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Abstract. We show that the non-abelian tensor product of nilpotent, solvable
and Engel multiplicative Lie rings is nilpotent, solvable and Engel, respectively.
The six term exact sequence in homology of multiplicative Lie rings is obtained.
We also prove a new version of Stallings’ theorem.

1. Introduction

Multiplicative Lie rings were introduced by Ellis in [12] (see also [1]). This con-
cept generalizes that of groups and Lie rings. Ellis used this structure to investigate
an interesting combinatorial problem on group commutators (see also [8]). In [16]
Point and Wantiez studied algebraic structural properties of multiplicative Lie rings.
In particular, they defined nilpotency and solvability of multiplicative Lie rings and
generalized the well-known results for groups and Lie algebras to multiplicative
Lie rings. In [1] we investigated further structural properties of multiplicative Lie
rings. We introduced two homology theories and studied their relationships to the
Eilenberg-MacLane homology of groups and the Chevalley-Eilenberg homology of
Lie rings. In the recent paper [7] we introduced a notion of non-abelian tensor prod-
uct of multiplicative Lie rings and showed that our definition recovers the notions of
non-abelian tensor products of groups defined by Brown-Loday [2] and that of Lie
rings defined by Ellis [11].

In the present manuscript we are motivated by the desire to establish a unified
theory of the non-abelian tensor product and low-dimensional homologies which
simultaneously generalizes that for groups and that for Lie rings. With this aim we
generalize the results of [10,17,19] to multiplicative Lie rings. In particular, we prove
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that the non-abelian tensor product of nilpotent, solvable and Engel multiplicative
Lie rings is nilpotent, solvable and Engel, respectively (see Proposition 3.5 and
Proposition 3.8). Using the technique of the non-abelian tensor product we also
get the exact sequences relating the homology groups of multiplicative Lie rings in
lower dimensions (see Proposition 4.1). As a result we have a combined proof of
the six term homology exact sequences for groups and Lie rings. At the end of
this article we prove a new version of Stallings’ theorem [13, VI. Theorem 9.1] (see
Theorem 5.6).

2. Multiplicative Lie rings, homology and non-abelian tensor
product

For any group G and elements x, y ∈ G, let xy = xyx−1 and [x, y] = xyx−1y−1.
A multiplicative Lie ring consist of a multiplicative (possibly non-abelian) group

g together with a binary function { , } : g× g→ g, which we shall call Lie product,
satisfying the following identities:

{x, x} = 1, (2.1)
{x, yy′} = {x, y} y{x, y′}, (2.2)
{xx′, y} = x{x′, y}{x, y}, (2.3)
{{x, y}, yz}{{y, z}, zx}{{z, x}, xy} = 1, (2.4)
z{x, y} = {zx,z y} (2.5)

for all x, x′, y, y′, z ∈ g.

Examples 2.1.
(a) Any group G can also be given the structure of a multiplicative Lie ring by

defining {x, y} = 1 for all x, y ∈ G. It is called the abelian multiplicative Lie
ring of G and is sometimes denoted by G•.

(b) Any group G is a multiplicative Lie ring under {x, y} = xyx−1y−1 for all
x, y ∈ G. It is denoted by G[ , ].

(c) Any Lie ring g is a multiplicative Lie ring under {x, y} the Lie product for
all x, y ∈ g . Moreover, if g is a multiplicative Lie ring whose underlying
group is abelian then g is an ordinary Lie ring.

(d) Given a ring R with identity, there is defined the Steinberg multiplicative
Lie ring Stmlr(R) by Stmlr(R) = lim−→

n

Stmlrn (R), n ≥ 3, where Stmlrn (R) is the

multiplicative Lie ring defined by generators xij(s), s ∈ R, 1 ≤ i 6= j ≤ n,
subject to the relations

xij(s) + xij(t) = xij(s+ t),

{xij(s), xkl(t)} = 1, if i 6= l, j 6= k,

{xij(s), xkl(t)} = xil(st), if i 6= l, j = k.

A morphism φ : g→ g′ of multiplicative Lie rings is a group homomorphism such
that φ{x, y} = {φx, φy} for all x, y ∈ g. Denote the category of multiplicative Lie
rings by LM.

A subgroup n of a multiplicative Lie ring g will be a subring of g if {x, y} ∈ n for
all x, y ∈ n. It will be an ideal of g if it is a normal subgroup and if {x, y} ∈ n for
all x ∈ n and y ∈ g.
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Let n and h be subgroups of g. The subgroup of g generated by all elements
{x, y}, x ∈ n, y ∈ h is denoted by {n, h}. The subgroup {g, g} is an ideal and is
called the Lie commutator of the multiplicative Lie ring g.

A multiplicative Lie ring g is called perfect if g = {g, g}.

2.2. Homology theories of multiplicative Lie rings. Now we briefly recall the
construction of two homology theories of multiplicative Lie rings studied in [1].

Let Sets denote the category of sets and Gr denote the category of groups. Let
U : LM → Sets and V : LM → Gr be the natural forgetful functors. The functors
U and V admit left adjoints F : Sets→ LM and L : Gr→ LM, respectively (see [1]
for detailed description of F and L). It is well known that every adjoint pair of
functors induces a cotriple (see, for example, [14, Chapter 2]). Let (FU , τ, δ) (resp.
(LV , τ ′, δ′)) denote the cotriple in LM defined by the adjoint pair (F,U) (resp.
(L,V)). Let P and Q denote the projective classes in the category LM induced
by the cotriples (FU , τ, δ) and (LV , τ ′, δ′), respectively. It is easy to see that the
category LM has finite limits. This implies, cf. [14, Chapter 2], the existence of
non-abelian left derived functors LPnAb : LM→ Gr, n ≥ 0, and LQnAb : LM→ Gr,
n ≥ 0, of the abelianization functor Ab : LM → Gr, g 7→ Ab(g) = g

{g,g} , relative to
the projective classes P and Q, respectively. It is known (see again [14, Chapter 2])
that the derived functors relative to the projective class induced by a cotriple are
isomorphic to the derived functors relative to this cotriple.

