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Abstract

We provide and study an equivariant theory of group (co)homology of a groupG with coefficients
in aΓ -equivariantG-moduleA, when a separate groupΓ acts onG andA, generalizing the classica
Eilenberg–MacLane (co)homology theory of groups. Relationship with equivariant cohomolo
topological spaces is established and application to algebraicK-theory is given.
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0. Introduction

It is well known that the study of groups with operators has many important applica
in algebra and topology. The category of groups enriched with an action by automorp
of a given group provides a suitable setting for the investigation of an extensive list o
jects with recognized mathematical interest. See, for instance, recent results in equ
stable homotopy theory [6] and articles devoted to equivariant algebraicK-theory [13,29,
24]. The origin of the equivariant investigation in homological algebra, particularly in
tension theory of groups, goes back to the article of Whitehead [36]. It should be note
recently a theory of cohomology of groups with operators was developed [8], motiva
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the graded categorical groups classification problem which was suggested by Frohl
Wall [16]. This problem was solved [7,10] by using the third cohomology of groups
operators introduced in [8]. An equivariant version of the classical Brauer–Hasse–N
result was proved [9] showing that for any Galois finite field extensionF/K on which a
separate group of operatorsΓ is acting, there is an isomorphism of equivariant isom
phism classes of finite dimensional central simpleK-algebras endowed with aΓ -action
and containingF as an equivariant strictly maximal subfield and the second cohomo
of groups with operators defined in [8] of the Galois group of the extension. A homo
theory of groups with operators corresponding to the cohomology theory of groups
operators [8] has been treated in [11].

In [8] it was stated that the second cohomology group of aΓ -groupG with coefficients
in a Γ -equivariantG-moduleA classifies theΓ -equivariant extensions ofG by A. From
this result arises the natural problem about the cohomological characterization of thΓ -
equivariant extensions ofG by A which areΓ -splitting. The solution of this problem (se
Theorem 20) has motivated an attempt to develop a different equivariant (co)hom
theory of groups, which is presented in this paper.

By definition for a Γ -group G its equivariant homology and cohomology grou
HΓ

n (G,−) and Hn
Γ (G,−), are defined as relative TorF

n and ExtnF , n � 0, functors re-
spectively in the category ofΓ -equivariantG-modules (Definition 1). Therefore th
(co)homology theory of groups can be considered as a part of the relative homolog
gebra [12]. We provide equivariant versions of classical homological theorems: (co
and cotriple presentations of the homology and cohomology of groups, Hopf formu
the second integral homology, universal coefficient formulas, universal central exten
cohomological classification of extensions of groups, exact (co)homology sequence
(co)homology of groups and the cup product. Applications in algebraicK-theory (Corol-
lary 24) and the relationship with equivariant cohomology of topological spaces (T
rem 22) are established.

Corollary 24 motivates the following:

Conjecture. There is an isomorphismK3(A) ∼= H
St(Z)
3 (St(A)) for any ringA.

For its proof equivariant versions of relevant classical homotopy theorems will be
ably needed. This is well known whenA is a unital ring [17] and in this case St(Z) acts
trivially on St(A).

Another application will be the construction of an alternative equivariant alge
K-theoryKΓ∗ by usingΓ -equivariant commutators (Section 6). Moreover in the near
ture it is intended to investigated for any ring (not necessarily with unit) the relationsh
higher Quillen’s algebraicK-groups with the equivariant integral homology of the gene
linear group under the action of the Steinberg group of the ring of integers. It is als
tended to establish the relationship of this alternative equivariant algebraicK-theory with
existing equivariant algebraicK-theory and equivariant homotopy theory and to prov
higher Hopf formulae for equivariant integral homology of groups.
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1. Definition and (co)cycle description of the equivariant (co)homology of groups

Before defining the equivariant (co)homology of groups we briefly recall the defin
of the cohomology of groups with operators introduced in [8].

Then-cochains of aΓ -groupG with coefficients in aΓ -equivariantG-moduleA (see
definition below) are the maps

f :
⋃

Gp+1 × Γ q → A, p + q = n − 1,

normalized in the sense thatf (x1, . . . , xp+1, σ1, . . . , σq) = 0 wheneverxi = 1 or σj = 1
for somei = 1, . . . , p + 1 or j = 1, . . . , q, and the coboundary operator is introduced
a natural way. One gets a cochain complex whose homology groups are the cohom
groups of theΓ -groupG. Note that in this theory the zero cohomology group is trivial a
as mentioned above the second cohomology group describes theΓ -equivariant extension
of theΓ -groupG by theG � Γ -moduleA.

Now we will give our definition of the equivariant (co)homology of groups. LeG

be aΓ -group. AΓ -equivariantG-moduleA is a G-module equipped with aΓ -module
structure and both actions ofG andΓ onA satisfy the following condition:

σ
(
xa

) = σ x
(
σ a

)
, x ∈ G, σ ∈ Γ, a ∈ A. (1)

The category ofΓ -equivariantG-modules is equivalent to the category ofG�Γ -modules,
whereG � Γ denotes the semidirect product ofG andΓ (see [8]). LetB andC be two
Γ -equivariantG-modules. Clearly a mapf :B → C is a G � Γ -homomorphism if and
only if it is compatible with the actions ofG andΓ . A G � Γ -module free as aG-module
with basis aΓ -subset will be called a relatively freeG�Γ -module. Denote byP the class
of G�Γ -modules which are retracts of relatively freeG�Γ -modules. The elements ofP
will be called relatively projectiveG�Γ -modules. AG�Γ -homomorphismf :B → C of
G�Γ -modules is aP-epimorphism if it isΓ -splitting, that is there is aΓ -mapγ :C → B

such thatf γ = 1C . The group ringZ(G) is a relatively freeG � Γ -module in a natura
way with the action ofΓ by

σ

(∑
i

migi

)
=

∑
i

mi
σ gi .

Let A be aG � Γ -module. Denote byIG�Γ A the subgroup ofA generated by th
elements(g,σ )a − a = g(σ a) − a, g ∈ G, σ ∈ Γ, a ∈ A, and byAG�Γ the quotient group
of A by IG�Γ A. Then it is easily checked that one has canonical isomorphisms

Z(G) ⊗G�Γ A ∼= AΓ , Z ⊗G�Γ A ∼= AG�Γ , HomG�Γ

(
Z(G),A

) ∼= AΓ .

Clearly if Γ acts trivially onA, thenZ(G) ⊗G�Γ A ∼= HomG�Γ (Z(G),A) ∼= A.
In the category ofG�Γ -modules there are sufficient relatively projective (free)G�Γ -

modules. IfA is aG�Γ -module, take the freeG-moduleF(A) generated byA and define
the action ofΓ onF(A) by

σ
(
g|a|) = σ g

∣∣σ a
∣∣, g ∈ G, σ ∈ Γ, a ∈ A.
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ThenF(A) becomes a relatively freeG � Γ -module with basisA being aΓ -subset of
F(A) and the canonical mapF(A) → A is aP-epimorphism, since it isΓ -splitting by the
map

γ :A → F(A), γ (a) = |a|, a ∈ A.

