Finally, Λ-mod and
Lie denote the categories of modules and Lie algebras over Λ, respectively.

2. The Lie algebra of derivations

We begin this section by recalling the notion of (pre)crossed modules of Lie
algebras (see [8]).

Let P and M be two Lie algebras. An action of P on M is a Λ-bilinear
map P ×M →M , (p,m) 7→ pm satisfying the following conditions:

[p,p′]m = p(p
′
m)− p′

(pm), p[m,m′] = [pm,m′] + [m, pm′]

for all m, m′ ∈ M and p, p′ ∈ P . In other words, the action of P on M is a
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Lie homomorphism P → Der(M) to the Lie algebra of derivations of M . For
example, if P is a subalgebra of some Lie algebra Q , and if M is an ideal in Q ,
then Lie multiplication in Q yields an action of P on M .

A precrossed P -module (M,µ) is a Lie homomorphism µ : M → P
together with an action of P on M satisfying the following condition:

µ(pm) = [p, µ(m)] .

If in addition the precrossed module (M,µ) satisfies the Peiffer identity:

µ(m)m′ = [m,m′] ,

then it is said to be a crossed P -module. Note that for a crossed module (M,µ)
the image of µ is necessarily an ideal in P and the kernel of µ is a P -invariant
ideal in the center of M . Moreover, the action of P on Kerµ induces an action
of P/ Imµ on Kerµ , making Kerµ a P/ Imµ-module.

A morphism f : (M,µ) → (N, ν) of P -(pre)crossed modules is a Lie
homomorphism f : M → N such that f(pm) = pf(m) and µ = νf , p ∈ P ,
m ∈M .

The following extended notion of (pre)crossed modules will be very useful
in what follows.

Definition 2.1. Let P and R be Lie algebras acting on each other. A
(pre)crossed R-module (M,µ) will be called a P -(pre)crossed R-module if the
following conditions hold:

(i) (rp)r′ = [r′, pr] , r, r′ ∈ R , p ∈ P ;

(ii) P acts on M and µ is a P -equivariant Lie homomorphism, i.e.,

µ(pm) = pµ(m) , m ∈M , p ∈ P ;

(iii) P and R act compatibly on M , that is,

(pr)m = p(rm)− r(pm) = −(rp)m , r ∈ R , p ∈ P , m ∈M .

Remark that any (pre)crossed P -module in a natural way can be thought
as a P -(pre)crossed P -module, P acting on itself by Lie multiplication.

A morphism f : (M,µ) → (N, ν) of P -(pre)crossed R-modules is a
morphism of (pre)crossed R-modules such that f(pm) = pf(m), p ∈ P , m ∈M .

The rest of this section is devoted to construct a Lie algebra of derivations
from P to (M,µ), Der(P, (M,µ)), for a given P -precrossed R-module (M,µ).
This Lie algebra will be endowed with a P -precrossed R-module structure.
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Definition 2.2. Let (M,µ) be a P -crossed R-module. Denote by Der(P, (M,µ))
the set of pairs (γ, r), where γ : P → M is a derivation, that means γ is a Λ-
homomorphism satisfying the equality

γ([p, q]) = pγ(q)− qγ(p) , p, q ∈ P

and r is an element of R such that

µγ(p) = −pr, p ∈ P. (1)

This set will be called the set of derivations from P to (M,µ).

Proposition 2.3. The set Der(P, (M,µ)) becomes a Lie algebra with the
following operations

(γ, r) + (γ′, s) = (γ + γ′, r + s),

λ(γ, r) = (λγ, λr),

[(γ, r), (γ′, s)] = (γ ∗ γ′, [r, s]),

for all (γ, r), (γ′, s) ∈ Der(P, (M,µ)) and λ ∈ Λ, where γ ∗ γ′ is given by
(γ ∗ γ′)(p) = γ(sp)− γ′(rp), p ∈ P .

Proof. We show that (γ ∗ γ′, [r, s]) ∈ Der(P, (M,µ)). First we prove that
γ ∗ γ′ is a derivation. In fact,

(γ ∗ γ′)([p, q]) = γ(s[p, q])− γ′(r[p, q]) = γ([sp, q]) + γ([p, sq])− γ′([rp, q])− γ′([p, rq])

= (sp)γ(q)− qγ(sp) + pγ(sq)− (sq)γ(p)− (rp)γ′(q) + qγ′(rp)− pγ′(rq) + (rq)γ′(p) .

On the other hand,

p(γ ∗ γ′)(q)− q(γ ∗ γ′)(p) = pγ(sq)− pγ′(rq)− qγ(sp) + qγ′(rp) .

Moreover, using (iii) of Definition 2.1 and (1) we have

(sp)γ(q)− (sq)γ(p)− (rp)γ′(q) + (rq)γ′(p) = 0 .

Hence (γ ∗ γ′)([p, q]) = p(γ ∗ γ′)(q)− q(γ ∗ γ′)(p) .
Furthermore, by (i) of Definition 2.1 we have

µ(γ ∗ γ′)(p) = µγ(sp)− µγ′(rp) = −(sp)r + (rp)s = −[r, ps] + [s, pr] = −p[r, s] .

