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LOCALISATION AND COLOCALISATION OF
TRIANGULATED CATEGORIES AND EQUIVARIANT
KK-THEORY

This article is a short review of the results of papers [2] and [3]. Given a
thick subcategory of a triangulated category, we define a localisation and a
colocalisation as kinds of left Kan extensions. We construct a natural long
exact sequence that involves a homological functor and its localisation and
colocalisation functors with respect to a thick subcategory [2]. Given a set
of prime numbers S, we localize equivariant bivariant Kasparov KK-theory
at S and compare this localisation with Kasparov KK-theory by an exact
sequence. We study the properties of the resulting variants of Kasparov
KK-theory and consequences [3].

1. LEFT KAN EXTENSION AND LOCALISATION AND COLOCALISATION OF
FuNCTORS

The main notions in [2] and [3] are the localisation and colocalisation
of functors. In this section, we interpret them as a left Kan extensions.
Namely, let a: A — B and : A — C be functors. The right localisation
of the functor « along the functor § is Ra = k(«) - 8, where the functor
k(a): C — B is the left Kan extension of a along 3. Now, let v: X — Y
and d: Y — Z be functors, too. The right colocalisation of the functor ¢
along the functor ~ is the left Kan extension of the composition functor J-y
along the functor .

Let 7 be a triangulated category, £ a thick subcategory. Let ¢: £ — T
and x: 7 — 7 /€ be the canonical triangulated functors, where 7 /€ is the
Verdier quotient.

The cone of a morphism f: A — B in 7 is the object C in an exact
triangle A Lo A[l]. A morphism f in 7 is an £-weak equivalence
if its cone belongs to £. Let weg be the category of £-weak equivalences.
For a fixed object B €€ T, we consider the category B | weg whose objects
are arrows B — C' in weg.
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Let C be an Abelian category and F': 7 — C be a functor. Denote by
RF and Rt F the right localisation and colocalisation of F at &, respec-
tively, where localisation and colocalisation are considered along x and e,
respectively. We get the following interpretation:

RF(B) ~ lim F(C).
—
(s: B=C)eeB|weg
Let £ | B be the category, whose objects are arrows f: F — B with
E €€ &£. The right colocalisation at £ is
RLF(B) = lim F(C).
—
(s: C—B)€ee&|B

2. THE PROPERTIES OF LOCALISATION AND COLOCALISATION

The above-given definition of localisation and colocalisation does not
use the triangulated category structure. However, if 7 is a triangulated
category, £ a thick subcategory, and F': 7 — 20b a homological functor, then
the right localisation RF: 7 — 2b and the right colocalisation R+ F: 7 —
20b are homological [2].

Let F': T — 2b be a homological functor. The following assertions are
equivalent:

(1) the natural transformation F = RF is invertible;

(2) F(E) =0 for all E €€ ¢&;

(3) F(s) is invertible for all s € weg;

(4) F factors through a homological functor 7 /€ — 2b.
Furthermore, RF' always satisfies these equivalent conditions.

A homological functor with the above equivalent properties is called lo-
cal. Condition (4) means that local homological functors 7 — 2b are
equivalent to homological functors 7 /€ — 2b. The localisation RF is the
universal local homological functor on 7 equipped with a natural transfor-
mation F' = RF: if G is any local homological functor on 7', then there
is a natural bijection between natural transformations F = G and natu-
ral transformations RF' = (. This universal property characterizes RF
uniquely up to natural isomorphism [2].

We call a homological functor F': 7 — b colocal if the natural transfor-
mation RYF — F is invertible. Let F': £ — 2b be a homological functor.
Then there is a unique colocal homological functor F': 7 — b that ex-
tends F'. Thus, colocal homological functors 7 — 2(b are essentially equiv-
alent to homological functors & — 2b. Furthermore, R*G is colocal for any
homological functor G: 7 — 2b. The natural transformation R*G = G is
universal among natural transformations from colocal functors to G.