It is standard to show that one has isomorphisms

Hn

(
P∗(A) ⊗G�Γ B

) ∼= Hn

(
A ⊗G�Γ P∗(B)

)
, n � 0,

whereP∗(A) andP∗(B) areP-projectiveG � Γ -resolutions ofA andB, respectively.
Now we are ready to define the equivariant homologyHΓ∗ (G,A) and cohomology

H ∗
Γ (G,A) of aΓ -groupG with coefficients in aΓ -equivariantG-moduleA.

Definition 1. HΓ
n (G,A) = TorPn (Z,A) andHn

Γ (G,A) = ExtnP (Z,A) for n � 0, whereG
andΓ act trivially onZ.

It is clear thatHΓ
n (G,A) ∼= Hn(G,AΓ ) andHn

Γ (G,A) ∼= Hn(G,AΓ ) for n � 0, if Γ

acts trivially onG and therefore this case is not interesting from the equivariant poi
view.

A short exact sequence ofG � Γ -modules

0→ C1 → C
β−→ C2 → 0 (2)

will be called proper ifβ is Γ -splitting, i.e., there is aΓ -map γ :C2 → C such that
βγ = 1C2.

Let

· · · → Bn → ·· · → B1 → B0 → Z → 0 (3)

be the bar resolution ofZ, whereB0 = Z(G), andBn, n > 0, is the freeZ(G)-module
generated by[g1, g2, . . . , gn], gi ∈ G. Define the action of the groupΓ on the bar reso
lution as follows.Γ acts trivially onZ, the action ofΓ on B0 is already defined and
n > 0 thenσ (g[g1, g2, . . . , gn]) = σ g[σ g1,

σ g2, . . . ,
σ gn] for the action ofΓ on Bn. The

well known contractionγ−1 :Z → B0, γ−1(z) = z1, γn :Bn → Bn+1, γn(g[g1, . . . , gn]) =
[g,g1, . . . , gn], n � 0, is clearly aΓ -map. We deduce that under this action ofΓ the
bar resolution (3) becomes an exact sequence ofG � Γ -modules such that eachBn is a
relatively freeG � Γ -module and the sequences

0→ Ker∂n → Bn → Im ∂n → 0, n > 0

and

0→ Kerε → B0 → Z → 0,

are proper short exact sequences ofG � Γ -modules. Therefore (3) is a relatively fre
G�Γ -resolution ofZ which will be called theΓ -equivariant bar resolution ofZ. It follows
that

HΓ
n (G,A) ∼= Hn(B∗ ⊗G�Γ A), Hn(G,A) ∼= Hn

(
HomG�Γ (B∗,A)

)
, n � 0.
Γ
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These isomorphisms allow us to produce an alternative description by (co)cycles
equivariant (co)homology of groups. The case of the equivariant homology of gro
clear. To this end consider the Abelian groupCn

Γ (G,A) of Γ -mapsf :Gn → A, n > 0,
which will be called the group ofnth Γ -cochains. By using the classical cobord opera
δn :Cn

Γ (G,A) → Cn+1
Γ (G,A), n > 0, one gets a cochain complex

0→ C0
Γ (G,A) → C1

Γ (G,A) → C2
Γ (G,A) → ·· · → Cn

Γ (G,A) → ·· · ,
whereC0

Γ = AΓ , Kerδ1 = DerΓ (G,A) is the group ofΓ -derivations, and the homolog
groups of this complex give theΓ -equivariant cohomology groups ofG with coefficients
in theG � Γ -moduleA.

It is easily checked that any proper short exact sequence (2) ofG � Γ -modules induce
long exact homology and cohomology sequences

· · · → HΓ
n+1(G,C2) → HΓ

n (G,C1) → ·· · → HΓ
2 (G,C2) → HΓ

1 (G,C1)

→ HΓ
1 (G,C) → HΓ

1 (G,C2) → HΓ
0 (G,C1) → HΓ

0 (G,C) → HΓ
0 (G,C2) → 0,

0→ H 0
Γ (G,C1) → H 0

Γ (G,C) → H 0
Γ (G,C2) → H 1

Γ (G,C1) → H 1
Γ (G,C)

→ H 1
Γ (G,C2) → H 2

Γ (G,C1) → ·· · → Hn
Γ (G,C2) → Hn+1

Γ (G,C1) → ·· · .

2. Equivariant (co)homology of groups as cotriple (co)homology

To present the equivariant (co)homology of groups as cotriple (co)homology we
use the free cotriple defined in the categoryGΓ of Γ -groups given in [21,22] to develo
a non-Abelian homology theory of groups. This cotriple corresponds to the triplea
of GΓ overΓ -sets. The resulting cotripleF = (F, τ, δ) is the free cotriple in the catego
of groups endowed with theΓ -action defined as follows. For anyΓ -groupG the action
of Γ on the free groupF(G) is given byσ |g| = |σ g|, g ∈ G, σ ∈ Γ . The cotriple thus
defined essentially differs from the cotriple introduced in [8] for the cotriple interpreta
of the cohomology of groups with operators. LetPF be the projective class induced by t
cotripleF in the categoryGΓ . It is easy to see that a morphismf :G → H of Γ -groups
is aPF -epimorphism if it is surjective andΓ -splitting. Since the categoryGΓ has finite
limits, anyΓ -groupG has aPF -projective resolution(X∗, ∂0

0,G) in the categoryGΓ in
the sense of [34], that isX∗ is an augmented pseudo-simplicialΓ -group which isPF -exact
[34,20] and eachXn, n � 0, belongs to the classPF . Many examples of pseudo-simplici
sets which are not simplicial are given in [25,14,15]. APF -epimorphismf :P → G with
P an object of the classPF will be called a projective presentation of theΓ -groupG. Any
projective presentation ofG induces in a natural way aPF -projective resolutionP∗ → G,
constructed as follows:

· · ·
→
...→ F(L2G)

τL2G−→ L2G

l22−→−→−→
l20

F(L1G)
τL1G−→ L1G

l11−→−→
l10

P
f−→ G,

where(L1G, l10, l11) is the simplicial kernel of the morphismf , (L2G, l20, l21, l22) the sim-
plicial kernel of the pair of morphisms(l1τL G, l1τL G) and if (LnG, ln, . . . , lnn) has been
0 1 1 1 0
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constructed, then(Ln+1G, ln+1
0 , . . . , ln+1

n+1) is the simplicial kernel of the sequence of mo
phisms(ln0τLnG, . . . , lnnτLnG). Simplicial kernels are defined in [34,20]. DenoteP0 = P ,
Pn = F(Ln(G)) and∂n

i = lni τLn(G) for n > 0.
Let T be a functor from the categoryGΓ to the categoryG of groups. Then by defin

ition the left cotriple derived functorsLF
n T (G) are equal toπn(T F∗(G)), n � 0, where

τ :F∗(G) → G is the free cotriple resolution ofG with F0 = F(G), Fn = F(Fn(G)),
n � 1, ∂n

i = F iτFn−i , sn
i = F iδFn−i (see [33]) and the left derived functorsLPF

n T (G)

with respect to the projective classPF are equal toπn(T (X∗)), n � 0 (see [19,20]). If the
functorT is a contravariant functor with values in the category of Abelian groups, on
also its right derived functors.

