HV. INASSARIDZE, T. KANDELAKI AND R. MEYER

LOCALISATION AND COLOCALISATION OF TRIANGULATED CATEGORIES AND EQUIVARIANT KK-THEORY

This article is a short review of the results of papers [2] and [3]. Given a thick subcategory of a triangulated category, we define a localisation and a colocalisation as kinds of left Kan extensions. We construct a natural long exact sequence that involves a homological functor and its localisation and colocalisation functors with respect to a thick subcategory [2]. Given a set of prime numbers S, we localize equivariant bivariant Kasparov KK-theory at S and compare this localisation with Kasparov KK-theory by an exact sequence. We study the properties of the resulting variants of Kasparov KK-theory and consequences [3].

1. Left Kan Extension and Localisation and Colocalisation of Functors

The main notions in [2] and [3] are the localisation and colocalisation of functors. In this section, we interpret them as a left Kan extensions. Namely, let $\alpha: A \to B$ and $\beta: A \to C$ be functors. The *right localisation* of the functor α along the functor β is $\mathbb{R}\alpha = \kappa(\alpha) \cdot \beta$, where the functor $\kappa(\alpha): C \to B$ is the left Kan extension of α along β . Now, let $\gamma: X \to Y$ and $\delta: Y \to Z$ be functors, too. The *right colocalisation* of the functor δ along the functor γ is the left Kan extension of the composition functor $\delta\gamma$ along the functor γ .

Let \mathcal{T} be a triangulated category, \mathcal{E} a thick subcategory. Let $\varepsilon \colon \mathcal{E} \hookrightarrow \mathcal{T}$ and $\chi \colon \mathcal{T} \to \mathcal{T}/\mathcal{E}$ be the canonical triangulated functors, where \mathcal{T}/\mathcal{E} is the Verdier quotient.

The cone of a morphism $f: A \to B$ in \mathcal{T} is the object C in an exact triangle $A \xrightarrow{f} B \to C \to A[1]$. A morphism f in \mathcal{T} is an \mathcal{E} -weak equivalence if its cone belongs to \mathcal{E} . Let we_{\mathcal{E}} be the category of \mathcal{E} -weak equivalences. For a fixed object $B \in \in \mathcal{T}$, we consider the category $B \downarrow we_{\mathcal{E}}$ whose objects are arrows $B \to C$ in we_{\mathcal{E}}.

²⁰¹⁰ Mathematics Subject Classification: 18E30, 19K99, 19K35, 19D55.

 $Key\ words\ and\ phrases.$ Triangulated category, localisation, derived functor, KK-theory.

¹¹⁹

Let \mathcal{C} be an Abelian category and $F: \mathcal{T} \to \mathcal{C}$ be a functor. Denote by $\mathbb{R}F$ and $\mathbb{R}^{\perp}F$ the *right localisation* and *colocalisation* of F at \mathcal{E} , respectively, where localisation and colocalisation are considered along χ and ε , respectively. We get the following interpretation:

$$\mathbb{R}F(B) \simeq \lim_{(s \colon B \to C) \in \in B \downarrow we_{\mathcal{E}}} F(C).$$

Let $\mathcal{E} \downarrow B$ be the category, whose objects are arrows $f: E \to B$ with $E \in \in \mathcal{E}$. The *right colocalisation* at \mathcal{E} is

$$\mathbb{R}^{\perp}F(B) = \lim_{(s \colon C \to B) \in \in \mathcal{E} \downarrow B} F(C).$$

2. The Properties of Localisation and Colocalisation

The above-given definition of localisation and colocalisation does not use the triangulated category structure. However, if \mathcal{T} is a triangulated category, \mathcal{E} a thick subcategory, and $F: \mathcal{T} \to \mathfrak{Ab}$ a homological functor, then the right localisation $\mathbb{R}F: \mathcal{T} \to \mathfrak{Ab}$ and the right colocalisation $\mathbb{R}^{\perp}F: \mathcal{T} \to \mathfrak{Ab}$ are homological [2].