Let g denote a multiplicative Lie ring and n ≥ 1. Define the n-th strong homology
group of g by

HSmlrn (g) = LPn−1Ab(g).

Define the n-th weak homology group of g by

HWmlr
n (g) = LQn−1Ab(g).

It is easy to check that Ab is a right exact functor. Hence by [14],

HSmlr1 (g) = LP0 Ab(g) ∼= Ab(g) =
g

{g, g}
∼= LQ0 Ab(g) = HWmlr

1 (g).

Moreover, we have the following theorem (see [1, Theorem 3.6]).

Theorem 2.3 ( [1]). For any multiplicative Lie ring g there is a natural isomorphism
of groups

HSmlr2 (g) ∼= HWmlr
2 (g).

In general HSmlrn and HWmlr
n are different for n ≥ 3 (see [1]).

2.4. Action of multiplicative Lie rings. Let g and h be two multiplicative Lie
rings. By an action of g on h we mean an underlying group action of g on h,
given by a group homomorphism Φ: g → Aut h, together with a map g × h → h,
(x, y) 7→ 〈x, y〉, satisfying the following conditions:

〈x, yy′〉 = 〈x, y〉 〈yx, yy′〉,
〈xx′, y〉 = 〈xx′, xy〉 〈x, y〉 ,〈
{x, x′}, x′y

〉 〈y
x, 〈x′, y〉

〉−1 〈xx′, 〈x, y〉−1 〉−1
= 1,〈y′

x, {y, y′}
〉
{yy′, 〈x, y〉} {xy, 〈x, y′〉−1} = 1,

where x, x′ ∈ g, y, y′ ∈ h, xy = Φ(x)(y), xx′ = xx′x−1, yy′ = yy′y−1.
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Now we give natural examples of actions of multiplicative Lie rings.

Examples 2.5.
(a) Let g and h be two ideals in a multiplicative Lie ring. Then the action

of underlying group V(g) on V(h) defined by conjugation together with Lie
multiplication is an action of multiplicative Lie ring g on h.

(b) Let G and H be two groups. Any group action of G on H with trivial angle
bracket gives an action of the multiplicative Lie ring G• on H•.

(c) Let G and H be groups again. Any group action of G on H with angle
bracket defined by 〈g, h〉 = ghh−1, for all g ∈ G and h ∈ H, is an action of
the multiplicative Lie ring G[ , ] on H[ , ].

(d) Any Lie ring L acts on other Lie ringM via trivial group action and Lie ring
action.

Let g and h be two multiplicative Lie rings acting on each other. The actions are
said to be compatible if

xyx′ = xyx−1

x′,
yxy′ = yxy−1

y′,〈
〈y, x〉−1, y′

〉
= {〈x, y〉, y′},

〈
〈x, y〉−1, x′

〉
= {〈y, x〉, x′},

〈x,y〉〈y,x〉y′ = y′, 〈x,y〉〈y,x〉x′ = x′,

for all x, x′ ∈ g and y, y′ ∈ h.

Remark 2.6. The first two conditions say that the underlying groups of g and h
act on each other compatibly. If the underlying groups of g and h are abelian, then
we have a compatible actions of Lie rings in the sense of [11].

Examples 2.7.
(a) Let g and h be two ideals in a multiplicative Lie ring acting on each other

as in Example 2.5(a). Then, the mutual actions of g and h are compatible.
(b) Let G and H be two groups acting on each other compatibly and let G[ , ] and

H[ , ] be the corresponding multiplicative Lie rings acting on each other as in
Example 2.5(c). Then, the mutual actions of G[ , ] on H[ , ] are compatible.

2.8. Definition of non-abelian tensor product. Let g and h be two multiplica-
tive Lie rings acting on each other. Then the non-abelian tensor product g ⊗ h is
the multiplicative Lie ring generated by the symbols x⊗ y (for all x ∈ g and y ∈ h)
subject to the following relations:

x⊗ (yy′) = (x⊗ y)(yx⊗ yy′), (2.6)
(xx′)⊗ y = (xx′ ⊗ xy)(x⊗ y), (2.7)

({x, x′} ⊗ x′y)(yx⊗ 〈x′, y〉)−1(xx′ ⊗ 〈x, y〉−1)−1 = 1, (2.8)

(y
′
x⊗ {y, y′})(〈y, x〉−1 ⊗ yy′)−1(〈y′, x〉 ⊗ xy)−1 = 1, (2.9)

{x⊗ y, x′ ⊗ y′} = 〈y, x〉−1 ⊗ 〈x′, y′〉 , (2.10)

for all x, x′ ∈ g, y, y′ ∈ h.
The following two propositions proved in [7] show that our definition of non-

abelian tensor product of multiplicative Lie rings generalizes that of groups [2] and
Lie rings [11].
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Proposition 2.9. Let G and H be groups acting on each other compatibly. Then
there is a natural isomorphism of multiplicative Lie rings

G[ , ] ⊗H[ , ]
∼=
(
G⊗H

)
[ , ]
,

where the symbol ⊗ on the right side denotes the non-abelian tensor product of
groups.

Proposition 2.10. Let g and h be Lie rings acting on each other by Lie action.
Then there is an isomorphism of Lie rings

g ⊗ h ∼= g⊗̃h .

where ⊗̃ denotes the non-abelian tensor product of Lie rings defined by Ellis.

Let g and h be two ideals in a multiplicative Lie ring acting on each other as in
Example 2.5(a). Then, the non-abelian exterior product of g and h is defined by

g ∧ h = g⊗ h/{ ideal generated by x⊗ x, x ∈ g ∩ h}.
There is a well-defined homomorphism g ∧ h → {g, h}, x ∧ y 7→ {x, y}. We denote
this homomorphism by θg,h.