Proposition 2. The left cotriple derived functors of a functorT :GΓ → G are isomorphic
to its leftPF -derived functors.

Proof. Let (P∗, ∂0
0,G) be the standardPF -resolution ofG. Then it is easy to see that th

resolution is left contractible in the category ofΓ -sets. Thus the augmented pseudos
plicial Γ -groups(Fi(P∗),Fi(∂

0
0),Fi(G)) are left contractible fori � 0 in the category o

Γ -groups (for the categorical definition of left contractibility see [33,20]). On the o
hand the augmented simplicialΓ -groups(F∗(Pj ), τj ,Pj ) are also left contractible fo
j � 0. It follows that the homotopy groupsπn, n > 0, of the pseudosimplicial group
T Fi(P∗) andT F∗(Pj ) for i, j � 0 are trivial and the homotopy groups ofπ0(T Fi(P∗))
and π0(T F∗(Pj )) give the left projective and cotriple derived functors respectively
the functorT . Consider now the bipseudosimplicial groupG∗∗(G) by puttingGpq(G) =
T Fp(Pq(G)) and apply the Quillen spectral sequences [30,19,20] for a bipseudos
cial group. It follows that thenth homotopy groups,n � 0, of T P∗(G) andT F∗(G) are
both isomorphic to thenth homotopy group of the diagonal pseudosimplicial group∆G∗∗.
It remains to apply Theorems 1.2 and 2.1 of [19] showing that the definition of the
projective derived functors are independent of the projective resolution ofG. �

Note that this proposition is known for the left derived functors of functors (right der
functors of contravariant functors) with values in the category of Abelian groups [34]

Let A be a fixedΓ -module andAGΓ the category ofΓ -groups acting onA such that
the condition (1) holds. Consider the following functors from the categoryAGΓ to the
category of Abelian groups:I (−) ⊗G�Γ A and DerΓ (−,A), whereI (G) is the kernel
of the canonical homomorphismε :Z(G) → Z of G � Γ -modules and DerΓ (G,A) is
the group ofΓ -derivations fromG to A consisting of derivationsf :G → A such that
f (σ g) = σ f (g), g ∈ G, σ ∈ Γ [8].

Theorem 3. There are isomorphisms

HΓ
n (G,A) ∼= LF

n−1

(
I (G) ⊗G�Γ A

)
,

Hn
Γ (G,A) ∼= Rn−1

F DerΓ (G,A), n � 2.
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Proof. Apply the functorI (−) to the free cotriple resolutionτ :F∗ → G of theΓ -group
G. One gets an augmented simplicialG � Γ -moduleI (F∗) → I (G). We introduce the
notations:

IFn(G) ∼=
∑

y∈Fn(G)

Z
(
Fn(G)

)
(y − e) = Dn(G),

∑
y∈Fn(G)

Z(G)(y − e) = En(G)

for n � 0, F 0(G) = G.
There are natural homomorphisms

αn :Dn(G) → En(G), n � 1,

induced by the homomorphismτ∂1
0∂2

0 · · · ∂n−2
0 ∂n−1

0 :Fn(G) → G such that we obtain
morphism of augmented simplicialG � Γ -modules(

D∗(G) → I (G)
) → (

E∗(G) → I (G)
)
.

The leftΓ -contractibility of the cotriple resolutionF∗(G) → G implies theΓ -contracti-
bility of the corresponding induced Abelian chain complexes

· · · → Dn(G) → ·· · → D2(G) → D1(G) → I (G) → 0,

· · · → En(G)
εn−→ · · · → E2(G)

ε2−→ E1(G)
ε1−→ I (G) → 0,

whereεn = ∑
i (−1)iεn

i , n � 1. In effect the canonicalΓ -injections{f,fn, n � 1},
f :G → F(G), fn :Fn(G) → Fn+1(G) = (

F
(
Fn(G)

))
, n � 1,

yield the left Γ -contractibility of F∗(G) → G in the category ofΓ -sets (see [33
Lemma 1.2]). Therefore we obtainΓ -homomorphisms

Z(f ) :Z(G) → Z
(
F(G)

)
,

Z(fn) :Z
(
Fn(G)

) → Z
(
Fn+1(G)

)
, n � 1,

of free AbelianΓ -groups induced by{f,fn, n � 1}, where the action ofΓ onZ(F n(G)),
n � 0, F 0(G) = G, is induced by the above defined action ofΓ on Fn(G). The action
of Γ on IFn(G) ∼= ∑

y∈Fn(G) Z(F n(G))(y − e), n � 0, is induced by the action ofΓ on
Z(F n(G)), namely

σ
(
x(y − e)

) = σ x
(
σ y − e

)
, x ∈ Z

(
Fn(G)

)
, y ∈ Fn(G).

TheΓ -homomorphisms{Z(f ),Z(fn), n � 0} induceΓ -homomorphisms

IG → IF0(G), IFn(G) → IFn+1(G), n � 0,

and yield the requiredΓ -contraction inIF∗(G).
Thus each short exact sequence

0→ Kerεn → En(G) → Im εn → 0, n � 1,

is Γ -splitting and it follows that(E∗(G) → I (G)) is a relatively free resolution of th
G � Γ -moduleI (G).
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It is obvious that the homomorphismsαn, n � 1, induce isomorphisms

Dn(G) ⊗Fn(G)�Γ A ∼= En(G) ⊗G�Γ A,

HomFn(G)�Γ

(
Dn(G),A

) ∼= HomG�Γ

(
En(G),A

)
. (4)

Whence we deduce from (4) thatLF
n (I (G) ⊗ A) ∼= TorPn (I (G),A), n � 0. It is easily

checked that the well-known isomorphism

HomFn(G)

(
Dn(G),A

) ∼= Der
(
Fn(G),A

)
is compatible with the action ofΓ , whence its restriction on the subgro
HomFn(G)�Γ (Dn(G),A) gives an isomorphism with DerΓ (Fn(G),A). Thus from (4)
one getsRn

F DerΓ (G,A) ∼= ExtnP (I (G),A), n � 0.
The proper short exact sequence ofG�Γ -modules

0→ I (G) → Z(G) → Z → 0 (5)

yields long exact sequences of the relative derived functors of the functors−⊗G�Γ A and
HomG�Γ (−,A) implying the isomorphisms

HΓ
n+1(G,A) ∼= TorPn

(
I (G),A

)
and

Hn+1
Γ (G,A) ∼= ExtnP

(
I (G),A

)
, n � 1,

which give the required isomorphisms.�
It is clear thatLF

0 (I (G)⊗G�Γ A) ∼= I (G)⊗G�Γ A andR0
F DerΓ (G,A) ∼= DerΓ (G,A).

Definition 4. A Γ -groupG will be calledΓ -free, if it is a free group with basis aΓ -subset.