Let $F: \mathcal{T} \to \mathfrak{Ab}$ be a homological functor. The following assertions are equivalent:

- (1) the natural transformation $F \Rightarrow \mathbb{R}F$ is invertible;
- (2) $F(E) \cong 0$ for all $E \in \mathcal{E}$;
- (3) F(s) is invertible for all $s \in we_{\mathcal{E}}$;
- (4) F factors through a homological functor $\mathcal{T}/\mathcal{E} \to \mathfrak{Ab}$.

Furthermore, $\mathbb{R}F$ always satisfies these equivalent conditions.

A homological functor with the above equivalent properties is called *local*. Condition (4) means that local homological functors $\mathcal{T} \to \mathfrak{Ab}$ are equivalent to homological functors $\mathcal{T}/\mathcal{E} \to \mathfrak{Ab}$. The localisation $\mathbb{R}F$ is the universal local homological functor on \mathcal{T} equipped with a natural transformation $F \Rightarrow \mathbb{R}F$: if G is any local homological functor on \mathcal{T} , then there is a natural bijection between natural transformations $F \Rightarrow G$ and natural transformations $\mathbb{R}F \Rightarrow G$. This universal property characterizes $\mathbb{R}F$ uniquely up to natural isomorphism [2].

We call a homological functor $F: \mathcal{T} \to \mathfrak{Ab}$ colocal if the natural transformation $\mathbb{R}^{\perp}F \to F$ is invertible. Let $F: \mathcal{E} \to \mathfrak{Ab}$ be a homological functor. Then there is a unique colocal homological functor $\overline{F}: \mathcal{T} \to \mathfrak{Ab}$ that extends F. Thus, colocal homological functors $\mathcal{T} \to \mathfrak{Ab}$ are essentially equivalent to homological functors $\mathcal{E} \to \mathfrak{Ab}$. Furthermore, $\mathbb{R}^{\perp}G$ is colocal for any homological functor $G: \mathcal{T} \to \mathfrak{Ab}$. The natural transformation $\mathbb{R}^{\perp}G \Rightarrow G$ is universal among natural transformations from colocal functors to G.

Theorem 2.1. Let \mathcal{T} be a triangulated category and \mathcal{E} a thick subcategory. Let $F: \mathcal{T} \to \mathfrak{Ab}$ be a homological functor to the category of Abelian groups. Then there is a natural exact sequence

$$\cdots \to \mathbb{R}^{\perp} F_1(B) \to F_1(B) \to \mathbb{R} F_1(B) \to \mathbb{R}^{\perp} F_0(B) \to F_0(B) \to \mathbb{R} F_0(B) \to \cdots$$

120

This is the main exact sequence promised in the introduction. This is Theorem 4.2, the main result in [2]. In addition to the filtered categories $B \downarrow we_{\mathcal{E}}$ and $\mathcal{E} \downarrow B$, to relate the localisation and colocalisation of \mathcal{T} at \mathcal{E} , we introduce a third filtered category $\triangle_{\mathcal{E}} B$ that combines $B \downarrow we_{\mathcal{E}}$ and $\mathcal{E} \downarrow B$ for an object B of \mathcal{T} . Objects of $\triangle_{\mathcal{E}} B$ are exact triangles of the form

$$E \to B \xrightarrow{s} C \to E[1]$$

with $E \in \mathcal{E}$ or, equivalently, $s \in we_{\mathcal{E}}$; arrows in $\triangle_{\mathcal{E}} B$ are morphisms of triangles of the form

There are obvious forgetful functors from $\triangle_{\mathcal{E}} B$ to $B \downarrow we_{\mathcal{E}}$ and $\mathcal{E} \downarrow B$ that extract the map $B \to C$ or the map $E \to B$, respectively. Since $s \in we_{\mathcal{E}}$ if and only if $E \in \mathcal{E}$, any object of $B \downarrow we_{\mathcal{E}}$ or $\mathcal{E} \downarrow B$ is in the range of this forgetful functor [2].