Thus (γ ∗ γ′, [r, s]) ∈ Der(P, (M,µ)).

The remaining details are easy to check and left to the reader.
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Remark. Let (N, ν) and (M,µ) be precrossed and crossed R-modules, respec-
tively. Then (M,µ) is an N -crossed R-module, where the actions of N on M
and on R are induced via ν , and Der(N, (M,µ)) coincides with the Lie algebra
DerR(N,M) defined in [10]. In particular, Der(R, (M,µ)) coincides with the Lie
algebra DerR(R,M) from [10] when (M,µ) is viewed as an R-crossed R-module.

Suppose at the same time (M,µ) is P -crossed R-module and P ′ -crossed
R-module and f : P ′ → P is a Lie homomorphism such that

f(p′)m = p′
m , f(p′)r = p′

r , p′ ∈ P ′ , r ∈ R ,m ∈M.

Then there is a Λ-homomorphism

f : Der(P, (M,µ)) −→ Der(P ′, (M,µ))

given by f(γ, r) = (γf, r), (γ, r) ∈ Der(P, (M,µ)). If in addition f satisfies the
condition

f(rp′) = rf(p′), p′ ∈ P ′, r ∈ R,

then f is a Lie homomorphism.

Now assume that P and R are Lie algebras acting on each other compat-
ibly, that is, the following conditions hold:

(rp)r′ = [r′, pr] and (pr)p′ = [p′, rp] (2)

for all p, p′ ∈ P and r, r′ ∈ R . Let (M,µ) be a P -crossed R-module, then there
is an action of P on Der(P, (M,µ)) defined by

p(γ, r) = (γ′,p r) , p ∈ P, (γ, r) ∈ Der(P, (M,µ)) , (3)

where γ′(q) = qγ(p), q ∈ P . There is also an action of R on Der(P, (M,µ))
given by

s(γ, r) = (γ′′, [s, r]) , s ∈ R, (γ, r) ∈ Der(P, (M,µ)) , (4)

where γ′′(q) = sγ(q)−γ(sq), q ∈ P . It is routine to show that the elements (γ′, pr)
and (γ′′, [s, r]) belong to Der(P, (M,µ)) and that (3), (4) define Lie actions.

Proposition 2.4. Let (M,µ) be a P -crossed R-module and the actions of P
and R on each other satisfy the compatibility conditions (2). Then the Lie homo-
morphism ξ : Der(P, (M,µ)) → R given by (γ, r) 7→ r with the aforementioned
actions of P and R on Der(P, (M,µ)) is a P -precrossed R-module.

Proof. We only show the following equality

(pr)(γ, s) = p(r(γ, s))− r(p(γ, s))

for all r ∈ R , p ∈ P and (γ, s) ∈ Der(P, (M,µ)).
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In fact,
(pr)(γ, s) = (γ′′, [pr, s]) ,

where

γ′′(q) = (pr)γ(q)− γ((pr)q) = (pr)γ(q)− γ([q, rp])

= (pr)γ(q)− qγ(rp) + (rp)γ(q) = −qγ(rp) .

On the other hand,

p(r(γ, s))− r(p(γ, s)) = (γ1,
p[r, s])− (γ2, [r,

p s]) = (γ1 − γ2, [
pr, s]) ,

where (γ1 − γ2)(q) = q(rγ(p)− γ(rp))− r(qγ(p)) + (rq)γ(p) = −qγ(rp).

The remaining details are omitted as they are routine.

3. Second non-abelian cohomology

Before introducing our original definition of the second non-abelian cohomology
of Lie algebras we recall the definitions of Guin [10] of the zero and the first
non-abelian cohomology of Lie algebras with coefficients in crossed modules.

Let R be a Lie algebra and (M,µ) a crossed R-module. The zero non-
abelian cohomology is the ideal of M of all R-invariant elements,

H0(R,M) = {m ∈M | rm = 0 for all r ∈ R} .

The crossed module relation µ(m)m′ = [m,m′] implies that H0(R,M) is contained
in the center of M and therefore has only a Λ-module structure.

The first non-abelian cohomology is the Lie algebra defined by

H1(R,M) = DerR(R,M)/I ,

where I is the following ideal of the Lie algebra DerR(R,M):

I = {(ηm,−µ(m) + c) | m ∈M, c ∈ Z(R)} ,

ηm is the principal derivation induced by m , namely ηm(x) = xm , x ∈ R .

We need the following characterization of the classical second Chevalley-
Eilenberg cohomology H2(R,M) of the Lie algebra R with coefficients in an
R-module M . We assume the reader is familiar with cotriples, projective classes
and non-abelian derived functors relative to cotriples and projective classes. See,
for example, [12, Chapter 2] or [20, Section 8.6].

Let us consider the diagram of Lie algebras

P
d0 //

d1
// F

ε // R , (5)



Inassaridze, Khmaladze and Ladra 419

where F is a free Lie algebra over some Λ-module, ε is a Lie homomorphism
having a Λ-linear splitting and (P, d0, d1) is a simplicial kernel of ε in the category
Lie , i.e., P = {(x, y) ∈ F × F | ε(x) = ε(y)} , d0(x, y) = x and d1(x, y) = y .
Suppose ∆ denotes the Lie subalgebra {(x, x) ∈ F × F | x ∈ F} of P .