Corollary 5. If G is a retract of aΓ -free group, thenHΓ
n (G,A) = 0 andHn

Γ (G,A) = 0
for n > 1 and anyG � Γ -moduleA.

Proof. The augmented simplicial groupF∗(G) → G is left contractible [33] implying
the triviality of the homotopy groupsπn(IF∗(G) ⊗G�Γ A) andπn DerΓ (F∗(G),A) for
n � 1. �
Corollary 6. If G andΓ act trivially on Z, thenHΓ

1 (G,Z) ∼= I (G) ⊗G�Γ Z.

Proof. The proof follows immediately from the long exact sequence of the func
TorPn (−,Z) induced by (5), sinceZ(G) ⊗G�Γ Z ∼= Z. �
Proposition 7. The cotriple derived functorsLF

n HΓ
1 (−,A) are isomorphic toHΓ

n+1(−,A),
n > 0.

Proof. The long exact sequence of the functors TorF
n (−,A) for the sequence (5) yield

the exact sequence

0→ HΓ (G,A) → I (G) ⊗G�Γ A → Z(G) ⊗G�Γ A → Z ⊗G�Γ A → 0.
1
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It follows that there is a functorial short exact sequence

0→ HΓ
1 (G,A) → I (G) ⊗G�Γ A → IG�Γ A/IΓ A → 0

inducing a short exact sequence of Abelian simplicial groups

0→ HΓ
1

(
F∗(G),A

) → I
(
F∗(G)

) ⊗G�Γ A → IF∗(G)�Γ A/IΓ A → 0.

It remains to apply the corresponding long exact homotopy sequence and to s
IF∗(G)�Γ A/IΓ A is a constant Abelian simplicial group.�

Denote by[G,G]Γ the subgroup of theΓ -groupG generated by[G,G] and by the ele
ments of the formσ g ·g−1, g ∈ G, σ ∈ Γ . This subgroup will be called theΓ -commutator
subgroup ofG. It is obvious that[G,G]Γ is a normalΓ -subgroup ofG andΓ acts triv-
ially on the Abelian groupG/[G,G]Γ . If H is a normalΓ -subgroup ofG, we denote by
[G,H ]Γ the subgroup ofG generated by the elementsxσ yx−1y−1, wherex ∈ G, y ∈ H ,
σ ∈ Γ .

Let B be an Abelian group on whichΓ acts trivially andf :G → B a homomorphism
of Γ -groups. Thenf factorizes uniquely throughG/[G,G]Γ . Consider the subgroup o
G generated by the elements of the formxσ yx−1y−1, x, y ∈ G, σ ∈ Γ . It is easily seen
that this subgroup coincides with[G,G]Γ . The elementsxσ yx−1y−1 = [x, y]σ will be
calledΓ -commutators ofG, the groupG/[G,G]Γ theΓ -abelianizationGab

Γ of G and the
corresponding functorG �→ Gab

Γ theΓ -abelianization functor.

Proposition 8. There is a functorial isomorphism

I (G) ⊗G�Γ A ∼= G/[G,G]Γ ⊗ A,

whereG andΓ act trivially onA.

Proof. It is enough to show thatI (G) ⊗G�Γ Z ∼= G/[G,G]Γ . This isomorphism is given
by (g − e)⊗n �→ n[g]. Its converse is defined by[g] �→ (g − e)⊗1. We have only to show
the correctness of the converse map.

One has(
xσ yx−1y−1 − e

) ⊗ 1

= (
xσ yx−1y−1 − x + x − e

) ⊗ 1

= x
(
σ yx−1y−1 − e

) ⊗ 1+ (x − e) ⊗ 1

= (
σ yx−1y−1 − e

) ⊗ 1+ (x − e) ⊗ 1

= (
σ yx−1y−1 − σ y + σ y − e

) ⊗ 1+ (x − e) ⊗ 1

= σ y
(
x−1y−1 − e

) ⊗ 1+ (
σ y − e

) ⊗ 1+ (x − e) ⊗ 1

= (
x−1y−1 − e

) ⊗ 1+ (y − e) ⊗ 1+ (x − e) ⊗ 1

= (
x−1y−1 − x−1 + x−1 − e

) ⊗ 1+ (y − e) ⊗ 1+ (x − e) ⊗ 1

= x−1(y−1 − e
) ⊗ 1+ (

x−1 − e
) ⊗ 1+ (y − e) ⊗ 1+ (x − e) ⊗ 1

= (
y−1 − e

) ⊗ 1+ (
x−1 − e

) ⊗ 1+ (y − e) ⊗ 1+ (x − e) ⊗ 1.



H. Inassaridze / Topology and its Applications 153 (2005) 66–89 75

-

itrary
ere its

and
y
f

But for any elementx ∈ G the following equalities hold:

0= 0⊗ 1= (
xx−1 − e

) ⊗ 1= (x − e) ⊗ 1+ (
x−1 − e

) ⊗ 1.

It follows that under the afore defined converse map anyΓ -commutator becomes 0 show
ing its correctness. �

The isomorphism of Proposition 8 holds only for trivial actions onA and it is natural
in the sense that in this case it is functorial and in fact uniquely defined. For an arb
G-module in the classical case there exists another form of this isomorphism, wh
right side is replaced by the non-Abelian tensor product of the groupsG andA.

3. The equivariant integral homology

Denote theΓ -equivariant integral homology groupsHΓ
n (G,Z) = HΓ

n (G), n � 0, the
groupsG andΓ acting trivially onZ.

Corollary 9. There is a functorial isomorphism

HΓ
1 (G) ∼= G/[G,G]Γ .

Proof. The proof follows from Corollary 6 and Proposition 8.�
Note that the group[G,G]Γ /[G,G] shows the difference between the classical

theΓ -equivariant abelianization functors. We denote byT Γ the functor assigning to an
Γ -groupG the Abelian group[G,G]Γ /[G,G]. We also denote byΓ · G the subgroup o
G generated by the elementsσ g · g−1, g ∈ G, σ ∈ Γ . One has a natural homomorphism

βn :Hn(G) → HΓ
n (G), n � 0,

induced by the morphism of Abelian simplicial groups(
I
(
F∗(G)

) ⊗G Z
) → I

(
F∗(G)

) ⊗G�Γ Z.

Theorem 10.

(i) There is an isomorphism

LF
n

(
Gab

Γ

) ∼= HΓ
n+1(G), n � 0.

