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224 J. M. Casas et al.

1 Introduction

The general concept of a crossed module originates in the work of Whitehead in the
late 1940s [17]. There the crossed modules were crossed modules of groups, intro-
duced as algebraic models for path-connected CW-spaces whose homotopy groups
are trivial in dimensions >2. Since their introduction, crossed modules have played
an important role in homotopy theory. For illustration we mention various classifica-
tion problems for low-dimensional homotopy types and the derivation of van Kampen
theorem generalizations (see e.g. [3,4]).

Crossed modules of associative algebras are known at least as analogues of crossed
modules of groups in another category. They have been investigated by various authors.
In the works of Dedecker and Lue [5,14] crossed modules of associative algebras have
played a central role in what must be coefficients in low-dimensional non-abelian
cohomology. In [1] Baues and Minian have shown that crossed modules of associative
algebras can be used to represent the Hochschild cohomology. In the recent article
[6], the Hochschild and (cotriple) cyclic homologies of crossed modules of associative
algebras have been constructed and investigated.

The aim of the present paper is to give a relation between the categories of crossed
modules of groups and (unital) associative algebras. Various definitions of modules
over crossed modules of groups and associative algebras are examined. The classical
fact that the group algebra functor is left adjoint to the unit group functor is extended
to the categories of crossed modules, in such a way that the well-known equivalence
of module structures is preserved. This result has already been noted and proved by
Forrester-Barker [10], in his unpublished thesis, from a slightly different way.

Our constructions can be applied to develop (co)homology theories with coefficients
for crossed modules of groups and associative algebras, and to extend the well-known
Mac Lane isomorphism between the homology of a group and the Hochschild homol-
ogy of its group algebra. It might be interesting to consider the main results here at
the 2-category level and to relate our constructions with the representation theory of
2-groups developed by Elgueta [7]. Clearly, the investigation of possible Hopf algebra
structure of our group algebra crossed module in the context of [9] and [11] is another
prospective direction.

Organisation

After the introductory Sect. 1, the paper is organized in three sections. In Sect. 2,
extending the definition of the actor of a crossed module of groups [15], we introduce
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Adjunction between crossed modules of groups and algebras 225

the notion of module over a crossed module of groups over a ground ring k (Definition
2.2). In the equivalent cat1 setting, this notion is the same as a k-linear representation of
the corresponding cat1-group (Theorem 2.4) examined in [10]. In Sect. 3, we construct
a crossed module of endomorphisms of an abelian crossed module of algebras, and a
morphism to it is called a module structure over a crossed module of algebras (Defini-
tion 3.2). This definition is then translated to the equivalent cat1 setting (Definition 3.3,
Proposition 3.5). In Sect. 4, we construct a functor XU : XUAlg → XGr, sending the
crossed module of endomorphisms of algebras to the actor crossed module of groups
(Lemma 4.3). Then we construct a left adjoint functor to XU (Theorem 4.5). Con-
sequently, we establish an equivalence of categories between the module structures
over a crossed module of groups and over its respective crossed module of algebras
(Theorem 4.6).

Notations and conventions

Throughout k is a commutative ring with unit. Algebras are (not necessarily unital)
associative algebras over k and their category is denoted by Alg, while its subcategory
of unital algebras is denoted by UAlg. We denote by Gr the category of groups.

2 Crossed modules of groups

2.1 Basic notions

A crossed module of groups (H,G, μ) is a group homomorphismμ : H → G together
with an action (g, h) �→g h of G on H such that, for all h, h′ ∈ H and g ∈ G,

μ(gh) = gμ(h)g−1, μ(h)h′ = hh′h−1.

A morphism of crossed modules of groups (ϕ, ψ) : (H,G, μ) → (H ′,G ′, μ′) is
a pair of group homomorphisms (ϕ : H → H ′, ψ : G → G ′) such that μ′ϕ = ψμ

and ϕ(gh) =ψ(g) ϕ(h) for all g ∈ G, h ∈ H . We denote by XGr the category of
crossed modules of groups. There are several categories equivalent to the category
XGr. We mention the equivalences of crossed modules with simplicial groups whose
Moore complexes are of length 1, with internal categories in the category of groups
and with cat1-groups [13]. The equivalence between crossed modules of groups and
cat1-groups will be used in what follows and we give it briefly immediately below.