Given an extension of multiplicative Lie rings 1→ n→ g→ h→ 1, we have the
following exact sequence of multiplicative Lie rings:

g ∧ n→ g ∧ g→ h ∧ h→ 1. (2.11)

We will use the following theorem proved in [7].

Theorem 2.11. Let g be a multiplicative Lie ring. Then there is a natural isomor-
phism of groups

HSmlr2 (g) ∼= Ker
(
g ∧ g

θg,g−−→ {g, g}
)
.

3. Non-abelian tensor product of nilpotent, solvable and Engel
multiplicative Lie rings

In this section we generalize the results of [17, 19] to multiplicative Lie rings. In
particular, we show that if the actions are compatible, then the non-abelian tensor
product of nilpotent, solvable and Engel multiplicative Lie rings is nilpotent, solvable
and Engel, respectively.

Let g be a multiplicative Lie ring. The descending central series of g is defined
by

Γ1(g) ⊇ Γ2(g) ⊇ Γ3(g) ⊇ · · · ,
where Γ1(g) = g and Γi+1(g) = {Γi(g), g}. We say that g is nilpotent, if Γi(g) = 1
for some i ≥ 1.

The derived series of g is defined by

Γ(1)(g) ⊇ Γ(2)(g) ⊇ Γ(3)(g) ⊇ · · · ,
where Γ(1)(g) = g and Γ(i+1)(g) = {Γ(i)(g),Γ(i)(g)}. We say that g is solvable, if
Γ(i)(g) = 1 for some i ≥ 1.

An extension of multiplicative Lie rings 1→ n→ g→ h→ 1 is said to be central,
if n is contained in the center of g, i.e, {n, g} = 1. We also call it a central extension
of h.
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Remark 3.1. The definition immediately implies that a central extension of a nilpo-
tent (solvable) multiplicative Lie ring is nilpotent (solvable). It is also clear that
every subring of a nilpotent (solvable) multiplicative Lie ring is nilpotent (solvable).

Lemma 3.2. Let g and h be two multiplicative Lie rings acting on each other. If
the actions of the underlying groups are compatible, then

〈x, y〉〈g, h〉〈x, y〉−1 = 〈[x,y]g, [x,y]h〉, 〈y, x〉〈h, g〉〈y, x〉−1 = 〈[y,x]h, [y,x]g〉,

for all x, g ∈ g and y, h ∈ h.

Proof. Since both equalities are essentially the same, we will check only the first
one. For all x, x′ ∈ g and y, y′ ∈ h, we have:

〈xx′, yy′〉 = 〈xx′, xyxy′〉〈x, yy′〉 = 〈xx′, xy〉〈xyxx′, xyxy′〉〈x, y〉〈yx, yy′〉
= 〈xx′, xy〉〈xyx′, xyy′〉〈x, y〉〈yx, yy′〉.

On the other hand,

〈xx′, yy′〉 = 〈xx′, y〉〈yxyx′, yy′〉 = 〈xx′, xy〉〈x, y〉〈yxyx′, yxyy′〉〈yx, yy′〉
= 〈xx′, xy〉〈x, y〉〈yxx′, yxy′〉〈yx, yy′〉.

Thus,

〈x, y〉〈yxx′, yxy′〉〈x, y〉−1 = 〈xyx′, xyy′〉.

Set g = yxx′ and h = yxy′. Then, we get the desired result. �

Lemma 3.3. Let g and h be two multiplicative Lie rings acting on each other com-
patibly. Then,

{
x⊗ y,

n∏
i=1

(xi ⊗ yi)εi
}

= 〈y, x〉−1 ⊗
n∏
i=1

〈xi, yi〉εi ,

where x, x1, . . . , xn ∈ g, y, y1, . . . , yn ∈ h, and εi = 1 or εi = −1 for all i =
1, 2, . . . , n.

Proof. We will show this identity by induction with respect to n. If n = 1 and ε1 = 1,
then it is true. If n = 1 and ε1 = −1, then taking into account the compatibility of
actions we will have:

{x⊗ y, (x1 ⊗ y1)−1} = (x1⊗y1)−1{x⊗ y, x1 ⊗ y1}−1

= {[x1,y1]−1

x⊗ [x1,y1]−1

y, [x1,y1]−1

x1 ⊗ [x1,y1]−1

y1}−1

=
(
〈[y1,x1]y, [y1,x1]x〉−1 ⊗ 〈[x1,y1]−1

x1,
[x1,y1]−1

y1〉
)−1

=
(〈y1,x1〉〈y, x〉−1 ⊗ 〈x1,y1〉−1〈x1, y1〉

)−1

=
(〈x1,y1〉−1

〈y, x〉−1 ⊗ 〈x1,y1〉−1〈x1, y1〉
)−1

= 〈y, x〉−1 ⊗ 〈x1, y1〉−1.
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Now, suppose that the lemma is true for n− 1. Then, using the previous lemma we
will have:

{x⊗ y,
n∏
i=1

(xi ⊗ yi)εi} = {x⊗ y, (x1 ⊗ y1)ε1}(x1⊗y1)ε1{x⊗ y,
n∏
i=2

(xi ⊗ yi)εi}

= {x⊗ y, (x1 ⊗ y1)ε1}{[x1,y1]ε1x⊗ [x1,y1]ε1y,

n∏
i=2

([x1,y1]ε1
xi ⊗ [x1,y1]ε1yi

)εi}
(by the induction hypothesis)