(ii) There are a functorial short exact sequence

0→ Γ · G/[G,G] ∩ Γ · G → H1(G) → HΓ
1 (G) → 0,

and a long exact homology sequence

· · · → HΓ
n+1(G) → LF

n−1T Γ (G) → Hn(G) → HΓ
n (G)

→ LF
n−2T Γ (G) → ·· · → HΓ

3 (G) → LF
1 T Γ (G) → H2(G)

→ HΓ
2 (G) → LF

0 T Γ (G) → H1(G) → HΓ
1 (G) → 0.
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Proof. (i) The proof follows from Proposition 7 and Corollary 9.
(ii) The commutative diagram

H1(G)
β1

∼=

HΓ
1 (G)

∼=

G/[G,G] G/[G,G]Γ
shows that Kerβ1 is isomorphic to[G,G]Γ /[G,G] and it is clear that[G,G]Γ = [G,G] ·
(T Γ (G)). By applying the short exact sequence (ii) to the cotriple resolutionF∗(G) → G,
we obtain a short exact sequence of simplicial Abelian groups

0→ T Γ
(
F∗(G)

) → H1
(
F∗(G)

) → HΓ
1

(
F∗(G)

) → 0

inducing a long exact homology sequence and it remains to recall that the cotripnth
derived functor of the first integral homology gives the(n+ 1)th integral homology group
n � 0. �

Let A be aG � Γ -module on whichG andΓ act trivially. Then

HΓ
1 (G,A) ∼= I (G) ⊗G�Γ A ∼= HΓ

1 (G) ⊗ A ∼= G/[G,G]Γ ⊗ A

and

H 1
Γ (G,A) ∼= DerΓ (G,A) ∼= HomG�Γ

(
I (G) ⊗G�Γ Z,A

)
∼= Hom

(
G/[G,G]Γ ,A

)
.

On the other hand, ifG is a Γ -free group with basisX andβ :G → G/[G,G]Γ is the
canonicalΓ -homomorphism, thenG/[G,G]Γ is a free Abelian group with basisβ(X).
Any mapγ :β(X) → B to an Abelian groupB induces aΓ -mapγβ :X → B which is
uniquely extended to aΓ -homomorphismG → B assumingΓ acts trivially onB and one
gets a uniquely defined homomorphismG/[G,G]Γ → B whose restriction onβ(X) is
equal toγ .

We deduce that for anyG � Γ -moduleA with trivial actions ofG andΓ on A we
obtain universal coefficient formulas for the equivariant (co)homology groupsHΓ

n (G,A)

andHn
Γ (G,A), n � 0.

Theorem 11. There are short exact split(not naturally) sequences

0→ HΓ
n (G) ⊗ A → HΓ

n (G,A) → Tor1
(
HΓ

n−1(G),A
) → 0,

0→ Ext1
(
HΓ

n−1(G),A
) → Hn

Γ (G,A) → Hom
(
HΓ

n (G),A
) → 0

for n � 0.

4. Universal central Γ -equivariant extensions and Hopf formula

Let G be aΓ -group andA aG � Γ -module.
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Definition 12. A Γ -equivariant extensionE of the Γ -groupG by theΓ -equivariantG-
moduleA is an extension ofG by theG-moduleA

E : 0→ A
α−→ B

β−→ G → 1

satisfying the following conditions:

(1) E is a sequence ofΓ -groups,
(2) E is Γ -splitting, that is there is aΓ -mapγ :G → B such thatβγ = 1G.

E is called a centralΓ -equivariant extension of theΓ -groupG, if α(A) belongs to the
center ofB andΓ acts trivially onA.

Note thatΓ -equivariant extensions ofΓ -groups investigated in [8] do not in gener
satisfy the condition (2).

A centralΓ -equivariant extension(U,β) of G is called universal, if for any centra
Γ -equivariant extension(X,α) of G there is a uniqueΓ -homomorphismU → X overG.

Two Γ -equivariant extensionsE andE′ of G by A are called equivalent if there is
morphismE → E′ which is the identity onA andG. We denote byEΓ (G,A) the set of
equivalence classes ofΓ -equivariant extensions ofG by A.

Definition 13. A Γ -groupG is calledΓ -perfect, ifG coincides with itsΓ -commutator
subgroup[G,G]Γ (see also [26]).

Below we give important examples ofΓ -groups which areΓ -perfect but not perfec
(see Section 6).

Proposition 14. If (X,ϕ) is a centralΓ -equivariant extension of aΓ -perfect groupG,
then theΓ -commutator subgroupX′ = [G,G]Γ is Γ -perfect and maps ontoG.

Proof. SinceG is Γ -perfect, it is clear thatϕ mapsX′ ontoG. It follows that any elemen
x ∈ X can be written as a productx′c with x′ ∈ X′ andc belongs to Kerϕ. Therefore every
generator ofX′ of the form [x1, x2] is equal to[x′

1c
′
1, x

′
2c

′
2] = [x′

1, x
′
2] with x′

1, x
′
2 ∈ X′

and of the formσ x · x−1 is equal toσ (x′c) · (x′c)−1 = σ x′ · x′−1 with x′ ∈ X′. Whence
X′ = [X′,X′]Γ . �
Corollary 15. (X′, ϕ|X′) is a centralΓ -equivariant extension ofG.

Proof. We have only to show that(X′, ϕ|X′) is Γ -splitting. Letγ be theΓ -splitting map
for (X,ϕ), that isϕγ = 1G. Then aΓ -splitting mapγ ′ for the extension(X′, ϕ|X′) is
defined as follows: consider the decomposition{Dη} of G into orbits with respect to th
action ofΓ onG. Choose a representativezη ∈ Dη for eachDη and choose an expressio

zη = [x1, y1]σ1 · [x2, y2]σ2 · · · [xk, yk]σk

of zη in terms ofΓ -commutators. The equalities
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σ ′([x, y]σ
) = σ ′(

xσ yx−1y−1) = σ ′
xσ ′σ yσ ′(

x−1)σ ′(
y−1)

= σ ′
xσ ′σσ ′−1(σ ′

y
)
σ ′(

x−1)σ ′(
y−1) = [

σ ′
x, σ ′

y
]
σ ′σσ ′−1,

x, y ∈ G, σ,σ ′ ∈ Γ , imply the expression

σ zη = [
σ x1,

σ y1
]
σσ1σ

−1 · [σ x2,
σ y2

]
σσ2σ

−1 · · · [σ xk,
σ yk

]
σσkσ

−1

for σ zη, σ ∈ Γ .
Clearly any elementg ∈ G has the formσ zη for somezη ∈ Dη andσ ∈ Γ . The required

Γ -splitting mapγ ′ :G → X′ is given by setting

γ ′(g) = γ ′(σ zη

) = [
σ γ (x1),

σ γ (y1)
]
σσ1σ

−1 · [σ γ (x2),
σ γ (y2)

]
σσ2σ

−1 · · ·
× [

σ γ (xk),
σ γ (yk)

]
σσkσ

−1. �
Theorem 16. A centralΓ -equivariant extension(U,β) of aΓ -groupG is universal if and
only if U is Γ -perfect and every central equivariantΓ -extension(W,α) of U splits.