Let M be an R-module, and view M as F and P -modules via the Lie
homomorphisms ε and εdi (i = 0, 1), respectively. Denote by Der(P,M) (resp.
Der(F,M)) the Λ-module of derivations from P to M (resp. from F to M ).

Let D̃er(P,M) be the submodule of Der(P,M) of all derivations γ such that
γ(∆) = 0. There is a Λ-homomorphism

κ : Der(F,M) // D̃er(P,M),

given by β 7→ βd0 − βd1 .

Proposition 3.1. There is a natural isomorphism

H2(R,M) ∼= Cokerκ .

Proof. Let AM denote the category whose objects are all Lie algebras N
together with an action of N on M and morphisms are Lie homomorphisms
preserving the actions. There is a cotriple F = (F , τ, δ) on the category AM

(see also [17]), where F : AM → AM is the endofunctor defined for every object
N ∈ AM to be the free Lie algebra F(N) on the underlying Λ-module N with
an action of F(N) on M induced by the action of N on M . The natural
transformation τ : F → 1AM

is the obvious and δ : F → F2 is the natural
transformation induced for every N ∈ AM by the inclusion N → F(N) of Λ-
modules. Let P denote the projective class on AM induced by the cotriple F .

It is well known that the classical Chevalley-Eilenberg cohomology of the
Lie algebra R with coefficients in the R-module M is isomorphic, up to dimension
shift, to the non-abelian right derived functors Rk

PDer(−,M)(R), k ≥ 0, of the
contravariant functor Der(−,M) : AM → Λ-mod relative to the projective class
P (cf. [17, Proposition 4]). The proof is given in [1] and it is similar to the case of
group cohomology and Hochschild cohomology described as cotriple cohomology
[2, 3]. Hence we only need to construct an isomorphism of Λ-modules

R1
PDer(−,M)(R) ∼= Cokerκ .

Let us consider a P-projective simplicial resolution of the object R in the
category AM

· · ·
//

//
... F2

d20 //
//

d22

// F1

d   @
@@

@@
@@

@

d10 //

d11

// F0
ε // R ,

P

d0
>>~~~~~~~ d1

>>~~~~~~~

(6)
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where F0 = F and d is the unique Lie epimorphism such that d1
i = did (i = 0, 1).

Applying the functor Der(−,M) to (6) yields a cochain complex of Λ-
modules

Der(F0,M)
∂0 // Der(F1,M)

∂1 // Der(F2,M)
∂2 // · · · ,

where ∂i =
i+1∑
j=0

(−1)j Der(−,M)(di+1
j ).

Now define a Λ-homomorphism

ϕ : D̃er(P,M) // Ker ∂1

by ϕ(γ) = γd , γ ∈ D̃er(P,M). To show that the derivation γd : F1 → M
belongs to Ker ∂1 , we only need to examine the following lemma.

Lemma 3.2. For γ ∈ D̃er(P,M) there is an equality

γ(x, y) = γ(x, z) + γ(z, y)

for all x, y, z ∈ F such that ε(x) = ε(y) = ε(z).

Proof. Straightforward.

Returning to the main proof, construct a Λ-homomorphism

ψ : Ker ∂1
// D̃er(P,M)

by ψ(β) = γ , β ∈ Ker ∂1 , where the map γ : P →M is given by γ(x, y) = β(z),
(x, y) ∈ P and z ∈ F1 such that d(z) = (x, y).

We have to show that γ is correctly defined. In fact, let z′ ∈ F1 such that
d(z′) = (x, y). Then there exists an element w ∈ F2 such that d2

0(w) = d2
1(w) = 0

and d2
2(w) = z − z′ . Hence,

β(z)− β(z′) = βd2
2(w) = ∂1(β)(w) = 0 .

It is easy to show that γ is a derivation and ψϕ , ϕψ are identity maps.
Moreover, it is clear that the above-given isomorphism induces the isomorphism
H2(R,M) ∼= Cokerκ .

Now we are ready to construct our second non-abelian cohomology of Lie
algebras.

Suppose that, in diagram (5), R acts on F , ε preserves the actions (here
we mean that R acts on itself by Lie multiplication), implying the induced action
of R on P . Note that all these conditions are satisfied when F = F(R) is the free
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Lie algebra on the underlying Λ-module R with the canonical Lie homomorphism
ε : F(R) → R and the action of R on F(R) induced by the action of R on itself.
For the detailed construction of this action we refer to [17]. Hence, with no loss
of generality, we can assume that Z(R) acts trivially on F .

Let (M,µ) be a crossed R-module. Then (M,µ) can be viewed as a
P -crossed R-module induced by εdi (i = 0, 1) and an F -crossed R-module

induced by ε . Denote by D̃er(P, (M,µ)) the subset of Der(P, (M,µ) consisting
of all elements of the form (γ, 0) satisfying the condition γ(∆) = 0. Clearly

D̃er(P, (M,µ)) is a Λ-submodule of Der(P, (M,µ)), since in it the Lie multipli-
cation of Der(P, (M,µ)) is killed.

