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LOCALISATION AND COLOCALISATION OF
TRIANGULATED CATEGORIES AND EQUIVARIANT

KK-THEORY

This article is a short review of the results of papers [2] and [3]. Given a
thick subcategory of a triangulated category, we define a localisation and a
colocalisation as kinds of left Kan extensions. We construct a natural long
exact sequence that involves a homological functor and its localisation and
colocalisation functors with respect to a thick subcategory [2]. Given a set
of prime numbers S, we localize equivariant bivariant Kasparov KK-theory
at S and compare this localisation with Kasparov KK-theory by an exact
sequence. We study the properties of the resulting variants of Kasparov
KK-theory and consequences [3].

1. Left Kan Extension and Localisation and Colocalisation of
Functors

The main notions in [2] and [3] are the localisation and colocalisation
of functors. In this section, we interpret them as a left Kan extensions.
Namely, let α : A → B and β : A → C be functors. The right localisation
of the functor α along the functor β is Rα = κ(α) · β, where the functor
κ(α) : C → B is the left Kan extension of α along β. Now, let γ : X → Y
and δ : Y → Z be functors, too. The right colocalisation of the functor δ
along the functor γ is the left Kan extension of the composition functor δγ
along the functor γ.

Let T be a triangulated category, E a thick subcategory. Let ε : E ↪→ T
and χ : T → T /E be the canonical triangulated functors, where T /E is the
Verdier quotient.

The cone of a morphism f : A → B in T is the object C in an exact
triangle A

f−→ B → C → A[1]. A morphism f in T is an E-weak equivalence
if its cone belongs to E . Let weE be the category of E-weak equivalences.
For a fixed object B ∈∈ T , we consider the category B ↓ weE whose objects
are arrows B → C in weE .
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Let C be an Abelian category and F : T → C be a functor. Denote by
RF and R⊥F the right localisation and colocalisation of F at E , respec-
tively, where localisation and colocalisation are considered along χ and ε,
respectively. We get the following interpretation:

RF (B) ' lim−→
(s : B→C)∈∈B↓weE

F (C).

Let E ↓ B be the category, whose objects are arrows f : E → B with
E ∈∈ E . The right colocalisation at E is

R⊥F (B) = lim−→
(s : C→B)∈∈E↓B

F (C).

2. The Properties of Localisation and Colocalisation

The above-given definition of localisation and colocalisation does not
use the triangulated category structure. However, if T is a triangulated
category, E a thick subcategory, and F : T → Ab a homological functor, then
the right localisation RF : T → Ab and the right colocalisation R⊥F : T →
Ab are homological [2].

Let F : T → Ab be a homological functor. The following assertions are
equivalent:

(1) the natural transformation F ⇒ RF is invertible;
(2) F (E) ∼= 0 for all E ∈∈ E ;
(3) F (s) is invertible for all s ∈ weE ;
(4) F factors through a homological functor T /E → Ab.

Furthermore, RF always satisfies these equivalent conditions.
A homological functor with the above equivalent properties is called lo-

cal. Condition (4) means that local homological functors T → Ab are
equivalent to homological functors T /E → Ab. The localisation RF is the
universal local homological functor on T equipped with a natural transfor-
mation F ⇒ RF : if G is any local homological functor on T , then there
is a natural bijection between natural transformations F ⇒ G and natu-
ral transformations RF ⇒ G. This universal property characterizes RF
uniquely up to natural isomorphism [2].

We call a homological functor F : T → Ab colocal if the natural transfor-
mation R⊥F → F is invertible. Let F : E → Ab be a homological functor.
Then there is a unique colocal homological functor F̄ : T → Ab that ex-
tends F . Thus, colocal homological functors T → Ab are essentially equiv-
alent to homological functors E → Ab. Furthermore, R⊥G is colocal for any
homological functor G : T → Ab. The natural transformation R⊥G ⇒ G is
universal among natural transformations from colocal functors to G.