=
(
〈y, x〉−1 ⊗ 〈x1, y1〉ε1

) (
〈[x1,y1]ε1y, [x1,y1]ε1x〉−1 ⊗

n∏
i=2

〈[x1,y1]ε1xi,
[x1,y1]ε1yi〉εi

)
=
(
〈y, x〉−1 ⊗ 〈x1, y1〉ε1

) (
〈[y1,x1]−ε1y, [y1,x1]−ε1x〉−1 ⊗

n∏
i=2

〈[x1,y1]ε1xi,
[x1,y1]ε1yi〉εi

)
=
(
〈y, x〉−1 ⊗ 〈x1, y1〉ε1

) (〈y1,x1〉−ε1 〈y, x〉−1 ⊗
n∏
i=2

〈x1,y1〉ε1 〈xi, yi〉εi
)

=
(
〈y, x〉−1 ⊗ 〈x1, y1〉ε1

) (〈x1,y1〉ε1 〈y, x〉−1 ⊗ 〈x1,y1〉ε1
n∏
i=2

〈xi, yi〉εi
)

= 〈y, x〉−1 ⊗
n∏
i=1

〈xi, yi〉εi . �

�

Lemma 3.4. Let g and h be two multiplicative Lie rings acting on each other com-
patibly and φ : g⊗h→ h be a map defined by x⊗ y 7→ 〈x, y〉, for x ∈ g, y ∈ h. Then
φ : g⊗ h→ h is a well-defined homomorphism of multiplicative Lie rings.

Proof. We have to show the following identities:

φ
(
x⊗ (yy′)

)
= φ(x⊗ y) φ(yx⊗ yy′),

φ
(
(xx′)⊗ y

)
= φ(xx′ ⊗ xy) φ(x⊗ y),

φ({x, x′} ⊗ x′y) φ
(
yx⊗ 〈x′, y〉

)−1
φ
(
xx′ ⊗ 〈x, y〉−1 )−1

= 1,

φ(y
′
x⊗ {y, y′}) φ(〈y, x〉−1 ⊗ yy′)−1 φ(〈y′, x〉 ⊗ xy)−1 = 1,

φ({x⊗ y, x′ ⊗ y′}) = φ(〈y, x〉−1 ⊗ 〈x′, y′〉).
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The first three identities are true even without compatibility conditions. We will
check the last two identities.

φ(y
′
x⊗ {y, y′}) φ(〈y, x〉−1 ⊗ yy′)−1 φ(〈y′, x〉 ⊗ xy)−1

= 〈y′x, {y, y′}〉
〈
〈y, x〉−1 , yy′

〉−1 〈 〈y′, x〉 , xy〉−1

= 〈y′x, {y, y′}〉 {〈x, y〉 , yy′}−1
〈
〈y′, x〉 , xy

〉−1

= 〈y′x, {y, y′}〉 {yy′, 〈x, y〉}
〈
〈y′, x〉−1

, 〈y
′,x〉xy

〉
= 〈y′x, {y, y′}〉 {yy′, 〈x, y〉} {〈x, y′〉 , 〈y′,x〉xy}

= 〈y′x, {y, y′}〉 {yy′, 〈x, y〉} {〈x, y′〉−1
, 〈x,y

′〉〈y′,x〉xy}−1

= 〈y′x, {y, y′}〉 {yy′, 〈x, y〉} {xy, 〈x, y′〉−1} = 1.

φ({x⊗ y, x′ ⊗ y′}) = {〈x, y〉, 〈x′, y′〉}
=
〈
〈y, x〉−1, 〈x′, y′〉

〉
= φ(〈y, x〉−1 ⊗ 〈x′, y′〉).

�

Proposition 3.5. Let g and h be two multiplicative Lie rings acting on each other
compatibly. If h is nilpotent (solvable), then g⊗ h is also nilpotent (solvable).

Proof. We have a short exact sequence of multiplicative Lie rings

1→ Ker φ→ g⊗ h→ φ(g⊗ h)→ 1,

where φ : g ⊗ h → h is a homomorphism of multiplicative Lie rings defined as in
Lemma 3.4. If h is a nilpotent (solvable) multiplicative Lie ring, then so is φ(g⊗ h).
Therefore, it suffices to show that Ker φ is contained in the center of g ⊗ h, i.e.
{ω, ω′} = 1, for each ω ∈ g⊗ h and ω′ ∈ Ker φ. Clearly, it is enough to consider the
case ω = x⊗ y, for each x ∈ g and y ∈ h. Let (x1⊗ y1)ε1(x2⊗ y2)ε2 · · · (xn⊗ yn)εn ∈
Ker φ, where x1, . . . , xn ∈ g, y1, . . . , yn ∈ h and ε1, . . . , εn ∈ {1,−1}. By Lemma 3.3
we have: {

x⊗ y,
n∏
i=1

(xi ⊗ yi)εi
}

= 〈y, x〉−1 ⊗
n∏
i=1

〈xi, yi〉εi

= 〈y, x〉−1 ⊗ φ
( n∏
i=1

〈xi, yi〉εi
)

= 〈y, x〉−1 ⊗ 1 = 1.

�

Corollary 3.6 ( [19]). Let G and H be two groups acting on each other compatibly.
If H is nilpotent (solvable), then G⊗H is also nilpotent (solvable).

Proof. This follows from Proposition 3.5 and Proposition 2.9. �

Corollary 3.7 ( [17]). Let g and h be two Lie rings acting on each other compatibly.
If h is nilpotent (solvable), then g ⊗ h is also nilpotent (solvable).

Proof. This follows from Proposition 3.5 and Proposition 2.10. �

Let g be a multiplicative Lie ring. For each x, y ∈ g, set {x,1 y} = {x, y} and
{x,n+1 y} = {{x,n y}, y} for n ≥ 1. We say that g is an Engel multiplicative Lie
ring, if for each x, y ∈ g there exists n = n(x, y) such that {x,n y} = 1. Clearly,
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every subring of an Engel multiplicative Lie ring is Engel. Moreover, it is easy to
see that every central extension of an Engel multiplicative Lie ring is Engel.

Proposition 3.8. Let g and h be two multiplicative Lie rings acting on each other
compatibly. If h is an Engel multiplicative Lie ring, then g⊗ h is also Engel.