Let us consider the Λ-submodule B(P, (M,µ)) of D̃er(P, (M,µ)) con-
sisting of all elements (γ, 0) for which there exists (β, h) ∈ Der(F, (M,µ))

such that βd0 − βd1 = γ . We also need the Λ-submodule B̃(P, (M,µ)) of
B(P, (M,µ)) consisting of all elements (γ, 0) ∈ B(P, (M,µ)) for which the exist-
ing (β, h) ∈ Der(F, (M,µ)) satisfies the additional condition Im β ⊆ Z(M).

Proposition 3.3. Let R be a Lie algebra and (M,µ) a crossed R-module.
Then the Λ-modules

D̃er(P, (M,µ))/B(P, (M,µ)) and D̃er(P, (M,µ))/B̃(P, (M,µ))

are unique up to isomorphisms of the choice of the diagram (5) for the crossed
R-module (M,µ).

Proof. Consider the diagram of Lie algebras

P

ω1

��

d0 //

d1
// F

v1

��

ε // R

‖

P ′
d0 //

d1
// F ′ ε // R ,

where the bottom row is another diagram of the form (5), and εv1 = ε , diω1 =
v1di , i = 0, 1. The existence of such v1 and ω1 , not preserving the actions of R in
general, is clear. Suppose that there exists another v2 : F → F ′ and ω2 : P → P ′

satisfying the conditions εv2 = ε and diω2 = v2di , i = 0, 1.

As it is indicated in Section 2 we have the induced Λ-homomorphisms
which will be denoted by ωi : Der(P ′, (M,µ)) → Der(P, (M,µ)), ωi(γ, r) =
(γωi, r), i = 1, 2.

It is easy to see that (γωi, 0) ∈ D̃er(P, (M,µ)) if (γ, 0) ∈ D̃er(P ′, (M,µ)).
Let (γ, 0) ∈ B(P ′, (M,µ)), i.e., there exists (β, h) ∈ Der(F ′, (M,µ)) such that
βd0 − βd1 = γ , then (βvi, h) ∈ Der(F, (M,µ)) and

γωi = (βd0 − βd1)ωi = βvid0 − βvid1 , i = 1, 2 .
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Thus (γωi, 0) ∈ B(P, (M,µ)). Moreover, it is clear that if (γ, 0) ∈ B̃(P ′, (M,µ))

then (γωi, 0) ∈ B̃(P, (M,µ)), i = 1, 2. Hence we have the natural homomor-
phisms of Λ-modules

χi : D̃er(P ′, (M,µ))/B(P ′, (M,µ)) −→ D̃er(P, (M,µ))/B(P, (M,µ)) ,

χ̃i : D̃er(P ′, (M,µ))/B̃(P ′, (M,µ)) −→ D̃er(P, (M,µ))/B̃(P, (M,µ)) ,

induced by ωi , i = 1, 2.

Now we show that χ1 = χ2 and χ̃1 = χ̃2 . Take the Lie homomorphism
s : F → P ′ given by s(x) = (v1(x), v2(x)). For (γ, 0) ∈ D̃er(P ′, (M,µ)) we have
(γs, 0) ∈ Der(F, (M,µ)) and the equalities

(γsd0 − γsd1)(x, y) = γs(x)− γs(y) = γ(v1(x), v2(x))− γ(v1(y), v2(y))

= γ(v1(x)− v1(y), v2(x)− v2(y)) + γ(v1(y)− v2(x), v1(y)− v2(x))

= γ(v1(x)− v2(x), v1(y)− v2(y)) = (γω1 − γω2)(x, y)

for every (x, y) ∈ P . Since µγs = 0 then Im γs ⊆ Z(M) and therefore

(γω1, 0)− (γω2, 0) ∈ B̃(P, (M,µ)) implying χ1 = χ2 and χ̃1 = χ̃2 .

The rest of the proof is standard.

Proposition 3.4. Let R be a Lie algebra and (M,µ) a crossed R-module.

(i) There is a canonical epimorphism of Λ-modules

ϑ : H2(R,Kerµ) −→ D̃er(P, (M,µ))/B(P, (M,µ)) ,

given by ϑ(|γ|) = |(ψ(γ), 0)|, |γ| ∈ H2(R,Kerµ), where ψ is defined in
Proposition 3.1.

(ii) If h ∈ Z(R) for any element (β, h) ∈ Der(F, (M,µ)), then ϑ is an isomor-
phism.

Proof. Directly follows from Proposition 3.1.

Note that the condition of Proposition 3.4 (ii) is fulfilled when either
R is an abelian Lie algebra or M is an R-module thought as the crossed R-
module (M, 0). This assertion motivates our definition of the second non-abelian
cohomology of Lie algebras with coefficients in crossed modules.

Definition 3.5. Let R be a Lie algebra and (M,µ) a crossed R-module.

Then the Λ-module D̃er(P, (M,µ))/B(P, (M,µ)) will be called the second non-
abelian cohomology of R with coefficients in (M,µ) and will be denoted by
H2(R,M).
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Now we introduce the second non-abelian quasi-cohomology of Lie algebras
with coefficients in crossed modules. The reason for its introduction lies in
the following argument: to find some modification of the second non-abelian
cohomology which will be explicitly described in terms of Lie algebra extensions
by crossed modules.