Proof. We will follow Milnor’s proof of the classical case [28]. LetU be Γ -perfect
and every centralΓ -equivariant extension ofU splits. Let(X,ϕ) be an arbitrary centra
Γ -equivariant extension ofG. Take the following diagram with exact rows

0 C X × U
p

q

U

β

1

0 C X
ϕ

G 1

whereX × U is the fiber product ofX → G ← U . It is easy to check that the top row is
centralΓ -equivariant extension ofU . Therefore one has aΓ -sections :U → X ×U . Thus
theΓ -homomorphismf = qs :U → X is overG and the diagram

0 D U
β

f

G 1

0 C X
ϕ

G 1

is commutative. To prove that(U,β) is universal, it remains to show the uniqueness
such anf . Let f1, f2 :U → X be twoΓ -homomorphisms overG. Then one gets aΓ -
homomorphismh :U → C given byh(u) = f1(u) · f2(u)−1, u ∈ U , which is trivial, since
U is Γ -perfect andΓ acts trivially onC.

Let (X,ϕ) and(Y,ψ) be centralΓ -equivariant extensions ofG. Then, as we have see
if Y is Γ -perfect there exists at most oneΓ -homomorphism fromY to X overG. If Y is
not Γ -perfect, then there is a suitable centralΓ -equivariant(X,ϕ) of G such that there
exists more than oneΓ -homomorphism fromY to X over G. Indeed in this case ther
exists a nontrivialΓ -homomorphismf from Y to some Abelian groupA on whichΓ acts
trivially. Take the centralΓ -equivariant split extension

0→ A → A × G → G → 1.
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Settingf1(y) = (0,ψ(y)) andf2(y) = (f (y),ψ(y)) one gets two distinctΓ -homomor-
phismsf1 andf2 from Y to A × G overG.

Now let (U,β) be a universal centralΓ -equivariant extension ofG and(W,α) a central
Γ -equivariant extension ofU . Since(U,β) is a universal centralΓ -equivariant extension
of G, the groupU is Γ -perfect. We will show that(W,βα) is a centralΓ -equivariant
extension ofG. Takex0 ∈ Kerβα. Thenα(x0) belongs to the center ofU and Γ acts
trivially on Kerβα. In effect, if γ :U → W is a Γ -section of(W,α), one hasσ (x0 −
γ α(x0)) = x0 − γ α(x0); on the other hand,σ (x0 − γ α(x0)) = σ x0 − γ σ α(x0) = σ x0 −
γ α(x0). Whenceσ x0 = x0, x0 ∈ Kerβα, σ ∈ Γ . We obtain aΓ -homomorphismh :W →
W overU given byh(x) = x0xx−1

0 , x ∈ W . Since[W,W ]Γ is Γ -perfect, the restriction
of h to theΓ -commutator subgroup[W,W ]Γ of W is the identity map. Thusx0 commutes
with elements of[W,W ]Γ implying x0 belongs to the center ofW , sinceW is generated
by [W,W ]Γ and Kerα.

We deduce that there is a unique morphism(U,β) → (W,βα) overG, since(U,β) is
universal. Therefore the compositeαk of the inducedΓ -homomorphismk :U → W over
G with α is equal to the identity showing that(W,α) splits. �

It should be noted that centralΓ -equivariant extensions withoutΓ -splitting property
were used in [26] to characterize universal central relative extensions of an epimor
ν :Γ → Q of groups.

Let τ :P → G be a projective presentation of theΓ -groupG andR denotes the kerne
of τ . Then theΓ -homomorphismτ sends the normalΓ -subgroup[P,R]Γ of P to 1 and
therefore induces aΓ -homomorphismτ ′ : [P,P ]Γ /[P,R]Γ → [G,G]Γ which is surjec-
tive.

Theorem 17.

(i) If G is Γ -perfect, then([P,P ]Γ /[P,R]Γ , τ ′) is a universal centralΓ -equivariant
extension ofG.

(ii) For anyΓ -groupG the group(R ∩ [P,P ]Γ )/[P,R]Γ is isomorphic toHΓ
2 (G).

Proof. (i) The extension(P/[P,R]Γ , τ ) is a centralΓ -equivariant extension ofG. Clearly
this extension is central. The groupΓ acts trivially on Kerτ = R/[P,R]Γ . Indeed the
elementσ x · x−1, x ∈ R, belongs to[P,R]Γ for anyσ ∈ Γ .

By Proposition 14 the group[P,P ]Γ /[P,R]Γ is Γ -perfect and maps ontoG. By
Corollary 15 it follows that the extension[P,P ]Γ /[P,R]Γ → G has aΓ -equivariant
splitting map. Let(X,ψ) be a centralΓ -equivariant extension ofG. Then there is a
Γ -homomorphismf :P → X overG. Since(X,ψ) is a centralΓ -equivariant extension
of G, it is easy to see thatf ([P,R]Γ ) = 1. Therefore the restriction off on [P,P ]Γ in-
duces a uniqueΓ -homomorphism[P,P ]Γ /[P,R]Γ → X overG, since[P,P ]Γ /[P,R]Γ
is aΓ -perfect group. We deduce that the short exact sequence

0→ (
R ∩ [P,P ]Γ

)
/[P,R]Γ → [P,P ]Γ /[P,R]Γ → G → 1

is a universal centralΓ -extension of theΓ -perfect groupG.
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(ii) Let P∗ → G be thePF -projective resolution of theΓ -group G induced by the
projective presentationτ :P → G, which we have defined in Section 2. The long ex
homotopy sequence induced by the short exact sequence

1→ ([P∗,P∗]Γ → [G,G]Γ
) → (P∗ → G) → (

(P∗)ab
Γ → Gab

Γ

) → 1

of augmented pseudosimplicial groups yields, according to Theorem 10(i), the exa
quence

0→ HΓ
2 (G) → π0

([P∗,P∗]Γ
) τ ′−→ G, (6)

where the image ofτ ′ is [G,G]Γ . It is clear thatP∗ → G is simplicially exact. For the
calculation ofπ0([P∗,P∗]Γ ) we will prove the equality

Ker∂1
0 ∩ [P1,P1]Γ = [

P1,Ker∂1
0

]
Γ

. (7)

It suffices to show the inclusion Ker∂1
0 ∩ [P1,P1]Γ ⊂ [P1,Ker∂1

0]Γ , since the convers
inclusion is obvious. First we will prove the equality

[P1,P1]Γ = [
P1,Ker∂1

0

]
Γ

· ([P1,P1]Γ ∩ s0(P0)
)
. (8)

In effect, if [x, y]σ ∈ [P1,P1]Γ , then for x = d · s0(c), y = b · s0(a) with ∂1
0(x) = c,

∂1
0(y) = a andb, d ∈ Ker∂1

0, one has

[x, y]σ = [
x, b · s0(a)

] = xσ bσ
(
s0(a)

)
x−1 · s0(a)−1 · b−1

= [x, b]σ · bxσ
(
s0(a)

) · x−1 · s0(a)−1 · b−1

= [x, b]σ · bds0(c)
σ
(
s0(a)

)
s0(c)

−1 · d−1s0(a)−1 · b−1

= [x, b]σ · bd
[
s0(c), s0(a)

]
σ

· s0(a)d−1s0
(
a−1) · b−1

= [x, b]σ · z · [s0(c), s0(a)
]
σ

· bd · s0(a)d−1s0(a)−1b−1

= [x, b]σ · z · [s0(c), s0(a)
]
σ

· b · [d, s0(a)
] · b−1

with z ∈ [P1,Ker∂1
0]Γ , b[d, s0(a)]b−1 ∈ [P1,Ker∂1

0] and[s0(c), s0(a)]σ ∈ s0(P0).
It follows that [x, y]Γ belongs to[P1,Ker∂1

0]Γ · ([P1,P1]Γ ∩ s0(P0)) that proves the
required equality (8).