Theorem 2.1. Let T be a triangulated category and € a thick subcategory.
Let F': T — 24b be a homological functor to the category of Abelian groups.
Then there is a natural exact sequence

... >Rt F(B)— F\(B)—RF,(B)—»R*Fy(B) — Fy(B) = RFy(B) —- -
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This is the main exact sequence promised in the introduction. This is
Theorem 4.2, the main result in [2]. In addition to the filtered categories
B | weg and £ | B, to relate the localisation and colocalisation of 7 at &,
we introduce a third filtered category AgB that combines B | wee and
£ | B for an object B of 7. Objects of AgB are exact triangles of the form

E—)BiC—)E[l]

with F €€ £ or, equivalently, s € weg; arrows in AgB are morphisms of
triangles of the form

R
E B—> E'[1].

There are obvious forgetful functors from AgB to B | weg and £ | B that
extract the map B — C or the map F — B, respectively. Since s € weg if
and only if F €€ £, any object of B | weg or £ | B is in the range of this
forgetful functor [2].

3. CENTRAL LOCALISATION AND COLOCALISATION

Let R be a commutative unital ring and let S be a multiplicatively closed
subset of R. Let S~'R denote the localisation of R at S. This is a unital
ring equipped with a natural unital ring homomorphism ig: R — S™'R.
Let 7 be an R-linear triangulated category, that is, each morphism space
in 7 is an R-module and composition of morphisms is R-linear. Let S~'7
be an S~!R-linear additive category with morphism spaces

ST'T(A,B)=T(A,B)®r S™'R

and the obvious composition. The natural map ig: R — S~!R induces an
R-linear functor 7 — S~17.

An object A of T is called S-finite if s-id4 = 0 for some s € S.

The category S™!'7 together with the functor 7 — S~!'7 is the locali-
sation of 7" at the thick subcategory Ng of finite objects. Let F': 7 — b
be a homological functor. The functor

STIF: T — Ab, ST'F(A) = F(A)®r ST'R.

is the localisation of F' with respect to the thick subcategory of S-finite
objects [3].

The groups 7 (A, B; S™'R/R) behave like the morphism spaces in a tri-
angulated category, except that they lack unit morphisms.
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If F': T — 2b is a homological functor, then the map F — S~'F embeds
in an exact sequence

- = Fi1(A) = ST'F(A) — Fi(A;ST'R/R)
— Fy(A) — ST Fy(A) — Fo(A; ST'R/R)
—F 1 (A) = S7'F 1 (A) —--- (3.1)

with F,,11(A; ST1R/R) = REF(A) in the notation of [3].
The definition in [2] is not useful to actually compute 7 (A, B; S"'R/R).
To address this problem, recall that

ST'R/R=1lmz"'R/R = lim R/(x),

where (z) = x - R 2 R is the principal ideal generated by x. Hence we
expect that 7 (A, B; ST'R/R) is a colimit of theories 7 (A, B; s) “with finite
coefficients.” Namely, for an object A of 7 and a homological functor
F: T — b, we have Tor’(F,(A); S"'R/R) = 0 for all n > 2, and there is

a natural group extension
Torl(Fy(A); STYR/R) — Fo(A; ST R/R) — Torf(F_1(A); ST'R/R).
which is a direct limit, when s € S, of

coker(s: Fy(A) — Fy(A)) — Fy(A;s) — ker(s: F_1(A) — F_1(A)). (3.2)

4. APPLICATION TO KasparRov KK®-THEORY

4.1. Rational KKG-theory. Now we apply the general theory developed
above to equivariant Kasparov KKG—theory, viewed as a triangulated cate-
gory. We only consider central localisations where R is the ring Z of integers.
Finer information may be obtained by considering the larger ring Rep(G)
instead, but we leave this to future investigation.

Let us first consider the rational KK®-theory. Here S = Z \ {0} and
S~17Z = Q. Following the definitions above, we let

KK(/(A, B;Q) = KK;/(4,B) ® Q, (4.1)

where A and B are G-C*-algebras.