Definition 3.6. Let R be a Lie algebra and (M,µ) a crossed R-module.

Then the Λ-module D̃er(P, (M,µ))/B̃(P, (M,µ)) will be called the second non-
abelian quasi-cohomology of R with coefficients in (M,µ) and will be denoted

by H̃2(R,M).

Note that given an R-module M we have H2(R,M) = H̃2(R,M) =
H2(R,M). Moreover, given a free Lie algebra R over some Λ-module, it is

clear that H2(R,M) = H̃2(R,M) = 0 for any crossed R-module (M,µ).

It is easy to see that H2(R,M) is a functor with respect to both arguments.
Namely, for a morphism of crossed R-modules θ : (M,µ) → (N, ν), there is a
Λ-homomorphism

θ2 : H2(R,M) −→ H2(R,N) , θ2(|(α, 0)|) = |(θα, 0)| .

Whilst H̃2(R,M) is a functor only with respect to the first argument. Nev-
ertheless, if θ is a surjective morphism of crossed R-modules, there is a Λ-
homomorphism

θ̃2 : H̃2(R,M) −→ H̃2(R,N) , θ̃2(|(α, 0)|) = |(θα, 0)| .

The rest of this section is devoted to obtain a nine-term exact non-abelian
cohomology sequence which prolongs Guin’s seven-term exact sequence. But,
for the exactness, one additional necessary condition on coefficient short exact
sequence is needed, not presented in [10, Theorem 2.8].

Theorem 3.7. Let R be a Lie algebra and

0 −→ (L, 0)
ξ−→ (M,µ)

θ−→ (N, ν) −→ 0

an exact sequence of crossed R-modules, having a Λ-linear splitting. Then there
is an exact sequence of Λ-modules

0 −→ H0(R,L)
ξ0−→ H0(R,M)

θ0−→ H0(R,N)
δ0−→ H1(R,L)

ξ1−→ H1(R,M)

θ1−→ H1(R,N)
δ1−→ H2(R,L)

ξ2−→ H2(R,M)
θ2−→ H2(R,N) ,

where θ1 is a Lie homomorphism and δ1 is a derivation with the action of
H1(R,N) on H2(R,L) induced by the action of R on P .
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Proof. According to [10, Theorem 2.8] there is an exact sequence of Λ-
modules

0 −→ H0(R,L)
ξ0−→ H0(R,M)

θ0−→ H0(R,N)
δ0−→

H1(R,L)
ξ1−→ H1(R,M)

θ1−→ H1(R,N) ,

where θ1 is a Lie homomorphism.

Note that the Λ-linear splitting on coefficient sequence is needed to con-
struct the connecting map δ1 .

We only have to define the derivation δ1 , the action of the Lie algebra
H1(R,N) on the Λ-module H2(R,L) (in our setting) and to show the exactness
of the following sequence

H1(R,M)
θ1−→ H1(R,N)

δ1−→ H2(R,L)
ξ2−→ H2(R,M)

θ2−→ H2(R,N) . (7)

Let |(α, r)| ∈ H1(R,N) and consider the diagram

P
d0 //

d1
// F

β

��

ε // R

α
��

L
ξ //M

θ // N,

(8)

where β : F →M is a derivation such that θβ = αε . The existence of β follows
from the following fact: let F be a free Lie algebra (over some Λ-module X )
acting on a Lie algebra M , then any Λ-linear map from X to M can be naturally
extended to a derivation from F to M .

Then there exists a (unique) derivation γ : P → L such that ξγ =
βd0 − βd1 . It is clear that γ(∆) = 0. Define

δ1|(α, r)| = |(γ, 0)| .

We have to check that δ1 is well defined. Let β′ : F → M be another
derivation such that θβ′ = αε and γ′ : P → L be the induced derivation satisfying
ξγ′ = β′d0− β′d1 . Then θβ′ = θβ and there is a derivation σ : F → L such that
β′ = β + ξσ . Thus we have

ξγ′ = β′d0 − β′d1 = βd0 + ξσd0 − βd1 − ξσd1 = ξγ + ξσd0 − ξσd1 ,

implying |(γ, 0)| = |(γ′, 0)| .
Now, if (α′, r′) is another representative of the class |(α, r)| , then there

exists n ∈ N such that α′ = α + ηn . Take β′ : F → M such that β′ = β + ηm ,
where m ∈M with θ(m) = n and θβ = αε . It is clear that θβ′ = α′ε . Moreover,

ξγ′ = β′d0 − β′d1 = βd0 + ηmd0 − βd1 − ηmd1 = βd0 − βd1 = ξγ .
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Whence γ′ = γ and the connecting map δ1 is well defined.