A cat1-group C = (G1,G0, s, t) consists of a group G1 together with a subgroup
G0 and structural homomorphisms s, t : G1 → G0 satisfying

s |G0= t |G0= idG0 and [Ker s,Ker t] = 1.

A morphism of cat1it -groups C → C′ is a group homomorphism γ : G1 → G ′
1 such

that γ |G0⊆ G ′
0 and s′γ = γ |G0 s, t ′γ = γ |G0 t .

Given a crossed module of groups (H,G, μ), the corresponding cat1-group is
(H � G,G, s, t), where s(h, g) = g, t (h, g) = μ(h)g for all (h, g) ∈ H � G.
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226 J. M. Casas et al.

Conversely, given a cat1-group (G1,G0, s, t), the corresponding crossed module is
t |Ker s : Ker s → G0 with the action of G0 on Ker s given by conjugation.

2.2 Actions of crossed modules of groups

In [15], Norrie defined an action of a crossed module (H,G, μ) on another crossed
module of groups (M, P, ∂) as a crossed module morphism (ϕ, ψ) : (H,G, μ) →
Act(M, P, ∂), where Act(M, P, ∂) = (D(P,M),Aut(∂),�) is the actor crossed
module of (M, P, ∂).

Let us recall briefly the construction of Act(M, P, ∂) from [15]. For the crossed
module (M, P, ∂), consider the set Der(P,M) of all derivations from P to M , i.e. all
maps d : P → M such that d(pp′) = d(p)pd(p′), p, p′ ∈ P . Following Whitehead
[17], there is a multiplication ◦ in Der(P,M) given by

(d1 ◦ d2)(p) = d1∂d2(p) d2(p)d1(p), p ∈ P, (1)

which turns Der(P,M) into a monoid. The Whitehead group D(P,M) is defined to
be the group of units of Der(P,M). Further, Aut(∂) is the group of automorphisms
of (M, P, ∂) in the category XGr. The homomorphism � : D(P,M) → Aut(∂) is
given by

�(d) = (σd , θd), where σd(m) = d∂(m)m, θd(p) = ∂d(p)p, for m ∈ M, p ∈ P.

The action of Aut(∂) on D(P,M) is defined by

(σ,θ)d = σdθ−1, (σ, θ) ∈ Aut(∂), d ∈ D(P,M).

There is an equivalent description of actions of crossed modules of groups.

Proposition 2.1 Let (H,G, μ) and (M, P, ∂) be crossed modules of groups. Then
there is an action of (H,G, μ) on (M, P, ∂) if and only if the following conditions
hold:

(i) The group G (and so H) acts on M and P, ∂ is a G-equivariant homomorphism,
that is, ∂(gm) = g∂(m) and the action of P on M is a G-equivariant action (see
e.g. [12, Definition 1]), that is, g(pm) =(g p) (gm) for all g ∈ G, m ∈ M, p ∈ P;

(ii) There is a map ξ : H × P → M such that

∂ξ(h, p) =μ(h) pp−1, (2)

ξ(h, ∂(m)) =μ(h) mm−1, (3)
gξ(h, p) = ξ(gh,g p), (4)

ξ(hh′, p) =μ(h) ξ(h′, p) ξ(h, p), (5)

ξ(h, pp′) = ξ(h, p) pξ(h, p′) (6)

for h, h′ ∈ H, p, p′ ∈ P, m ∈ M, g ∈ G.
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Adjunction between crossed modules of groups and algebras 227

Proof Let (H,G, μ) act on (M, P, ∂) by the following crossed module morphism

H
μ ��

ϕ

��

G

ψ

��
D(P,M)

� �� Aut(∂).