3. Central Localisation and Colocalisation

Let R be a commutative unital ring and let S be a multiplicatively closed subset of R. Let $S^{-1}R$ denote the localisation of R at S. This is a unital ring equipped with a natural unital ring homomorphism $i_S \colon R \to S^{-1}R$. Let \mathcal{T} be an R-linear triangulated category, that is, each morphism space in \mathcal{T} is an R-module and composition of morphisms is R-linear. Let $S^{-1}\mathcal{T}$ be an $S^{-1}R$ -linear additive category with morphism spaces

$$S^{-1}\mathcal{T}(A,B) = \mathcal{T}(A,B) \otimes_R S^{-1}R$$

and the obvious composition. The natural map $i_S \colon R \to S^{-1}R$ induces an *R*-linear functor $\mathcal{T} \to S^{-1}\mathcal{T}$.

An object A of \mathcal{T} is called S-finite if $s \cdot \mathrm{id}_A = 0$ for some $s \in S$.

The category $S^{-1}\mathcal{T}$ together with the functor $\mathcal{T} \to S^{-1}\mathcal{T}$ is the localisation of \mathcal{T} at the thick subcategory \mathcal{N}_S of finite objects. Let $F: \mathcal{T} \to \mathfrak{Ab}$ be a homological functor. The functor

$$S^{-1}F: \mathcal{T} \to \mathfrak{Ab}, \qquad S^{-1}F(A) = F(A) \otimes_R S^{-1}R.$$

is the localisation of F with respect to the thick subcategory of S-finite objects [3].

The groups $\mathcal{T}(A, B; S^{-1}R/R)$ behave like the morphism spaces in a triangulated category, except that they lack unit morphisms. If $F: \mathcal{T} \to \mathfrak{Ab}$ is a homological functor, then the map $F \to S^{-1}F$ embeds in an exact sequence

$$\cdots \to F_1(A) \to S^{-1}F_1(A) \to F_1(A; S^{-1}R/R)$$
$$\to F_0(A) \to S^{-1}F_0(A) \to F_0(A; S^{-1}R/R)$$
$$\to F_{-1}(A) \to S^{-1}F_{-1}(A) \to \cdots \quad (3.1)$$

with $F_{n+1}(A; S^{-1}R/R) = \mathbb{R}_n^{\perp} F(A)$ in the notation of [3].

The definition in [2] is not useful to actually compute $\mathcal{T}(A, B; S^{-1}R/R)$. To address this problem, recall that

$$S^{-1}R/R \cong \lim x^{-1}R/R = \lim R/(x),$$

where $(x) = x \cdot R \cong R$ is the principal ideal generated by x. Hence we expect that $\mathcal{T}(A, B; S^{-1}R/R)$ is a colimit of theories $\mathcal{T}(A, B; s)$ "with finite coefficients." Namely, for an object A of \mathcal{T} and a homological functor $F: \mathcal{T} \to \mathfrak{Ab}$, we have $\operatorname{Tor}_n^R(F_*(A); S^{-1}R/R) = 0$ for all $n \geq 2$, and there is a natural group extension

$$\operatorname{Tor}_{0}^{R}(F_{0}(A); S^{-1}R/R) \to F_{0}(A; S^{-1}R/R) \twoheadrightarrow \operatorname{Tor}_{1}^{R}(F_{-1}(A); S^{-1}R/R).$$

which is a direct limit, when $s \in S$, of

$$\operatorname{coker}(s:F_0(A)\to F_0(A)) \rightarrowtail F_0(A;s) \twoheadrightarrow \operatorname{ker}(s:F_{-1}(A)\to F_{-1}(A)).$$
 (3.2)

4. Application to Kasparov KK^G-Theory

4.1. **Rational KK**^G-theory. Now we apply the general theory developed above to equivariant Kasparov KK^G-theory, viewed as a triangulated category. We only consider central localisations where R is the ring \mathbb{Z} of integers. Finer information may be obtained by considering the larger ring Rep(G) instead, but we leave this to future investigation.

Let us first consider the rational KK^G -theory. Here $S = \mathbb{Z} \setminus \{0\}$ and $S^{-1}\mathbb{Z} = \mathbb{Q}$. Following the definitions above, we let

$$\mathrm{KK}_{n}^{G}(A,B;\mathbb{Q}) = \mathrm{KK}_{n}^{G}(A,B) \otimes \mathbb{Q}, \qquad (4.1)$$

where A and B are G-C^{*}-algebras.