Now we define the action of H1(R,N) on H2(R,L) by the formula

|(α,r)||(γ, 0)| = |(γ̃, 0)| , |(α, r)| ∈ H1(R,N) , |(γ, 0)| ∈ H2(R,L) ,

where γ̃(x, y) = γ(rx, ry), (x, y) ∈ P . The following equality in the Lie algebra
Der(P, (M,µ))

(ξγ̃, 0) = [(ξγ, 0), (βd0, r)] ,

where β : F →M is a derivation as in diagram (8), implies that γ̃ : P → L is a
derivation. Furthermore, it is obvious that γ̃(∆) = 0. We have to check that this
action is well defined. Suppose |(α′, r′)| = |(α, r)| ∈ H1(R,N), hence α′ = α−ηn
and r′ = r + ν(n)− c for some n ∈ N and c ∈ Z(R). We have

γ(r
′
x, r

′
y) = γ(rx, ry) + γ(ν(n)x, ν(n)y)− γ(cx, cy) .

As it is mentioned above we can assume, with no loss of generality, that Z(R)
acts trivially on F , hence γ(cx, cy) = γ(0, 0) = 0. Now, from the following
lemma, we can deduce that this action is well defined.

Lemma 3.8. The map β : F → L given by β(x) = γ(ν(n)x, [uν(n), x]) is a
derivation, where u : R→ F is the required Λ-linear splitting, and the following
equality holds:

γ(ν(n)x, ν(n)y) = (βd0 − βd1)(x, y) , (x, y) ∈ P .

Proof. To show that β is a derivation we make the following calculations:

xβ(y)− yβ(x) = xγ(ν(n)y, [uν(n), y])− yγ(ν(n)x, [uν(n), x])

= (x,x)γ(ν(n)y, [uν(n), y])− (y,y)γ(ν(n)x, [uν(n), x])

= γ[(x, x), (ν(n)y, [uν(n), y])]− γ[(y, y), (ν(n)x, [uν(n), x])]

= γ([x, ν(n)y], [x, [uν(n), y]])− γ([y, ν(n)x], [y, [uν(n), x]])

= γ(ν(n)[x, y], [uν(n), [x, y]]) = β[x, y] .

Let m ∈M such that θ(m) = n . Then

γ([uν(n), x], [uν(n), y]) = γ[(uν(n), uν(n)), (x, y)]

= ν(n)γ(x, y)− (x,y)γ(uν(n), uν(n)) = µ(m)γ(x, y) = [m, γ(x, y)] = 0 ,

since L is contained in the center of M .

Thus by Lemma 3.2 we have

(βd0 − βd1)(x, y) = β(x)− β(y) = γ(ν(n)x, [uν(n), x])− γ(ν(n)y, [uν(n), y])

= γ(ν(n)x, [uν(n), x]) + γ([uν(n), x], [uν(n), y]) + γ([uν(n), y], ν(n)y)

= γ(ν(n)x, ν(n)y) .
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It remains to prove the exactness of the sequence (7).

Let |(λ, r)| ∈ H1(R,M). Then δ1θ1|(λ, r)| = δ1|(θλ, r)| = |(γ, 0)| , where
ξγ = λεd0 − λεd1 = 0. Therefore Im θ1 ⊆ Ker δ1 .

Let |(α, r)| ∈ H1(R,N) such that δ1|(α, r)| = |(γ, 0)| = 0, where ξγ =
βd0−βd1 (see diagram (8)). Then there exists a derivation η : F → L satisfying
γ = ηd0 − ηd1 . Hence we get (β − ξη)d0 = (β − ξη)d1 implying the existence of
(α, r) ∈ DerR(R,M) with β − ξη = αε . It is obvious that θ1|(α, r)| = |(α, r)| .
Hence Ker δ1 ⊆ Im θ1 .

Let |(α, r)| ∈ H1(R,N), then ξ2δ1|(α, r)| = ξ2|(γ, 0)| = |(ξγ, 0)| = 0,
since there exists (β, r) ∈ Der(F, (M,µ)) such that ξγ = βd0 − βd1 . Therefore
Im δ1 ⊆ Ker ξ2 .

Let |(γ, 0)| ∈ H2(R,L) such that |(ξγ, 0)| = 0 ∈ H2(R,M). Then there
exists (β, s) ∈ Der(F, (M,µ)) such that ξγ = βd0 − βd1 , whence θβd0 = θβd1 .
It follows that there is a unique derivation α : R → N such that αε = θβ . It is
easy to check that the pair (α, s) belongs to DerR(R,N) and δ1|(α, s)| = |(γ, 0)| .
Therefore Ker ξ2 ⊆ Im δ1 .

It is obvious that Im ξ2 ⊆ Ker θ2 .

Let |(λ, 0)| ∈ H2(R,M) and θ2(|(λ, 0)|) = |(θλ, 0)| = 0. Then there
exists (ρ, h) ∈ Der(F, (N, ν)) such that θλ = ρd0 − ρd1 . Consider a derivation
β : F →M such that θβ = ρ . One can easily check that (β, h) ∈ Der(F, (M,µ)).
The equality θλ = θβd0 − θβd1 implies Im(λ + βd1 − βd0) ⊆ ξ(L). Then the
derivation γ : P → L given by ξγ = λ + βd1 − βd0 satisfies the condition
γ(∆) = 0 and clearly ξ2(|(γ, 0)|) = |(λ, 0)| . Hence Ker θ2 ⊆ Im ξ2 .

4. Extensions by crossed modules

In order to describe our second non-abelian quasi-cohomology in terms of ex-
tensions of Lie algebras by crossed modules and moreover, to establish the rela-
tionship between our second non-abelian cohomology and these extensions, we
proceed in the same way as for groups [15].