This differs from the definition in Exercise 23.15.6 of [1], where rational
KK-theory for complex C*-algebras is defined as KK (A, B ® Dg) for an
C*-algebra Dg in the bootstrap class with Ko(Dg) = Q and K;(Dg) = 0.
The definition of KK%(A, B; Q) above yields again a triangulated category.
This is crucial to apply methods from the stable homotopy theory and
homological algebra.

For A in the bootstrap class, the Universal Coefficient Theorem yields

KKy (A, B®Dg) = Hom(K.(4), K. (B)®Q) = Homg (K. (4)2Q, K.(B)®Q)
because Abelian groups of the form K, (B)®Q are injective. Hence the boot-

strap class with these morphisms is equivalent to the category of countable
Q-vector spaces. This category is triangulated and Abelian at the same



123

time. And we may also view it as the localisation of ICIC at the class of
C*-algebras with vanishing rational K-theory K, (.) ® Q. But this observa-
tion depends on an explicit computation of the category.

4.2. Localisation at multiplicatively closed subsets of Z. If S is any
multiplicatively closed subset of Z, then we define S-rational KK -theory

KK (A4, B; S7'7) = S7'KK%(4, B) = KKY(A, B) ® S~'Z.

By our general theory, these groups form the morphism spaces of an S~!Z-
linear triangulated category. It is the localisation of KK at the class of
S-finite G-C*-algebras. Here A is S-finite if and only if there is s € S with
S - idA = 0.

The colocalisation also produces an S-torsion KKG-theory KKf(A,B;
S~17/7) that fits to a natural long exact sequence

- = KK (4, B) = KK{, (4, B; 57'2) — KK (A, B; S7'Z/Z)
— KK (A, B) — KK%(A, B; S~'7)
—KKS(A,B;S7'Z)7) — --- . (4.2)
This includes the rational KKG—theory
KK%(4,B;Q) =KK%(4,B)® Q

and a torsion theory KK*G(A, B;Q/Z) as special cases.

The S-rational and S-torsion KK®-theories inherit basic properties like
homotopy invariance, C*-stability, excision and Bott periodicity from KK¢.
All this is contained in the statement that they are bifunctors on KK,
homological in the first and cohomological in the second variable. Further-
more, the maps in (4.2) are natural transformations. Since the S-rational
KKG—theory is again a triangulated category, we get an associative product

KK%(A, B; S7'7Z) ® -1, KKS (B, C; S™'Z) — KK&,, (A, C; S717).

n+m

4.3. Real versus complex Kasparov KK-theory. To illustrate the use-
fulness of localisation, we reformulate some well-known results about the
relationship between real and complex Kasparov KK-theory and K-theory.
Roughly speaking, these two theories become equivalent when we localize
at 2, that is, work with Z[3]-coefficients. The results in this subsection are
due to Max Karoubi and Thomas Schick [4, 5].

Thomas Schick related the KK-theories of two real C*-algebras A and B
and their complexifications A¢ and B¢ by an exact sequence

.. = KKO!' (A, B) 5 KKO! (A, B) % KK (A¢, Be)
2 KKOF_, (A, B) 25 KKOF_, (A, B) S KK'_,(A¢, Be) — -+ . (4.3)

In this paper, I' is assumed to be a discrete group, but the same arguments
work if " is replaced by a locally compact group or even groupoid; A and B
are separable real I'-C*-algebras; x is given by Kasparov product with the
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generator of KKO] (R, R) = Z/2; ¢ is the complexification functor; and § is
the composition of the inverse of the complex Bott periodicity isomorphism
with the functor that forgets the complex structure. More generally, the
same argument yields:

Theorem 4.1 ([3]). Let G be a second countable locally compact group, let
A and B be separable real G-C*-algebras. There is a natural isomorphism

KK (Ac, Be; H) = KKOL (A, B; H) ® KKO,_,(A, B; H)
for the following coefficients:
(1) H = S7'Z with 2 € S (localisation);
(2) H =Z/sZ with odd s (finite coefficients);
(3) H=S7'Z/Z if S contains only odd numbers (colocalisation).
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