Theorem 2.1. Let T be a triangulated category and E a thick subcategory.
Let F : T → Ab be a homological functor to the category of Abelian groups.
Then there is a natural exact sequence

· · ·→R⊥F1(B)→F1(B)→RF1(B)→R⊥F0(B)→F0(B)→RF0(B)→· · ·
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This is the main exact sequence promised in the introduction. This is
Theorem 4.2, the main result in [2]. In addition to the filtered categories
B ↓ weE and E ↓ B, to relate the localisation and colocalisation of T at E ,
we introduce a third filtered category 4EB that combines B ↓ weE and
E ↓ B for an object B of T . Objects of 4EB are exact triangles of the form

E → B
s−→ C → E[1]

with E ∈∈ E or, equivalently, s ∈ weE ; arrows in 4EB are morphisms of
triangles of the form

E

²²

// B
s // C //

²²

E[1]

²²
E′ // B

s′ // C ′ // E′[1].

There are obvious forgetful functors from 4EB to B ↓ weE and E ↓ B that
extract the map B → C or the map E → B, respectively. Since s ∈ weE if
and only if E ∈∈ E , any object of B ↓ weE or E ↓ B is in the range of this
forgetful functor [2].

3. Central Localisation and Colocalisation

Let R be a commutative unital ring and let S be a multiplicatively closed
subset of R. Let S−1R denote the localisation of R at S. This is a unital
ring equipped with a natural unital ring homomorphism iS : R → S−1R.
Let T be an R-linear triangulated category, that is, each morphism space
in T is an R-module and composition of morphisms is R-linear. Let S−1T
be an S−1R-linear additive category with morphism spaces

S−1T (A,B) = T (A,B)⊗R S−1R

and the obvious composition. The natural map iS : R → S−1R induces an
R-linear functor T → S−1T .

An object A of T is called S-finite if s · idA = 0 for some s ∈ S.
The category S−1T together with the functor T → S−1T is the locali-

sation of T at the thick subcategory NS of finite objects. Let F : T → Ab
be a homological functor. The functor

S−1F : T → Ab, S−1F (A) = F (A)⊗R S−1R.

is the localisation of F with respect to the thick subcategory of S-finite
objects [3].

The groups T (A,B; S−1R/R) behave like the morphism spaces in a tri-
angulated category, except that they lack unit morphisms.
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If F : T → Ab is a homological functor, then the map F → S−1F embeds
in an exact sequence

· · · → F1(A) → S−1F1(A) → F1(A;S−1R/R)

→ F0(A) → S−1F0(A) → F0(A; S−1R/R)

→ F−1(A) → S−1F−1(A) → · · · (3.1)

with Fn+1(A;S−1R/R) = R⊥n F (A) in the notation of [3].
The definition in [2] is not useful to actually compute T (A,B; S−1R/R).

To address this problem, recall that

S−1R/R ∼= lim−→x−1R/R = lim−→R/(x),

where (x) = x · R ∼= R is the principal ideal generated by x. Hence we
expect that T (A,B; S−1R/R) is a colimit of theories T (A,B; s) “with finite
coefficients.” Namely, for an object A of T and a homological functor
F : T → Ab, we have TorR

n (F∗(A); S−1R/R) = 0 for all n ≥ 2, and there is
a natural group extension

TorR
0 (F0(A); S−1R/R) ½ F0(A; S−1R/R) ³ TorR

1 (F−1(A); S−1R/R).

which is a direct limit, when s ∈ S, of

coker
(
s : F0(A) → F0(A)

)
½ F0(A; s) ³ ker

(
s : F−1(A) → F−1(A)

)
. (3.2)

4. Application to Kasparov KKG-theory

4.1. Rational KKG-theory. Now we apply the general theory developed
above to equivariant Kasparov KKG-theory, viewed as a triangulated cate-
gory. We only consider central localisations where R is the ring Z of integers.
Finer information may be obtained by considering the larger ring Rep(G)
instead, but we leave this to future investigation.

Let us first consider the rational KKG-theory. Here S = Z \ {0} and
S−1Z = Q. Following the definitions above, we let

KKG
n (A,B;Q) = KKG

n (A,B)⊗Q, (4.1)

where A and B are G-C∗-algebras.
This differs from the definition in Exercise 23.15.6 of [1], where rational

KKG-theory for complex C∗-algebras is defined as KKG
n (A,B ⊗DQ) for an

C∗-algebra DQ in the bootstrap class with K0(DQ) = Q and K1(DQ) = 0.
The definition of KKG(A,B;Q) above yields again a triangulated category.
This is crucial to apply methods from the stable homotopy theory and
homological algebra.