This differs from the definition in Exercise 23.15.6 of [1], where rational KK^G -theory for complex C^{*}-algebras is defined as $\operatorname{KK}^G(A, B \otimes D_{\mathbb{Q}})$ for an C^{*}-algebra $D_{\mathbb{Q}}$ in the bootstrap class with $\operatorname{K}_0(D_{\mathbb{Q}}) = \mathbb{Q}$ and $\operatorname{K}_1(D_{\mathbb{Q}}) = 0$. The definition of $\operatorname{KK}^G(A, B; \mathbb{Q})$ above yields again a triangulated category. This is crucial to apply methods from the stable homotopy theory and homological algebra.

For A in the bootstrap class, the Universal Coefficient Theorem yields

 $\operatorname{KK}_0(A, B \otimes D_{\mathbb{Q}}) \cong \operatorname{Hom}(\operatorname{K}_*(A), \operatorname{K}_*(B) \otimes \mathbb{Q}) \cong \operatorname{Hom}_{\mathbb{Q}}(\operatorname{K}_*(A) \otimes \mathbb{Q}, \operatorname{K}_*(B) \otimes \mathbb{Q})$ because Abelian groups of the form $\operatorname{K}_*(B) \otimes \mathbb{Q}$ are injective. Hence the bootstrap class with these morphisms is equivalent to the category of countable \mathbb{Q} -vector spaces. This category is triangulated and Abelian at the same

122

time. And we may also view it as the localisation of \mathcal{KK} at the class of C^{*}-algebras with vanishing rational K-theory $K_*(_) \otimes \mathbb{Q}$. But this observation depends on an explicit computation of the category.

4.2. Localisation at multiplicatively closed subsets of \mathbb{Z} . If S is any multiplicatively closed subset of \mathbb{Z} , then we define S-rational KK^{G} -theory

$$\mathrm{KK}^G_*(A, B; S^{-1}\mathbb{Z}) = S^{-1}\mathrm{KK}^G_*(A, B) = \mathrm{KK}^G_*(A, B) \otimes S^{-1}\mathbb{Z}.$$

By our general theory, these groups form the morphism spaces of an $S^{-1}\mathbb{Z}$ linear triangulated category. It is the localisation of \mathcal{KK}^G at the class of S-finite G-C^{*}-algebras. Here A is S-finite if and only if there is $s \in S$ with $s \cdot \mathrm{id}_A = 0$.

The colocalisation also produces an *S*-torsion KK^G -theory $\text{KK}^G_*(A, B; S^{-1}\mathbb{Z}/\mathbb{Z})$ that fits to a natural long exact sequence

$$\cdots \to \operatorname{KK}_{n+1}^G(A, B) \to \operatorname{KK}_{n+1}^G(A, B; S^{-1}\mathbb{Z}) \to \operatorname{KK}_{n+1}^G(A, B; S^{-1}\mathbb{Z}/\mathbb{Z}) \to \operatorname{KK}_n^G(A, B) \to \operatorname{KK}_n^G(A, B; S^{-1}\mathbb{Z}) \to \operatorname{KK}_n^G(A, B; S^{-1}\mathbb{Z}/\mathbb{Z}) \to \cdots .$$
(4.2)

This includes the rational KK^{G} -theory

$$\mathrm{KK}_n^G(A,B;\mathbb{Q}) = \mathrm{KK}_n^G(A,B) \otimes \mathbb{Q}$$

and a torsion theory $\mathrm{KK}^G_*(A, B; \mathbb{Q}/\mathbb{Z})$ as special cases.

The S-rational and S-torsion KK^{G} -theories inherit basic properties like homotopy invariance, C^{*}-stability, excision and Bott periodicity from KK^{G} . All this is contained in the statement that they are bifunctors on \mathcal{KK}^{G} , homological in the first and cohomological in the second variable. Furthermore, the maps in (4.2) are natural transformations. Since the S-rational KK^{G} -theory is again a triangulated category, we get an associative product

$$\mathrm{KK}_n^G(A,B;S^{-1}\mathbb{Z})\otimes_{S^{-1}\mathbb{Z}}\mathrm{KK}_m^G(B,C;S^{-1}\mathbb{Z})\to\mathrm{KK}_{n+m}^G(A,C;S^{-1}\mathbb{Z}).$$

4.3. Real versus complex Kasparov KK-theory. To illustrate the usefulness of localisation, we reformulate some well-known results about the relationship between real and complex Kasparov KK-theory and K-theory. Roughly speaking, these two theories become equivalent when we localize at 2, that is, work with $\mathbb{Z}[\frac{1}{2}]$ -coefficients. The results in this subsection are due to Max Karoubi and Thomas Schick [4, 5].