(7)

Clearly the homomorphism ψ defines group actions of G on M and P such that all
statements in (i) hold. Define ξ : H × P → M by ξ(h, p) = ϕ(h)(p). Then the
commutativity of the diagram (7) amounts precisely to the equalities (2) and (3); the
equality (4) is equivalent to ϕ(gh) =ψ(g) ϕ(h); whilst (5) and (6) are equivalent to the
facts that ϕ is a homomorphism and ϕ(g), for any g ∈ G, is a derivation, respectively.
The inverse statement is obvious. �	

2.3 Modules over crossed modules of groups

In [2], Beck introduced a convenient notion of coefficient module to be used in
(co)homology theories. The notion makes sense in a broad context, and recovers the
usual notions of module in familiar settings, such as groups, rings, commutative rings,
Lie algebras, etc. Applying this general notion to the category of crossed modules of
groups, one deduces that a module over a crossed module of groups (H,G, μ) is an
abelian crossed module (M, P, ∂) endowed with a (H,G, μ)-action (see also [16]). It
is known that an abelian crossed module of groups is just a homomorphism of abelian
groups.

Now assume that ∂ : M → P is a homomorphism of k-modules. Let us denote
by Autk(∂) the subgroup of Aut(∂) of all k-automorphisms, and by Dk(P,M) the
subgroup of D(P,M) of all k-linear derivations whose inverse in D(P,M) is k-linear
as well. It is easy to check that the homomorphism

�k = � |Dk(P,M) : Dk(P,M) → Autk(∂)

is a crossed module of groups, denoted by Actk(M, P, ∂), where the action of Autk(∂)

on Dk(P,M) is induced by the action of Aut(∂) on D(P,M).

Definition 2.2 Let (H,G, μ) be a crossed module of groups. A (H,G, μ)-module
over a commutative ring k is a homomorphism of k-modules ∂ : M → P together
with a crossed module morphism (ϕ, ψ) : (H,G, μ) → Actk(M, P, ∂).

Suppose ∂ : M→P and ∂ ′ : M ′ → P ′ are (H,G, μ)-modules over k with crossed
module morphisms (ϕ, ψ) : (H,G, μ) → Actk(M, P, ∂) and (ϕ′, ψ ′) : (H,G, μ) →
Actk(M ′, P ′, ∂ ′), respectively. Then a morphism from ∂ : M → P to ∂ ′ : M ′ → P ′
is a pair of homomorphisms of k-modules ( fM : M → M ′, fP : P → P ′) such that

fP ∂ = ∂ ′ fM , ( fM , fP )ψ(g) = ψ ′(g)( fM , fP ), fMϕ(h) = ϕ′(h) fP (8)

for all g ∈ G and h ∈ H . There is an obvious composition of such morphisms and
this leads to a definition of the category of (H,G, μ)-modules over k.
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228 J. M. Casas et al.

Let us recall that Forrester-Barker in [10] developed the representation theory
of cat1-groups. Namely, he constructed the automorphism cat1 -group Autk(∂) of
a homomorphism of k-modules ∂ : M → P , and described a linear representation of
a cat1-group C as a morphism of cat1-groups

φ : C → Autk(∂) = (
Homotk(∂),Autk(∂), s, t

)
,

where Homotk(∂) is the group of all homotopies between elements of Autk(∂)with the
group structure defined as follows: if h : (σ1, θ1) ∼ (σ2, θ2) and h′ : (σ ′

1, θ
′
1) ∼ (σ ′

2, θ
′
2)

are homotopies, then their product h#h′ is the homotopy σ1h′ + hθ ′
2 : (σ1σ

′
1, θ1θ

′
1) ∼

(σ2σ
′
2, θ2θ

′
2). Note that Autk(∂) is considered as a subgroup of Homotk(∂) via the

injection Autk(∂) ↪→ Homotk(∂) sending each chain automorphism to the identity
homotopy on it, while s, t : Homotk(∂) → Autk(∂) are the homomorphisms selecting
the source and the target of each homotopy.

We have the following

Lemma 2.3 Let ∂ : M → P be a homomorphism of k-modules. Then the cat1-
group (Dk(P,M) � Autk(∂),Autk(∂), s, t) corresponding to the crossed module
Actk(M, P, ∂) is isomorphic to Autk(∂).

Proof It is routine to check that there are homomorphisms of groups

Dk(P,M)� Autk(∂)
α �� Homotk(∂)
β

��

defined, for all
(
d, (σ, θ)

) ∈ Dk(P,M) � Autk(∂) and
(
h : (σ1, θ1) ∼ (σ2, θ2)

) ∈
Homotk(∂), by the formulas

α
(
d, (σ, θ)

) = ( − dθ : (σ, θ) ∼ (σδσ, θδθ)
)
,

β
(
h : (σ1, θ1) ∼ (σ2, θ2)

) = ( − hθ−1
1 , (σ1, θ1)

)
.