For A in the bootstrap class, the Universal Coefficient Theorem yields

KK0(A,B⊗DQ) ∼= Hom(K∗(A), K∗(B)⊗Q) ∼= HomQ(K∗(A)⊗Q,K∗(B)⊗Q)

because Abelian groups of the form K∗(B)⊗Q are injective. Hence the boot-
strap class with these morphisms is equivalent to the category of countable
Q-vector spaces. This category is triangulated and Abelian at the same
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time. And we may also view it as the localisation of KK at the class of
C∗-algebras with vanishing rational K-theory K∗( )⊗Q. But this observa-
tion depends on an explicit computation of the category.

4.2. Localisation at multiplicatively closed subsets of Z. If S is any
multiplicatively closed subset of Z, then we define S-rational KKG-theory

KKG
∗ (A,B; S−1Z) = S−1KKG

∗ (A,B) = KKG
∗ (A,B)⊗ S−1Z.

By our general theory, these groups form the morphism spaces of an S−1Z-
linear triangulated category. It is the localisation of KKG at the class of
S-finite G-C∗-algebras. Here A is S-finite if and only if there is s ∈ S with
s · idA = 0.

The colocalisation also produces an S-torsion KKG-theory KKG
∗ (A, B;

S−1Z/Z) that fits to a natural long exact sequence

· · · → KKG
n+1(A,B) → KKG

n+1(A,B; S−1Z) → KKG
n+1(A,B; S−1Z/Z)

→ KKG
n (A,B) → KKG

n (A,B; S−1Z)

→ KKG
n (A, B; S−1Z/Z) → · · · . (4.2)

This includes the rational KKG-theory

KKG
n (A, B;Q) = KKG

n (A,B)⊗Q
and a torsion theory KKG

∗ (A,B;Q/Z) as special cases.
The S-rational and S-torsion KKG-theories inherit basic properties like

homotopy invariance, C∗-stability, excision and Bott periodicity from KKG.
All this is contained in the statement that they are bifunctors on KKG,
homological in the first and cohomological in the second variable. Further-
more, the maps in (4.2) are natural transformations. Since the S-rational
KKG-theory is again a triangulated category, we get an associative product

KKG
n (A,B; S−1Z)⊗S−1Z KKG

m(B, C;S−1Z) → KKG
n+m(A,C; S−1Z).

4.3. Real versus complex Kasparov KK-theory. To illustrate the use-
fulness of localisation, we reformulate some well-known results about the
relationship between real and complex Kasparov KK-theory and K-theory.
Roughly speaking, these two theories become equivalent when we localize
at 2, that is, work with Z[ 12 ]-coefficients. The results in this subsection are
due to Max Karoubi and Thomas Schick [4, 5].

Thomas Schick related the KK-theories of two real C∗-algebras A and B
and their complexifications AC and BC by an exact sequence

· · · → KKOΓ
n−1(A,B)

χ−→ KKOΓ
n(A, B) c−→ KKΓ

n(AC, BC)
δ−→ KKOΓ

n−2(A,B)
χ−→ KKOΓ

n−1(A,B) c−→ KKΓ
n−1(AC, BC) → · · · . (4.3)

In this paper, Γ is assumed to be a discrete group, but the same arguments
work if Γ is replaced by a locally compact group or even groupoid; A and B
are separable real Γ-C∗-algebras; χ is given by Kasparov product with the
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generator of KKOΓ
1 (R,R) = Z/2; c is the complexification functor; and δ is

the composition of the inverse of the complex Bott periodicity isomorphism
with the functor that forgets the complex structure. More generally, the
same argument yields:

Theorem 4.1 ([3]). Let G be a second countable locally compact group, let
A and B be separable real G-C∗-algebras. There is a natural isomorphism

KKΓ
n(AC, BC; H) ∼= KKOΓ

n(A,B; H)⊕KKOΓ
n−2(A, B;H)

for the following coefficients:
(1) H = S−1Z with 2 ∈ S (localisation);
(2) H = Z/sZ with odd s (finite coefficients);
(3) H = S−1Z/Z if S contains only odd numbers (colocalisation).
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