We have to mention that the difference between the results obtained for
Lie algebras and those given for groups in [15] is subtler than it seems. Namely,
the notion of the second non-abelian quasi-cohomology of groups is not needed
since the second non-abelian cohomology of groups with coefficients in crossed
modules completely classifies extensions of groups by crossed modules.

We introduce just below the notion of extension of a Lie algebra by a
crossed module.

Definition 4.1. Let R be a Lie algebra and (M,µ) a crossed R-module. An

extension of R by (M,µ) is a pair E = (0 → M
σ→ X

ψ→ R → 0, ϕ), where

0 → M
σ→ X

ψ→ R → 0 is a short exact sequence of Lie algebras and ϕ is a
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Λ-linear splitting of ψ such that the following equalities hold:

rm = σ−1[ϕ(r), σ(m)] , r ∈ R, m ∈M (9)

and
Kerψ ∩ ϕ(R) ⊆ Kerµ , (10)

where ϕ(R) denotes the Lie subalgebra of X generated by ϕ(R).

For instance, the pair (0 →M
σ0−→M oR

ψ0−→ R→ 0, ϕ0), where M oR
denotes the semidirect product of the Lie algebras M and R , σ0(m) = (m, 0),
ψ0(m, r) = r , ϕ0(r) = (0, r) is an extension of R by (M,µ), called trivial.

Definition 4.2. Let R be a Lie algebra, (M,µ) a crossed R-module and

E = (0 → M
σ→ X

ψ→ R → 0, ϕ) and E ′ = (0 → M
σ′
→ X ′ ψ′

→ R → 0, ϕ′) two
extensions of R by (M,µ). The extensions E and E ′ will be called equivalent if
there exists a Lie homomorphism θ : X → X ′ and an element h ∈ R such that
the diagram

0 //M

‖

σ // X

ϑ
��

ψ // R

‖

// 0

0 //M
σ′
// X ′ ψ′

// R // 0

is commutative and the equality

µ(ϑϕ(r)− ϕ′(r)) = [h, r]

holds for any r ∈ R .

Note that, if it exists, ϑ is necessarily an isomorphism of Lie algebras and
we can easily check that this relation of extensions is reflexive, symmetric and
transitive. Let E1(R,M) denote the set of equivalence classes of extensions of
the Lie algebra R by the crossed R-module (M,µ).

Theorem 4.3. Let R be a Lie algebra and (M,µ) a crossed R-module. Then
there is a bijection

H̃2(R,M) ∼= E1(R,M) .

Proof. Let us define a map η : H̃2(R,M) → E1(R,M) as follows. For any

|(α, 0)| ∈ H̃2(R,M) consider the diagram of Lie algebras

P

α

��

d0 //

d1
// F(R) ε // R

M
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and take the semidirect product M o F(R), where F(R) acts on M via R .
Then the subset Iα = {(m,x) | ε(x) = 0,m = α(x, 0)} ⊆ M o F(R) is an ideal
in M o F(R). In fact, Iα is clearly a submodule and for every (m,x) ∈ Iα ,
(n, y) ∈M o F(R) we have the equalities

xn = ε(x)n = 0 ,

[m,n] = [α(x, 0), n] = µα(x,0)n = 0 ,

α([x, y], 0) = α[(x, 0), (y, y)] = (x,0)α(y, y)− (y,y)α(x, 0) = −ym .

Therefore

[(m,x), (n, y)] = (xn− ym+ [m,n], [x, y]) = (−ym, [x, y]) ∈ Iα .

We get an exact sequence of Lie algebras

0 −→M
σ−→ (M o F(R))/Iα

ψ−→ R −→ 0 ,

where σ(m) = |(m, 0)| , ψ(|(m,x)|) = ε(x) and the following commutative dia-
gram

P

α

��

d0 //

d1
// F(R)

δ
��

ε // R

‖

M
σ // (M o F(R))/Iα

ψ // R

with δ(x) = |(0, x)| , that means σα = δd1 − δd0 and ψδ = ε .

There is a Λ-linear splitting ϕ : R→ (MoF(R))/Iα of ψ given by ϕ(r) =
|(0, r)| , where r ∈ F(R) is the image of r by the natural inclusion R ↪→ F(R).
It is easy to see that ϕ(R) = Im δ . Therefore Kerψ ∩ ϕ(R) = δ(Ker ε). Then
the equality σα(0, x) = δ(x) for x ∈ Ker ε , implies the condition (10). Hence

the pair E = (0 →M
σ→ (M o F(R))/Iα

ψ→ R→ 0, ϕ) is an extension of R by
(M,µ) and define η(|(α, 0)|) = |E| .

We have to show that η is well defined. Let (α′, 0) be another rep-
resentative of |(α, 0)| , then there exists (β, h) ∈ Der(F(R), (M,µ)) such that

Im β ⊆ Z(M) and α′−α = βd0−βd1 . Let E ′ = (0 →M
σ′
→ (M oF(R))/Iα′

ψ′
→

R→ 0, ϕ′) be the extension of R by (M,µ) corresponding to (α′, 0).