Thomas Schick related the KK-theories of two real C^{*}-algebras A and B and their complexifications $A_{\mathbb{C}}$ and $B_{\mathbb{C}}$ by an exact sequence

$$\cdots \to \operatorname{KKO}_{n-1}^{\Gamma}(A,B) \xrightarrow{\chi} \operatorname{KKO}_{n}^{\Gamma}(A,B) \xrightarrow{c} \operatorname{KK}_{n}^{\Gamma}(A_{\mathbb{C}},B_{\mathbb{C}})$$
$$\xrightarrow{\delta} \operatorname{KKO}_{n-2}^{\Gamma}(A,B) \xrightarrow{\chi} \operatorname{KKO}_{n-1}^{\Gamma}(A,B) \xrightarrow{c} \operatorname{KK}_{n-1}^{\Gamma}(A_{\mathbb{C}},B_{\mathbb{C}}) \to \cdots .$$
(4.3)

In this paper, Γ is assumed to be a discrete group, but the same arguments work if Γ is replaced by a locally compact group or even groupoid; A and Bare separable real Γ -C^{*}-algebras; χ is given by Kasparov product with the generator of $\text{KKO}_1^{\Gamma}(\mathbb{R}, \mathbb{R}) = \mathbb{Z}/2$; *c* is the complexification functor; and δ is the composition of the inverse of the complex Bott periodicity isomorphism with the functor that forgets the complex structure. More generally, the same argument yields:

Theorem 4.1 ([3]). Let G be a second countable locally compact group, let A and B be separable real G-C^{*}-algebras. There is a natural isomorphism

$$\mathrm{KK}_{n}^{\Gamma}(A_{\mathbb{C}}, B_{\mathbb{C}}; H) \cong \mathrm{KKO}_{n}^{\Gamma}(A, B; H) \oplus \mathrm{KKO}_{n-2}^{\Gamma}(A, B; H)$$

for the following coefficients:

- (1) $H = S^{-1}\mathbb{Z}$ with $2 \in S$ (localisation);
- (2) $H = \mathbb{Z}/s\mathbb{Z}$ with odd s (finite coefficients);
- (3) $H = S^{-1}\mathbb{Z}/\mathbb{Z}$ if S contains only odd numbers (colocalisation).

Acknowledgement

This research was supported by the Volkswagen Foundation (Georgian–German Non-Commutative Partnership). The third author was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG)) through the Institutional Strategy of the University of Göttingen.

References

- 1. B. Blackadar, K-theory for operator algebras. Second edition. Mathematical Sciences Research Institute Publications, 5. Cambridge University Press, Cambridge, 1998.
- 2. H. Inassaridze, T. Kandelaki and R. Meyer, Localisation and colocalisation of triangulated categories at thick subcategories, (2009-12-10) oai:arXiv.org:0912.2088.
- H. Inassaridze, T. Kandelaki and R. Meyer, Localisation and Colocalisation of KKtheory at sets of primes, (2010-03-01) oai:arXiv.org:1003.0278.
- M. Karoubi, A descent theorem in topological K-theory. K-Theory 24 (2001), No. 2, 109–114.
- T. Schick, Real versus complex K-theory using Kasparov's bivariant KK-theory. Algebr. Geom. Topol. 4 (2004), 333–346.

Authors' addresses:

Hv. Inassaridze and T. Kandelaki

- A. Razmadze Mathemetical Institute
- I. Javakhishvili Tbilisi State University
- 2, University Str., Tbilisi 0186

Georgia

E-mails: inassari@gmail.com tam.kandel@gmail.com

R. Meyer

Mathematisches Institut and Courant Centre "Higher order structures", Georg-August Universität Göttingen Bunsenstraße 3–5, 37073 Göttingen, Germany E-mail: rameyer@uni-math.gwdg.de