Proof. As in Proposition 3.5 we have a short exact sequence of multiplicative Lie
rings

1→ Ker φ→ g⊗ h→ φ(g⊗ h)→ 1,

where φ : g ⊗ h → h is a homomorphism of multiplicative Lie rings defined as in
Lemma 3.4. This is a central extension of φ(g ⊗ h) which itself is a subring of an
Engel multiplicative Lie ring h. Therefore, g⊗ h is Engel. �

This proposition immediately implies the following results.

Corollary 3.9. Let G and H be two groups acting on each other compatibly. If H
is an Engel group, then G⊗H is also Engel.

Corollary 3.10. Let g and h be two Lie rings acting on each other compatibly. If
h is an Engel Lie ring, then g ⊗ h is also Engel.

4. Exact sequences in homology

In this section we generalize the well-know five term exact sequence in homology
of groups [13, Chapter 6] to multiplicative Lie rings.

Proposition 4.1. Let 1 → n → g → h → 1 be an extension of multiplicative Lie
rings. Then, we have the following exact sequence of groups:

Ker
(
θn,g : n ∧ g→ n

)
→ HSmlr2 (g)→ HSmlr2 (h)→ n/{n, g} → HSmlr1 (g)

→ HSmlr1 (h)→ 1,

where θn,g is defined as in Section 2.

Proof. By (2.11) we have the following commutative diagram with exact rows:

n ∧ g //

θn,g

��

g ∧ g //

θg,g

��

h ∧ h //

θh,h

��

1

1 // n // g // h // 1.

Now the snake lemma and Theorem 2.11 imply the proposition. �

Remark 4.2.
(i) Let 1 → R → G → H → 1 be an extension of groups. Suppose that

R[ , ], G[ , ] and H[ , ] are multiplicative Lie rings defined as in Example 2.1(b). By [1,
Proposition 3.9] HSmlr2 (G[ , ]) and HSmlr2 (H[ , ]) are isomorphic to the Eilenberg-
MacLane homologies H2(G) and H2(H), respectively. Moreover, by Proposition 2.9
(R∧G)[ , ]

∼= R[ , ]⊗G[ , ]. Thus, Proposition 4.1 yields the well-known six term exact
sequence in homology of groups.

(ii) Let 1 → n → g → h → 1 be an extension of Lie rings. By definition the
weak homologies of a Lie ring are isomorphic to the Chevalley-Eilenberg homologies
of the same ring (see [1]). Hence, by Theorem 2.3 HSmlr2 (g) and HSmlr2 (h) are
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isomorphic to the second Chevalley-Eilenberg homologies of g and h, respectively.
Thus, Proposition 4.1 yields the six term exact sequence in homology of Lie rings.

Proposition 4.3. Let 1 → n → g → h → 1 be an extension of multiplicative Lie
rings with n being perfect. Then, we have the following exact sequence of homology
groups:

HSmlr2 (n)→ HSmlr2 (g)→ HSmlr2 (h)→ 1.

Proof. First we will prove that
Im
(
n ∧ g→ g ∧ g

)
= Im

(
n ∧ n→ g ∧ g

)
. (4.1)

It is enough to show that n ∧ g ∈ Im
(
n ∧ n → g ∧ g

)
for each n ∈ n and g ∈

g. Since n is perfect, every element n in n can be written as a finite product
{x1, x

′
1}{x2, x

′
2} · · · {xt, x′t}, where xi, x′i ∈ n for each i ∈ {1, . . . , t}. Therefore, by

(2.7) it suffices to show that {x, x′} ∧ g ∈ Im
(
n ∧ n→ g ∧ g

)
for each x, x′ ∈ n and

g ∈ g. By (2.8) we have:

{x, x′} ∧ g = (xx′ ∧ {x′−1

g, x})(x′−1gx′x ∧ {x′, x′−1

g}) ∈ Im
(
n ∧ n→ g ∧ g

)
.

Using (4.1) we can modify the diagram in Proposition 4.1 as follows:

n ∧ n //

θn,n

��

g ∧ g //

θg,g

��

h ∧ h //

θh,h

��

1

1 // n // g // h // 1.

The snake lemma and Theorem 2.11 finish the proposition. �

Corollary 4.4. Let 1 → n → g → h → 1 be a central extension of multiplicative
Lie rings with g being perfect. Then we have the following exact sequence of groups:

1→ HSmlr2 (g)→ HSmlr2 (h)→ n→ 1.

Proof. By Proposition 4.1 it is enough to prove that n∧ g = 1. Since g is perfect, it
suffices to show that n ∧ {g, g′} = 1 for each n ∈ n and g, g′ ∈ g. By (2.9) we have:

n ∧ {g, g′} =
(
{g′, g′−1

n} ∧ g′−1ng′g
) (
{g′−1

n, g} ∧ gg′
)

= 1,

because n is contained in the center of g. �

Let R be a unital associative algebra over Z. Denote by gln(R), n ≥ 2, the Lie
ring of n×n matrices with entries in R and denote by sln(R), n ≥ 2, the Lie subring
of gln(R) generated by all strictly upper and lower triangular matrices. Let [R,R]
be an additive subgroup of R generated by ab − ba for all a, b ∈ R. There is a
homomorphism of Lie rings tr : gln(R) → R/[R,R] (here R/[R,R] is a Lie ring
with trivial Lie bracket) given by α 7→ tr(α)+[R,R], where tr(α) denotes the trace
of a matrix α ∈ gln(R), n ≥ 2. If n ≥ 3, then sln(R) is a perfect Lie ring. Moreover,
we have the following extension of Lie rings:

0→ sln(R)→ gln(R)
tr−→ R/[R,R]→ 0.