Here we only note that −hθ−1
1 ∈ Dk(P,M), since it has an inverse σ1σ

−1
2 hθ−1

1 .
Clearly α and β are inverses to each other, and they commute with the struc-
tural homomorphisms of the cat1-groups (Dk(P,M) � Autk(∂),Autk(∂), s, t) and
Autk(∂). �	
Theorem 2.4 Let (H,G, μ) be a crossed module of groups. Then the category of
(H,G, μ)-modules over k is equivalent to the category of linear representations of
the corresponding cat1-group (H � G,G, s, t).

Proof Straightforward from Lemma 2.3. �	

3 Crossed modules of algebras

3.1 Basic notions

We begin by recalling some basic notions about crossed modules of algebras from
[6] (also cf. [8]). Let A and R be two algebras. By an action of A on R we mean an
A-bimodule structure on R satisfying the following conditions:
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Adjunction between crossed modules of groups and algebras 229

a(rr ′) = (ar)r ′, (ra)r ′ = r(ar ′), (rr ′)a = r(r ′a)

for all a ∈ A, r, r ′ ∈ R. For example, if A is a subalgebra of some algebra B and R
is an ideal in B, then multiplication in B yields an action of A on R.

A crossed module of algebras (R, A, ρ) is an algebra homomorphism ρ : R → A
together with an action of A on R such that the following conditions hold:

ρ(ar) = aρ(r), ρ(ra) = ρ(r)a,

ρ(r)r ′ = rr ′ = rρ(r ′)

for all a ∈ A, r, r ′ ∈ R. We point out that the image of ρ is necessarily an ideal of A,
and that Kerρ , contained in the two-sided annihilator of R, is an A/ρR-bimodule.

A morphism (α, β) : (R, A, ρ) → (R′, A′, ρ′) of crossed modules is a pair of
algebra homomorphisms (α : R → R′, β : A → A′) such that ρ′α = βρ, α(ar) =
β(a)α(r) and α(ra) = α(r)β(a) for a ∈ A, r ∈ R. Let us denote the category of
crossed modules of algebras by XAlg. Moreover, denote by XUAlg the subcategory
of XAlg of crossed modules of unital algebras, whose objects are crossed modules
(R, A, ρ) with A a unital algebra and for A-bimodule structure 1r = r1 = r , r ∈ R,
while morphisms are crossed module morphisms (α, β) with β a homomorphism of
unital algebras.

A cat1 -algebra (A1, A0, σ, τ ) consists of an algebra A1 together with a subalgebra
A0 and structural homomorphisms σ, τ : A1 → A0 satisfying

σ |A0= τ |A0= idA0 and Ker σ Ker τ + Ker τ Ker σ = 0.

Just as in the case of groups, a crossed module of algebras is equivalent to a cat1-
algebra [8]. More precisely, given a crossed module of algebras (R, A, ρ), the corre-
sponding cat1-algebra is (R�A, A, σ, τ ), where R�A denotes the semi-direct product
algebra with the underlying k-module R ⊕ A endowed with the multiplication

(r, a)(r ′, a′) = (rr ′ + ar ′ + ra′, aa′)

σ (r, a) = a, τ(r, a) = ρ(r)+a for all (r, a), (r ′, a′) ∈ R � A. Conversely, for a cat1-
algebra (A1, A0, σ, τ ) the corresponding crossed module is τ |Ker σ : Ker σ → A0
with the action of A0 on Ker σ defined by the multiplication in A1.

We need to remark that, under the aforementioned equivalence, objects of XUAlg
correspond to that of unital cat1-algebras whose structural morphisms are homomor-
phisms of unital algebras.

3.2 Modules over crossed modules of algebras

In this subsection, for a given abelian crossed module of algebras, we construct a
crossed module of endomorphisms and define a module structure over a crossed module
of algebras as its morphism to the crossed module of endomorphisms.
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230 J. M. Casas et al.