Let w ∈ [P1,P1]Γ ∩ Ker∂1
0. Then by (8)w ∈ [P1,Ker∂1

0] · ([P1,P1]Γ ∩ s0(P0)), that is
w = w′ ·x′ with w′ ∈ [P1,Ker∂1

0]Γ andx′ ∈ [P1,P1]Γ ∩s0(P0). It follows thatx′ = w′−1w

belongs to Ker∂1
0 ∩ s0(P0) = 1. Whencew = w′ and the equality (7) is proved.

Since∂1
1(Ker∂1

0) = R, using the equality (7) one gets

∂1
1

([P1,P1]Γ ∩ Ker∂1
0

) = ∂1
1

([
P1,Ker∂1

0

]
Γ

) = [P0,R]Γ
showing thatπ0([P∗,P∗]Γ ) = [P,P ]Γ /[P,R]Γ . The required isomorphism of the the
rem follows now from the exact sequence (6).�

The result of Theorem 1.17(ii) will be called the equivariant Hopf formula. I
forthcoming paper equivariant higher Hopf type formulas will be established fo
Γ -equivariant integral homologyHΓ∗ (G).
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Corollary 18. The groupR ∩ [P,P ]Γ /[P,R]Γ does not depend on the projective p
sentationP → G of theΓ -group G. A Γ -group has a universal centralΓ -equivariant
extension if and only if it isΓ -perfect.

Theorem 19. Let 1 → N → E
α−→ G → 1 be a short exact sequence ofΓ -groups such

that theΓ -homomorphismα has aΓ -excision andτ :P → E a projective presentation o
theΓ -groupE. Then there is an exact sequence

0→ U → HΓ
2 (E) → HΓ

2 (G)
δ−→ N/[E,N]Γ → HΓ

1 (E) → HΓ
1 (G) → 0,

whereU is the kernel of theΓ -homomorphism[P,S]Γ /[P,R]Γ → [E,N]Γ , R = Kerτ ,
S = Kerατ , induced byτ .

Proof. Using the exact sequence (6) theΓ -homomorphismα induces the following com
mutative diagram with exact rows and columns:

0 1 1 1

0 Kerγ ′ Kerγ
η

N N/η(Kerγ ) 0

0 HΓ
2 (E)

γ ′

π0([P∗,P∗]Γ )

γ

E

α

HΓ
1 (E) 0

0 HΓ
2 (G) π0([P G∗ ,P G∗ ]Γ ) G HΓ

1 (G) 0

1 1 0

whereP∗ → E andP G∗ → G arePF -projective resolutions ofE andG induced byτ and
ατ , respectively. Clearly Kerγ = [P,S]Γ /[P,R]Γ . It follows that the image(η(Kerγ ))

of Kerγ is equal to[E,N]Γ and Kerη is isomorphic to Kerγ ′. Therefore this diagram
yields the required exact sequence, where the connecting homomorphismδ is defined in a
natural way. �

Theorem 1.19 is a generalized equivariant version of the well-known Stalli
Stammbach exact sequence in integral homology [31].

Theorem 20. If A is aΓ -equivariantG-module, then there is a bijection

EΓ (G,A) ∼= H 2
Γ (G,A).

Proof. We will use the isomorphismH 2
Γ (G,A) ∼= R1

F DerΓ (G,A) (see Theorem 3) an
show the bijectionEΓ (G,A) ∼= R1

F Der(G,A). Take the free cotriple resolutionF∗ → G

of the Γ -group G which is simplicially exact. ThenF1 → F0 factors throughF1 →
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M → F0, l0τ1 = ∂1
0, l1τ1 = ∂1

1, whereM is the simplicial kernel ofτ and τ1 is sur-
jective. If f ∈ DerΓ (F1,A) such that

∑
f (−1)i∂2

i = 0, then there isf ′ ∈ DerΓ (M,A)

such thatf ′τ1 = f and f ′(∆) = 0, ∆ = {(x, x), x ∈ F0}. Denote byD̃erΓ (M,A) the
subgroup of DerΓ (M,A) consisting ofΓ -derivationsf with f (∆) = 0. Conversely, if
f ′ ∈ D̃erΓ (M,A), then

∑
i f

′τ1(−1)i∂2
i = 0. It follows that it is sufficient to estab

lish a bijection with Cokerη, whereη : DerΓ (F0,A) → D̃erΓ (M,A), η = DerΓ (l0,A) −
DerΓ (l1,A).

Define a mapϑ :EΓ (G,A) → H 2
Γ (G,A) as follows. If[E] ∈ EΓ (G,A), E : 0→ A →

B → G → 1, sinceE is Γ -splitting, there is a commutative diagram

M
l11

l10

f

F0
τ

ϕ

G

A
α

B
β

G

whereF0 = F(G), ϕ is a Γ -homomorphism andf (x) = ϕl0(x) · ϕl−1
1 (x), x ∈ M . It

is easily seen thatf is aΓ -derivation such thatf (∆) = 0 and defineϑ([E]) = [f ]. Con-
versely, if[f ] ∈ H 2

Γ (G,A), then take the semidirect productA�G and introduce a relatio

(a, x) ∼ (a′, x′) ⇐⇒ τ(x) = τ(x′)

anda · f (x, x′) = a′. It is easy to check that this relation is a congruence and letC be the
quotientA � G/∼ which is aΓ -group. One gets a commutative diagram

M
l11

l10

f

F (G)
τ

ψ

G

A
σ

C
µ

G

where σ(a) = [(a, x)], µ([(a, x)]) = τ(x), ψ(x) = [(o, x)]. The extensionE : 0 →
A

σ−→ C
µ−→ G → 1 is a Γ -equivariant extension ofG by A, the splittingΓ -map is

given byγ (g) = ψ(0, |g|), g ∈ G. Defineϑ ′ :H 2
Γ (G,A) → EΓ (G,A) by ϑ ′([f ]) = [E].