Corollary 4.5. Let R be an associative algebra over Z. Then we have the following
exact sequence of groups

HC1(R)→ H2

(
gln(R)

)
→ R

[R,R]
∧ R

[R,R]
→ 1, n ≥ 5,
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where HC1(R) denotes the first cyclic homology group of R and H2

(
gln(R)

)
denotes

the second Chevalley-Eilenberg homology of gln(R).

Proof. We know that HSmlr2 (gln(R)) ∼= H2(gln(R)) (see [1]). Therefore, by Propo-
sition 4.3 we have the following exact sequence:

H2

(
sln(R)

)
→ H2

(
gln(R)

)
→ H2

(
R/[R,R]

)
→ 1, n ≥ 3.

Since R/[R,R] has the trivial Lie bracket, H2

(
R/[R,R]

)
= R

[R,R]
∧ R

[R,R]
. On the

other hand, by [15] H2

(
sln(R)

)
= HC1(R) for n ≥ 5. �

An extension of multiplicative Lie rings 1 → r → f → g → 1 is said to be a free
presentation of g, if f is a free multiplicative Lie ring over a set. In [7] we have posed
the following question:

Question. Let g be a multiplicative Lie ring and 1 → r → f → g → 1 be a free
presentation of g. Is there an isomorphism between HSmlr3 (g) and Ker θr,f?

We do not know the answer to this question yet. In [7] we proved the following:

Proposition 4.6. Let g be a multiplicative Lie ring and 1 → r → f → g → 1 be a
free presentation of g. Suppose that for any free presentation 1 → r′ → f′ → f → 1
of the free multiplicative Lie ring f, Ker θr′,f′ = 1. Then, there is an isomorphism
between HSmlr3 (g) and Ker θr,f.

Proposition 4.6 says that if the answer to the aforementioned question is positive
for free multiplicative Lie rings, then it will be the same for arbitrary multiplicative
Lie rings. Based on the hypothesis in Proposition 4.6 we can prove the eight term
exact sequence in the homology of multiplicative Lie rings.

Proposition 4.7. Let g be a multiplicative Lie ring and 1 → r → f → g → 1 be a
free presentation of g. Suppose that for any free presentation 1 → r′ → f′ → f → 1
of f, Ker θr′,f′ = 1. Then, for any extension of multiplicative Lie rings 1→ n→ g→
h→ 1, we have the following exact sequence of groups:

HSmlr3 (g)→ HSmlr3 (h)→ Ker
(
θn,g : n ∧ g→ n

)
→ HSmlr2 (g)→ HSmlr2 (h)

→ n/{n, g} → HSmlr1 (g)→ HSmlr1 (h)→ 1.

Proof. Let s be an ideal of f such that f/s = h. By Proposition 4.6 we have:

HSmlr3 (g) ∼= Ker θr,f, HSmlr3 (h) ∼= Ker θs,f. (4.2)
The extensions 1→ r→ f→ g→ 1 and 1→ r→ s→ n→ 1 imply the following

exact sequence:
s⊗ r× r⊗ f→ s⊗ f→ n⊗ g→ 1.

Using this sequence we get the following exact sequence:
r ∧ f→ s ∧ f→ n ∧ g→ 1.

Thus, we have the following commutative diagram with exact rows:

r ∧ f //

θr,f

��

s ∧ f //

θs,f

��

n ∧ g //

θn,g

��

1

1 // r // s // n // 1.
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The snake lemma and (4.2) imply the following exact sequence:

HSmlr3 (g)→ HSmlr3 (h)→ Ker
(
θn,g : n ∧ g→ n

)
→ r/{r, f} → s/{s, f}.

It is easy to see that

Im
(
Ker

(
θn,g : n ∧ g→ n

)
→ r/{r, f}

)
⊆ r ∩ {f, f}
{r, f}

.

Therefore, we have an exact sequence of groups:

HSmlr3 (g)→ HSmlr3 (h)→ Ker
(
θn,g : n ∧ g→ n

)
→ r ∩ {f, f}

{r, f}
→ s ∩ {f, f}

{s, f}
.

Using the Hopf formula [1] we get an exact sequence of groups:

HSmlr3 (g)→ HSmlr3 (h)→ Ker
(
θn,g : n ∧ g→ n

)
→ HSmlr2 (g)→ HSmlr2 (h).

The rest of the proof follows from Proposition 4.1. �

Proposition 4.8. Let g be a multiplicative Lie ring and 1 → r → f → g → 1 be
an extension with f being a free multiplicative Lie ring over a group. Suppose that
for any extension 1 → r′ → f′ → f → 1 of f, where f′ is a free multiplicative Lie
ring over a group, Ker θr′,f′ = 1. Then, for any extension of multiplicative Lie rings
1→ n→ g→ h→ 1, we have the following exact sequence of groups:

HWmlr
3 (g)→ HWmlr

3 (h)→ Ker
(
θn,g : n ∧ g→ n

)
→ HWmlr

2 (g)→ HWmlr
2 (h)

→ r/{r, g} → HWmlr
1 (g)→ HWmlr

1 (h)→ 1.

Proof. We have an analogue of Proposition 4.6 for the third weak homology group
of a multiplicative Lie ring (see [7]). Therefore, the proof of Proposition 4.8 can be
carried out as that of Proposition 4.7. �

In the next theorem we will use our method to reprove the eight term exact
sequence in the homology of Lie algebras which is implicitly given in [11].

Theorem 4.9. Let k be a commutative ring with identity and 1→ n → g → h → 1
be an extension of Lie algebras over k. Then we have the following exact sequence
of groups:

H3(g)→ H3(h)→ Ker
(
θn,g : n ∧ g → n

)
→ H2(g)→ H2(h)

→ n/[n , g ]→ H1(g)→ H1(h)→ 1,

where Hi denotes the i-th Chevalley-Eilenberg homology for i = 1, 2, 3.