Given an abelian crossed module of algebras, that is, just a homomorphism of
k-modules ∂ : V → W . Then the k-module Homk(W, V ) is an algebra with the
multiplication defined by

d1 ∗ d2 = d1∂d2

for all d1, d2 ∈ Homk(W, V ). Let Endk(V,W, ∂) denote the algebra

{
(φ,ψ)

∣
∣ φ ∈ Endk(V ), ψ ∈ Endk(W ), ψ∂ = ∂φ

}
.

The following lemma is straightforward from direct calculations.

Lemma 3.1 The algebra homomorphism

� : Homk(W, V ) → Endk(V,W, ∂), d �→ (d∂, ∂d),

together with an algebra action of Endk(V,W, ∂) on Homk(W, V ) given by

(φ,ψ)d = φd and d(φ,ψ) = dψ, d ∈ Homk(W, V ), (φ, ψ) ∈ Endk(V,W, ∂),

is a crossed module of unital algebras.

Definition 3.2 Let (R, A, ρ)be a crossed module of algebras. A left (R, A, ρ)-module
is an abelian crossed module of algebras (V,W, ∂) together with a morphism of crossed
modules of algebras (R, A, ρ) → (Homk(W, V ),Endk(V,W, ∂),�).

Suppose (V,W, ∂) and (V ′,W ′, ∂ ′) are (R, A, ρ)-modules with morphisms of
crossed modules of algebras (α, β) : (R, A, ρ) → (Homk(W, V ),Endk(V,W, ∂),�)
and (α′, β ′) : (R, A, ρ) → (Homk(W ′, V ′),Endk(V ′,W ′, ∂ ′),�′), respectively.
Then a morphism from (V,W, ∂) to (V ′,W ′, ∂ ′) is a pair of homomorphisms of
k-modules ( f V : V → V ′, f W : W → W ′) such that

fW ∂ = ∂ ′ fV , ( fV , fW )β(a) = β ′(a)( fV , fW ), fV α(r) = α′(r) fW (9)

for all a ∈ A and r ∈ R. There is an obvious composition of such morphisms and this
leads to the definition of the category of (R, A, ρ)-modules.

Since crossed modules of algebras and cat1-algebras are equivalent, and we have
a definition of left modules over a crossed module of algebras, this may also be
considered as a left module of the corresponding cat1-algebra. However, a direct
definition of a left module over a cat1-algebra will be also useful and we give it
immediately below.

First, we need to recall from [10] that a cat1 -module (V1, V0, i, j) consists of
a k-module V1, a k-submodule V0 of V1 and structural morphisms i, j : V1 → V0
satisfying i |V0= j |V0= idV0 .
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Adjunction between crossed modules of groups and algebras 231

Definition 3.3 A left module over a cat1-algebra (A1, A0, σ, τ ) is a cat1-module
(V1, V0, i, j) together with a left action of A1 on V1 and a left action of A0 on V0 such
that the structural morphisms commute with the actions, that is, i(a1v1) = σ(a1)i(v1),
j (a1v1) = τ(a1) j (v1) for all a1 ∈ A1, v1 ∈ V1 and the condition

Ker σ Ker i + Ker τ Ker j = 0 (10)

holds.

Remark 3.4 Forrester-Barker in [10] gave a definition of a left module over a cat1-
algebra, but omitted the important condition (10). This condition is essential for prov-
ing equivalence to a left module over the corresponding crossed module of algebras
and consequently the equivalence between modules over crossed modules of groups
and the corresponding crossed modules of algebras (see our main result Theorem 4.6)

Proposition 3.5 Let (R, A, ρ) be a crossed module of algebras. An abelian crossed
module of algebras (V,W, ∂) is a left module over (R, A, ρ) if and only if the cor-
responding cat1-module (V ⊕ W,W, i, j) is a left module over the corresponding
cat1-algebra (R � A, A, σ, τ ).

Proof Let (V,W, ∂) be a (R, A, ρ)-module. Then there is a morphism (α, β) of
crossed modules of algebras

R
ρ ��

α

��

A

β

��
Homk(W, V )

� �� Endk(V,W, ∂).