Consider a map ϑ : M o F(R) → M o F(R) given by ϑ(m,x) = (m +
β(x), x). Clearly ϑ is a homomorphism of Λ-modules and since Im β ⊆ Z(M)
we have

[ϑ(m,x), ϑ(n, y)] = [(m+ β(x), x), (n+ β(y), y)]

= (xn+x β(y)−y m−y β(x) + [m,n] + [m,β(y)] + [β(x), n] + [β(x), β(y)], [x, y])

= (xn−y m+ [m,n] + β[x, y], [x, y]) = ϑ[(m,x), (n, y)]
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for all (m,x), (n, y) ∈M oF(R). Thus, ϑ is a Lie homomorphism. Moreover, if
(m,x) ∈ Iα , that is, ε(x) = 0 and m = α(x, 0), then

ϑ(m,x) = (α(x, 0) + β(x), x) = (α′(x, 0), x) ∈ Iα′ .

Thus, ϑ induces a Lie homomorphism ϑ′ : (M o F(R))/Iα → (M o F(R))/Iα′ .

We have the following commutative diagram of Lie algebras

0 //M

‖

σ // (M o F(R))/Iα

ϑ′

��

ψ // R

‖

// 0

0 //M
σ′
// (M o F(R))/Iα′

ψ′
// R // 0

with the above-defined splittings ϕ : R → (M o F(R))/Iα and ϕ′ : R →
(M o F(R))/Iα′ and the equality

µ(ϑ′ϕ(r)− ϕ′(r)) = µ(ϑ′(|(0, r)|)− |(0, r)|) = µ(|(β(r), 0)|) = −rh = [h, r]

implying that |E| = |E ′| .
Conversely, define a map η′ : E1(R,M) → H̃2(R,M) as follows. Let

|E| ∈ E1(R,M), E = (0 →M
σ→ X

ψ→ R→ 0, ϕ). Then there is a commutative
diagram

P

α

��

d0 //

d1
// F(R)

δ

��

ε // R

‖

M
σ // X

ψ // R ,

where the Lie homomorphism δ is induced by the Λ-linear map ϕ and α is given
by σα = δd1−δd0 . Using the equality (9) it is easy to check that α is a derivation.
Clearly α(x, x) = 0 for x ∈ F(R) and since δ(y)− δ(x) ∈ Kerψ ∩ ϕ(R), by the
condition (10) we have µα(x, y) = µ(δ(y) − δ(x)) = 0 for (x, y) ∈ P . Hence

(α, 0) ∈ D̃er(P, (M,µ)) and we define η′(|E|) = |(α, 0)| .
We have to show that η′ is also well defined. Suppose E is equivalent

to E ′ = (0 → M
σ′
→ X ′ ψ′

→ R → 0, ϕ′), then there exist a Lie homomorphism
ϑ : X → X ′ and an element h ∈ R satisfying the conditions of Definition 4.2.
Let (α′, 0) be the element of D̃er(P, (M,µ)) corresponding to E ′ .

Consider the derivation β : F(R) →M given by σ′β = ϑδ − δ′ . Then for
r, s ∈ R we have

µβ(r) = µ(ϑδ(r)− δ′(r)) = µ(ϑϕ(r)− ϕ′(r)) = [h, r]

and

µβ([r, s]) = µ(rβ(s))− µ(sβ(r)) = [r, µβ(s)]− [s, µβ(r)] = [r, [h, s]]− [s, [h, r]]

= [h, [r, s]]
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implying that µβ(x) = −xh for all x ∈ F(R), i.e., (β, h) ∈ Der(F(R), (M,µ)).
The verification that βd0 − βd1 = α′ − α and Im β ⊆ Z(M) is now routine and
will be omitted. Therefore |(α, 0)| = |(α′, 0)| .

It is easily checked that ηη′ and η′η are identity maps.

Note that the bijection η maps the zero element of H̃2(R,M) to the
equivalence class of the trivial extension of R by (M,µ).

Now, suppose S(R,M) denotes the subset of E1(R,M) consisting of all

equivalence classes of extensions E = (0 →M
σ→ X

ψ→ R→ 0, ϕ) for that there
exists a Λ-homomorphism s : R → M such that (σβ + δ)(x) = (σβ + δ)(y) for
x, y ∈ F(R) with ε(x) = ε(y), β is the derivation induced by s and δ is the Lie
homomorphism induced by ϕ .

The set S(R,M) always contains at least one element, namely, the equiv-
alence class of the trivial extension.

We arrive to the following

Proposition 4.4. Let R be a Lie algebra and (M,µ) a crossed R-module.
Then there is a short exact sequence of pointed sets

0 −→ S(R,M) −→ E1(R,M) −→ H2(R,M) −→ 0 .

Proof. As an easy consequence of Definitions 3.5 and 3.6, there is a short
exact sequence of Λ-modules

0 −→ B(P, (M,µ))/B̃(P, (M,µ)) −→ H̃2(R,M) −→ H2(R,M) −→ 0 .

It is easy to see that the restriction of the bijection η in the proof of Theorem 4.3
is the bijection from B(P, (M,µ))/B̃(P, (M,µ)) to S(R,M). Then the assertion
follows.
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