Proof. Let Lie denote the category of Lie algebras over k. Let U : Lie→ Sets be the
natural forgetful functor. The functor U admits a left adjoint functor F : Sets→ Lie.
We know that the Chevalley-Eilenberg homology of a Lie algebra g is isomorphic
to the left derived functor of the abelianization functor Ab, Ab(g) =

g
[g ,g ]

, Hn(g) ∼=
LP
n−1Ab(g), n ≥ 1, where P is a projective class defined by the adjoint pair (F,U).

The method used in the proof of Proposition 4.7 shows that it suffices to prove
Ker θr ,f ′ = 1, for all extension of Lie algebras 1 → r → f ′

p−→ f → 1 with free Lie
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algebras f and f ′. Let µ : r ∧ f ′ → f ′∧ f ′ be a natural homomorphism. We have the
following commutative diagram:

r ∧ f ′
µ //

θr ,f ′

��

f ′ ∧ f ′

θf ′,f ′

��
r // f ′.

Since f ′ is a free Lie algebra, Ker θf ′,f ′ = 1. Therefore, it is enough to show that
Ker µ = 1. Since f is a free Lie algebra, there is a homomorphism of Lie algebras
i : f → f ′ such that pi = 1f . Now [11, Proposition 13] implies that µ is injective. �

5. A new version of Stallings’ theorem

Given a multiplicative Lie ring g, let Γn(g) (resp. Γ(n)(g)), n ≥ 1, denote the
lower central series (resp. the derived series) of g defined in Section 3. Using
Proposition 4.1 we are able to prove Stallings’ theorem (see [13, VI. Theorem 9.1]
or [18]) and Dwyer’s theorem (see [9, Theorem 1.1]) in the multiplicative Lie ring
framework.

Theorem 5.1. Let φ : g → g′ be a homomorphism of multiplicative Lie rings.
If the induced homomorphism φ∗ : HS

mlr
1 (g) → HSmlr1 (g′) is an isomorphism and

φ∗ : HS
mlr
2 (g)→ HSmlr2 (g′) is an epimorphism, then φ induces isomorphisms φ∗ : g/Γn(g)→

g′/Γn(g′), for each n ≥ 1. Consequently, if g and g′ are nilpotent, then φ is an iso-
morphism.

Proof. The proof follows [13, VI.Theorem 9.1] mutatis mutandis. �

Given a multiplicative Lie ring g, let Φk(g), k ≥ 2, denote the kernel of the natural
map HSmlr2 (g)→ HSmlr2 (g/Γk−1(g)).

Theorem 5.2. Let φ : g→ g′ be a homomorphism of multiplicative Lie rings which
induces an isomorphism φ∗ : HS

mlr
1 (g)→ HSmlr1 (g′). Then the following three con-

ditions are equivalent:
(i) φ induces an epimorphism HSmlr2 (g)/Φk(g)→ HSmlr2 (g′)/Φk(g

′).
(ii) φ induces an isomorphism g/Γk(g)→ g′/Γk(g

′).
(iii) φ induces an isomorphism HSmlr2 (g)/Φk(g) → HSmlr2 (g′)/Φk(g

′) and an in-
jection HSmlr2 (g)/Φk+1(g)→ HSmlr2 (g′)/Φk+1(g′).

Proof. The proof follows [9, Theorem 1.1] mutatis mutandis. �

We do not have such a nice relationship between the derived series and homology.
For instance, if Dk is the dihedral group of order 2k, then the natural projection
Dk → Z/2Z satisfies the hypothesis of Theorem 5.1 for each odd number k ≥ 3.
But if n ≥ 3, we do not have an isomorphism between Dk/Γ

(n)(Dk) and Z/2Z.
Various analogous of Stallings’ theorem and Dwyer’s theorem showing the rela-

tionships between the derived series and homology are given in [3–6]. In this section
our aim is to show that if φ satisfies the hypothesis of Theorem 5.1, then φ induces
an isomorphism g/

(
{Ker φ, g}Γ(n)(g)

)
→ g′/Γ(n)(g′) for all n ≥ 1. This version of

“Stallings’ theorem” differs from those of [3–6] and we refer it as the new version of
Stallings’ theorem.
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Lemma 5.3. Let 1 → r → f
α−→ g → 1 and 1 → n → g

β−→ q → 1 be extensions of
multiplicative Lie rings. Then, there is an exact sequence:

r ∩ {f, f}
{r, r}

→ s ∩ {f, f}
{s, s}

→ n

{n, n}
→ g

{g, g}
→ q

{q, q}
→ 1,

where s = Ker(β ◦ α).

Proof. We have the following exact sequence:

1→ n ∩ {g, g}
{n, n}

→ n

{n, n}
→ g

{g, g}
→ q

{q, q}
→ 1. (5.1)

Since s = α−1(n) and r = Ker
(
α : s→ n

)
, the following sequence is also exact:

r ∩ {f, f}
{r, r}

→ s ∩ {f, f}
{s, s}

→ n ∩ {g, g}
{n, n}

→ 1. (5.2)

By (5.1) and (5.2) we get the required results. �

Lemma 5.3 immediately implies the following results:

Corollary 5.4. Let 1 → r → f
α−→ g → 1 and 1 → n → g

β−→ q → 1 be extensions
of multiplicative Lie rings. Suppose that s = Ker(β ◦ α) and that s is an ideal of
s ∩ {f, f}. Then, we have the following exact sequence:

r ∩ {f, f}
{r, r}

→ s ∩ {f, f}
s{s, s}

→ n

α(s){n, n}
→ g

{g, g}
→ q

{q, q}
→ 1.

Corollary 5.5. Let 1→ r→ f
α−→ g→ 1 and 1→ n→ g

β−→ q→ 1 be extensions of
multiplicative Lie rings. Suppose that r is an ideal of r ∩ {f, f}. Then, we have the
following exact sequence:

r ∩ {f, f}
r{r, r}

→ s ∩ {f, f}
r{s, s}

→ n

{n, n}
→ g

{g, g}
→ q

{q, q}
→ 1,

where s = Ker(β ◦ α).