(11)

Suppose that β has components β1 : A → Endk(V ) and β2 : A → Endk(W ), that is,
β(a) = (β1(a), β2(a)) for all a ∈ A. It is clear that A acts (to the left) on V and on
W : av = β1(a)(v) and aw = β2(a)(w) for all a ∈ A, v ∈ V , w ∈ W . It is routine to
check that the equality

(r, a)(v,w) = (
α(r)(w)+ (ρ(r)+ a)v, aw

)

defines a left action of the algebra R � A on the k-module V ⊕ W , which commutes
with the structural morphisms.

In order to check condition (10), note that Ker σ (resp. Ker τ , Ker i , Ker j) consists
of all elements of the form (r, 0) (resp. (r,−ρ(r)), (v, 0), (v,−∂(v))) for r ∈ R,
v ∈ V , and we have

(r,−ρ(r))(v, 0) = (
α(r)(0)+ (ρ(r)− ρ(r))v, 0

) = (0, 0),

(r, 0)(v,−∂(v)) = (−α(r)∂(v)+ ρ(r)v, 0) = (0, 0)

since α(r)∂(v) = ρ(r)v by commutativity of the diagram (11).
Conversely, given a left (R � A, A, σ, τ )-module structure on the cat1-module

(V ⊕ W,W, i, j), we define the maps α and β = (β1, β2) in the diagram (11) by the
equalities
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232 J. M. Casas et al.

(α(r)(w), 0) = (r, 0)(0, w),

(β1(a)(v), 0) = (0, a)(v, 0),

β2(a)(w) = aw

for all r ∈ R, a ∈ A, v ∈ V andw ∈ W . Now the remaining details are straightforward
calculations and are left to the reader. �	

4 Adjunction between XGr and XUAlg

Given a unital algebra A, its subset of all invertible elements forms a group U(A)
called the group of units of the algebra A. This gives a functor U : UAlg → Gr called
unit group functor. Let K : Gr → UAlg denote its left adjoint functor, sending a
group G to its group algebra K(G), called the group algebra functor. In this section
we construct adjoint functors XU : XUAlg → XGr and XK : XGr → XUAlg, which
are natural generalizations of the functors U and K.

4.1 The functor XU

Given an object (R, A, ρ) of XUAlg, consider its corresponding (unital) cat1-algebra

R � A
σ ��
τ

�� A .

Applying the functor U, we obtain a diagram of groups

U(R � A)
U(σ ) ��
U(τ )

�� U(A) . (12)

Lemma 4.1 (12) is a cat1-group.

Proof It is clear that U(σ )|U(A) = U(τ )|U(A) = idU(A). We only have to check that
[Ker U(σ ),Ker U(τ )] = 1.

For this we note that any element of Ker U(σ ) has the form (r0, 1), with r0 ∈ R
such that there exists r ′

0 ∈ R satisfying r0r ′
0 +r ′

0 +r0 = r ′
0r0 +r ′

0 +r0 = 0. Moreover,
any element of Ker U(τ ) has the form (r1, 1 − ρ(r1)), r1 ∈ R. Then we have

(r0, 1)(r1, 1 − ρ(r1)) = (r0 + r1, 1 − ρ(r1)) = (r1, 1 − ρ(r1))(r0, 1).

This means that [(r0, 1), (r1, 1 − ρ(r1))] = 1 and the assertion follows. �	
Now we define the functor XU : XUAlg → XGr by the formula

XU(R, A, ρ) = (Ker U(σ ),U(A),U(τ ) |Ker U(σ )), (R, A, ρ) ∈ XUAlg .
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Adjunction between crossed modules of groups and algebras 233

The functor XU is a natural generalization of the unit group functor U in the
following sense: there are two ways of regarding a unital algebra A (resp. a group
G) as a crossed module of unital algebras (resp. crossed module of groups), via the
trivial map 0 : 0 → A (resp. 1 : 1 → G) and via the identity map idA : A → A (resp.
idG : G → G) with action of A (resp. of G) on itself by multiplication (resp. by
conjugation). There are full embeddings

E0,E1 : UAlg −→ XUAlg (resp. E
′
0,E

′
1 : Gr −→ XGr)

defined by E0(A) = (0, A, 0), E1(A) = (A, A, idA) (resp. E
′
0(G) = (1,G, 1),

E
′
1(G) = (G,G, idG)). Then, it is easy to see that the following diagram is commu-

tative

UAlg

U

��

E0 �� XAlg

XU

��
Gr

E′
0 �� XGr .