Now we are ready to prove the new version of Stallings’ theorem.

Theorem 5.6. Let φ : g→ g′ be a homomorphism of multiplicative Lie rings. Sup-
pose that HSmlr1 (φ) is an isomorphism and that HSmlr2 (φ) is an epimorphism. Then

(i) φ induces an isomorphism
g

{Ker φ, g}Γ(i)(g)

∼=−→ g′

Γ(i)(g′)
, i ≥ 1;

(ii) if both g and g′ are solvable multiplicative Lie rings, then φ induces an iso-
morphism

g

{Ker φ, g}
∼=−→ g′.

Moreover, {Ker φ, g} = {{Ker φ, g}, g} = {{{Ker φ, g}, g}, g} = · · · .

Proof.
(i) We will proceed by the induction with respect to i. If i = 1, then the propo-

sition is true. Assume that it is true for i. Let 1 → r → f
α−→ g → 1 be a free

presentation of g. Set n = {Ker φ, g}Γ(i)(g), r′ = Ker(φ ◦ α) and s = Ker(β ◦ α),
where β is defined as the natural projection g→ g/n. By the assumption we have an
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isomorphism g/
(
{Ker φ, g}Γ(i)(g)

) ∼=−→ g′/Γ(i)(g′) induced by φ. Therefore, r′ ⊆ s.
Consider the following commutative diagram:

r∩{f,f}
{r,r}

γ1

��

// s∩{f,f}
{r′,f}{s,s}

γ2

��

// n
α({r′,f}){n,n}

γ3

��

// HSmlr1 (g)

γ4

��

// HSmlr1

(
g
n

)
γ5
��

r′∩{f,f}
{r′,f}

// s∩{f,f}
{r′,f}{s,s}

// Γ(i)(g′)

{Γ(i)(g′),Γ(i)(g′)}
// HSmlr1 (g′) // HSmlr1

(
g′

Γ(i)(g′)

)
,

where γ1, . . . , γ5 are defined in a natural way. By Corollary 5.4 and 5.5, the upper
and lower rows of this diagram are exact. By the Hopf formula we have:

HSmlr2 (g) =
r ∩ {f, f}
{r, f}

, HSmlr2 (g′) =
r′ ∩ {f, f}
{r′, f}

.

Therefore, γ1 is an epimorphism. Moreover, since γ2, γ4 and γ5 are isomorphisms, the
above diagram implies that γ3 is also an isomorphism. But α({r′, f}) = {α(r′), α(f)} =
{Ker φ, g}. Thus, we get that

n

α({r′, f}){n, n}
=

{Ker φ, g}Γ(i)(g)

{Ker φ, g} {Γ(i)(g),Γ(i)(g)}
,

and φ induces an isomorphism
{Ker φ, g}Γ(i)(g)

{Ker φ, g} {Γ(i)(g),Γ(i)(g)}
∼=−−→
α3

Γ(i)(g′)

{Γ(i)(g′),Γ(i)(g′)}
.

Now, the following commutative diagram completes the proof:

1 // {Ker φ,g}Γ(i)(g)

{Ker φ,g}Γ(i+1)(g)

∼= α3

��

// g
{Ker φ,g}Γ(i+1)(g)

��

// g
{Ker φ,g}Γ(i)(g)

∼=
��

// 1

1 // Γ(i)(g′)

Γ(i+1)(g′)
// g′

Γ(i+1)(g′)
// g′

Γ(i)(g′)
// 1.

(ii) Using (i) we obtain an isomorphism g/{Ker φ, g}
∼=−→ g′ induced by φ. Let

φ1 : g → g/{Ker φ, g} be the natural projection. Then HSmlr1 (φ1) is an isomor-
phism and HSmlr2 (φ1) is an epimorphism. Therefore, φ1 induces an isomorphism
g/{Ker φ1, g}

∼=−→ g/{Ker φ, g}. This implies that {Ker φ, g} = {Ker φ1, g} = {{Ker φ, g}, g}.
Similarly using the natural projection φ2 : g→ g/{{Ker φ, g}, g} one can prove that
{{Ker φ, g}, g} = {{{Ker φ, g}, g}, g}, and so on. �

In the next corollary H1 and H2 denote the first and second Eilenberg-MacLane
homology functors, respectively.

Corollary 5.7. Let φ : G→ G′ be a homomorphism of groups. Suppose that H1(φ)
is an isomorphism and that H2(φ) is an epimorphism. Then

(i) φ induces an isomorphism
G

[Ker φ,G] Γ(i)(G)

∼=−→ G′

Γ(i)(G′)
, i ≥ 1;

(ii) if both G and G′ are solvable groups, then φ induces an isomorphism
G

[Ker φ,G]

∼=−→ G′.
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Moreover, [Ker φ,G] = [[Ker φ,G], G] = [[[Ker φ,G], G], G] = · · · .

Proof. This follows from Theorem 5.6 and [1, Proposition 3.9]. �

In the next corollary H1 and H2 denote the first and second Chevalley-Eilenberg
homology functors, respectively.

Corollary 5.8. Let φ : g → g ′ be a homomorphism of Lie rings. Suppose that H1(φ)
is an isomorphism and that H2(φ) is an epimorphism. Then

(i) φ induces an isomorphism

g
[Ker φ, g ] Γ(i)(g)

∼=−→
g ′

Γ(i)(g ′)
, i ≥ 1;

(ii) if both g and g ′ are solvable Lie rings, then φ induces an isomorphism
g

[Ker φ, g ]

∼=−→ g ′.

Moreover, [Ker φ, g ] = [[Ker φ, g ], g ] = [[[Ker φ, g ], g ], g ] = · · · .

Proof. This follows from Theorem 5.6 because H2(g) ∼= HSmlr2 (g) (see [1]). �
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