Moreover, we have the following

Proposition 4.2 There is a natural isomorphism of functors

XU ◦ E1 ∼= E
′
1 ◦ U .

Proof Given a unital algebra A, by definition we have that E
′
1 ◦ U(A) =

(U(A),U(A), idU(A)). Thus, we need to show that the crossed module of groups
XU(A, A, idA) (= XU ◦ E1(A)) is isomorphic to (U(A),U(A), idU(A)). We follow
the definition of XU and consider the cat1-algebra (A� A, A, σ, τ )with σ(a, a′) = a′,
τ(a, a′) = a + a′. Applying the functor U we arrive to the cat1-group

U(A � A)
U(σ ) ��
U(τ )

�� U(A) .

We claim that U(τ ) |Ker U(σ ) : Ker U(σ ) → U(A) is an isomorphism of groups. Indeed,
the assignment u �→ (u − 1, 1), for any element u ∈ U(A), defines a homomorphism
from U(A) to Ker U(σ ) which is a two-sided inverse for U(τ ) |Ker U(σ ).

Now it is easy to see that the pair (U(τ ) |Ker U(σ ), idU(A)) is an isomor-
phism between crossed modules of groups (Ker U(σ ),U(A),U(τ ) |Ker U(σ )) and
(U(A),U(A), idU(A)), which provides the required isomorphism between the functors
XU ◦ E1 and E

′
1 ◦ U. �	

Lemma 4.3 Let ∂ : V → W be a k-homomorphism. Then the crossed module of
groups XU

(
Homk(W, V ),Endk(V,W, ∂),�

)
is isomorphic to the actor crossed

module Actk(V,W, ∂) = (
Dk(W, V ),Autk(∂),�k

)
.
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Proof We follow the definition of XU
(

Homk(W, V ),Endk(V,W, ∂),�
)

and con-
sider the cat1-algebra

Homk(W, V )� Endk(V,W, ∂)
σ ��
τ

�� Endk(V,W, ∂)

with σ(d, (φ, ψ)) = (φ,ψ) and τ(d, (φ, ψ)) = �(d)+ (φ,ψ) = (d∂+φ, ∂d +ψ).
It is clear that U(Endk(V,W, ∂)) = Autk(∂). Further, an element (d, (φ, ψ)) ∈
Homk(W, V )�Endk(V,W, ∂) is invertible if and only if (φ,ψ) ∈ Autk(∂) and there
exists another d ′ ∈ Homk(W, V ) such that

d∂d ′ + φd ′ + dψ−1 = 0 = d ′∂d + φ−1d + d ′ψ.

It follows that Ker U(σ ) consists exactly of those d ∈ Homk(W, V ) = Derk(W, V )
which are invertible with respect to the product (1), that is, Ker U(σ ) ∼= Dk(W, V ).
At the same time, for any d ∈ Ker U(σ ), we have

U(τ )(d) = (d∂, ∂d)+ (idV , idW ) = (d∂ + idV , ∂d + idW ) = �k(d).

This completes the proof. �	

4.2 The functor XK

Now we construct a left adjoint functor of the functor XU (cf. Forrester-Barker’s thesis,
[10], where an equivalent construction is given).

Given a crossed module of groups μ : H → G consider its corresponding cat1-

group H � G
s ��
t

�� G . Then, applying the functor K, we obtain a diagram of alge-

bras

K(H � G)
K(s) ��
K(t)

�� K(G) .

It is easy to see that K(s)|K(G) = K(t)|K(G) = idK(G), but the other condition of
cat1-algebra is not fulfilled in general. Thus consider a new diagram

K(H � G)/X
K(s) ��

K(t)
�� K(G) , (13)

where X = Ker K(s)Ker K(t) + Ker K(t)Ker K(s), K(s) and K(t) are induced by
K(s) and K(t), respectively. What we have obtained is obviously a cat1-algebra. Define
XK(H,G, μ) as the crossed module of algebras corresponding to the cat1-algebra
(13), that is,

XK(H,G, μ) = (
Ker K(s),K(G),K(t) |Ker K(s)

)
.
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It is easy to see that this construction determines a functor XK : XGr → XUAlg,
which is a natural generalization of the functor K in the sense of the following com-
mutative diagram

Gr

K

��

E
′
0 �� XGr

XK

��
UAlg

E0 �� XUAlg

and the following proposition.

Proposition 4.4 There is a natural isomorphism of functors

XK ◦E
′
1 ∼= E1 ◦ K .

Proof Given a group G, we have that E1 ◦ K(G) = (
K(G),K(G), idK(G)

)
. Thus,

we need to show that the crossed module of unital algebras XK(G,G, idG) (=
XK ◦E

′
1(G)) is isomorphic to (K(G),K(G), idK(G)). We follow the definition of

XK and consider the cat1-group (G � G,G, s, t) with s(g, g′) = g′, t (g, g′) = gg′,
g, g′ ∈ G, corresponding to the crossed module of groups (G,G, idG). There is a
group homomorphism ε : G → G � G, g �→ (g, 1), satisfying sε = 1 and tε = idG .
Next, we need to consider the cat1-algebra

(
K(G �G)/X,K(G),K(s),K(t)

)
, where

X = Ker K(s)Ker K(t) + Ker K(t)Ker K(s). Let π : K(G � G) → K(G � G)/X
denote the canonical epimorphism, then we have the equalities K(s)π K(ε) =
K(s)K(ε) = 0 and K(t)π K(ε) = K(t)K(ε) = idG . It follows that the homomor-
phism π K(ε) takes values in Ker K(s) and it is a right inverse for the homomorphism
K(t) |Ker K(s) : Ker K(s) → K(G). On the other hand, since Ker K(s) is generated

by all elements of the form (g, 1), g ∈ G, it is obvious that π K(ε)K(t) |Ker K(s)=
idKer K(s).

Now it is easy to see that the pair
(
K(t) |Ker K(s), idK(G)

)
is an isomorphism of

crossed modules of algebras
(

Ker K(s),K(G),K(t) |Ker K(s)

)
and

(
K(G),K(G),

idK(G)
)
, which provides the required isomorphism between the functors XK ◦E

′
1

and E1 ◦ K. �	

4.3 Main results

The following result is a natural generalization of the well-known classical adjunction
between the categories Gr and UAlg.

Theorem 4.5 (cf. [10]) The functor XK is left adjoint to the functor XU.

Proof We have to construct a natural bijection

HomXGr
(
(H,G, μ),XU(R, A, ρ)

) ∼= HomXUAlg
(
XK(H,G, μ), (R, A, ρ)

)
,

for any (H,G, μ) ∈ XGr and (R, A, ρ) ∈ XUAlg.
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Given a morphism (α, β) ∈ HomXGr
(
(H,G, μ),XU(R, A, ρ)

)
, consider the cor-

responding morphism of cat1-groups

H � G

α′
��

s ��
t

�� G

β

��
U(R � A)

σ ��
τ

�� U(A).

Since the functor K is left adjoint to the functor U, we have the induced commutative
diagram of algebras

K(H � G)

α′∗
��

K(s) �� K(G)

β∗
��

R � A
σ �� A .

The similar diagram holds with K(s) replaced by K(t) and σ replaced by τ . Since
Ker σ Ker τ + Ker τ Ker σ = 0, we have uniquely defined morphism of cat1-algebras

K(H � G)/X

α′∗
��

K(s) ��
K(t)

�� K(G)

β∗
��

R � A
σ ��
τ

�� A ,

which corresponds to a uniquely defined morphism from HomXUAlg
(
XK(H,G, μ),

(R, A, ρ)
)
. The inverse assignment is similar. �	

Theorem 4.6 Let (H,G, μ) be a crossed module of groups. Then the category of
(H,G, μ)-modules over k is isomorphic to the category of (left) XK(H,G, μ)-
modules.

Proof By using Lemma 4.3 and Theorem 4.5, (H,G, μ)-module structures on a
k-homomorphism ∂ : M → P are in one-to-one correspondence with XK(H,G, μ)-
module structures on it. Due to the equations (8) and (9), it is easy to check that this
correspondence is functorial.
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