It is standard to show thatϑ andϑ ′ are well defined and inverse to each other.�
Note that Theorem 20 could also be proved using the corresponding factor s

ory for Γ -groups and the bijectionϑ is in fact an isomorphism with respect to the “Ba
sum” which could be introduced onEΓ (G,A). The description of higherΓ -equivariant
group cohomologyHn+1

Γ (G,A), n � 2, by extensions is also realizable usingn-fold Γ -
equivariant extensions ofG by A, that means extensions of the form

E : 0→ A → X1 → X2 → ·· · → Xn → G → 1,

where 0→ A → X1 → Imα1 → 0, 0→ Imαi−1 → Xi → Imαi → 0, for 1� i � n − 1,
are proper short exact sequences ofG � Γ -modules and 0→ Imαn−1 → Xn → G → 1 is
a Γ -equivariant extension ofG by Imαn−1, and by introducing theΓ -equivariant charac
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teristic classχ(E) of aΓ -equivariant extensionE of G byA, which means by constructin
for anyΓ -equivariant extensionE of G by A:

E : 0→ A
α−→ B

β−→ G → 1

the exact sequence ofG � Γ -modules

χ(E) = 0→ A
α′−→ F(B ′)/L β ′

−→ Z(G)
ε−→ Z → 0,

whereF(B ′) is the relatively freeG � Γ -module generated by theΓ -setB ′ = {[b], b ∈
B, b = 0} with [0] = 0, σ (x[b]) = σ x[σ b] for x ∈ G, σ ∈ Γ , b ∈ B ′; L is its G � Γ -
submodule generated by the elements[b1 + b2] − β(b1)[b2] − [b1], whereb1, b2 ∈ B, and
theG � Γ -homomorphismsα′, β ′ are induced in a natural way byα andβ, respectively.

Using the cochain description (see Section 1) of theΓ -equivariant cohomology o
groups H ∗

Γ (G,A) the cup product can be defined, since the tensor product [1
Γ -cochains is again aΓ -cochain. Therefore there is a cup product

H
p
Γ (G,A) ⊗ H

q
Γ (G,B) → H

p+q
Γ (G,A ⊗ B)

for p,q � 1, endowing onH ∗
Γ (G,A) a structure ofH ∗

Γ (G)-module.
For any short exact sequence ofG � Γ -modules

0→ A′ α−→ A
β−→ A′′ → 0

such thatβ is Γ -splitting the sequences

0→ P ⊗G�Γ A′ → P ⊗G�Γ A → P ⊗G�Γ A′′ → 0

and

0→ HomG�Γ (P,A′) → HomG�Γ (P,A) → HomG�Γ (P,A′′) → 0

are exact for any relatively projectiveG � Γ -moduleP implying exactΓ -equivariant
homology and cohomology sequences, respectively.

Let G be finite and let us consider the homomorphismNG :A → A, NG(a) = ∑
s∈G

sa,
whereA is a G � Γ -module. Assume thatΓ acts trivially onNG(A). Therefore one
has the inclusionNG(A) ⊂ AG�Γ andNG induces a homomorphismN∗

G :HΓ
0 (G,A) →

H 0
Γ (G,A). For this we have only to show thatNG(σ a − a) = 0. In effect NG(a) =

σ NG(a) = σ (
∑

s∈G
sa) = ∑σ

s∈G(sa) = ∑
s∈G

σ s(σ a) = NG(σ a). Under the afore given
assumption we can defineΓ -equivariant Tate cohomology groupšHn

Γ (G,A), n ∈ Z, by
setting

Ȟ n
Γ (G,A) = Hn

Γ (G,A), n � 1,

Ȟ 0
Γ (G,A) = KerN∗

G, Ȟ−1
Γ (G,A) = CokerN∗

G,

Ȟ−n
Γ (G,A) = HΓ

n−1(G,A), n � 2.

Proposition 21. For any short exact sequence ofG � Γ -modules

E : 0→ A′ α−→ A
β−→ A′′ → 0
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such thatβ is Γ -splitting there is a long exact sequence ofΓ -equivariant Tate cohomolog
groups

· · · → Ĥ n−1
Γ (G,A′′) → Ĥ n

Γ (G,A′) → Ĥ n
Γ (G,A)

→ Ĥ n
Γ (G,A′′) → Ĥ n+1

Γ (G,A′) → ·· · .

Proof. By using forE the exactΓ -equivariant homology and cohomology sequences
proof is similar to the classical case (see [1, Chapter IV, Theorem 6.1]).�

Note that it would be interesting to construct theΓ -equivariant versions of Fare
cohomology theory of groups [5] and Vogel (co)homology theory of groups [18,35]
eralizing the above definedΓ -equivariant Tate cohomology theory of groups.

5. Relationship with equivariant cohomology of topological spaces

Let X be a topological space. If a groupG acts onX, then this action induces a
action ofG on the singular complexS(X) of X given bygf , f :∆n → X, f ∈ S(X),
makingS(X) a chain complex ofG-modules, whereg :X → X is the homeomorphism o
X induced by the action ofg ∈ G.

Throughout out this sectionX is a G-space the groupG acting onX properly. That
means each pointx of X belongs to some proper open subset ofX. Recall that an ope
subsetU of X is called proper with respect to the action ofG, if gU ∩ U is empty for all
elementsg = 1 of G [27].

We will assume also that a separate groupΓ acts onG andX such that the following
condition holds:

σ
(
gx

) = σ g
(
σ x

)
, (9)

for x ∈ X, g ∈ G, σ ∈ Γ .
For example ifX is aG-space, takeΓ = G with the actions ofΓ onG by conjugation

and onX asG is acting.
Then the augmented singular complexS(X) → Z:

· · · → Sn(X) → Sn−1(X) → ·· · → S1(X) → S0(X) → Z → 0 (10)

is a chain complex ofG � Γ -modules, where the groupsG andΓ act trivially onZ.
It will be said that the topological spaceX has the property (c), if the singular compl

(10) is exact and any induced short exact sequence

0→ Ker∂k → Sk(X) → Im ∂k → 0

is Γ -splitting for k � 0.
For instanceX satisfies the condition (c) if eitherX is acyclic andΓ acts trivially onX

or X is Γ -contractible, that is the identity map 1X :X → X is Γ -homotopic to a constan
mapf0 :X → x0 ∈ X.
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Theorem 22. If a topological spaceX satisfies the condition(c), then there is an isomor
phism

Hn
Γ (G,A) ∼= Hn

Γ (X/G,A)

for n � 0, whereA is an Abelian group on whichG andΓ act trivially andH ∗
Γ (X/G,A)

is the equivariant cohomology of topological spaces[4].

Proof. SinceG acts properly onX, by Lemma 11.2 [27, Chapter IV] the sequence (
is a chain complex of freeG-modules. Therefore eachSn(X), n � 0, is aG � Γ -module
which is free asG-module and its basis consisting of singularnth simplexes is aΓ -subset.
It follows that (10) is a relatively freeG � Γ -resolution ofZ.

By Proposition 11.4 [27, Chapter IV] the canonical mapp :X → X/G induces an iso
morphism

p∗: HomZ

(
S(X/G),A

) ∼= HomG

(
S(X),A

)
of chain complexes. Notice that the groupΓ acts naturally onX/G and the mapp is a
Γ -map. Indeed, the action ofΓ given byσ ([x]) = [σ x], x ∈ X, σ ∈ Γ , is well defined,
thanks to the equality (9); ifgx = y for someg ∈ G, thenσ y = σ (gx) = σ g(σ x) for any
σ ∈ Γ . It is obvious that under so defined action ofΓ the mapp is aΓ -map. This implies
that the isomorphismp∗ induces an isomorphism

HomΓ

(
S(X/G),A

) ∼= HomG�Γ

(
S(X),A

)
of cochain complexes giving the required isomorphism of the equivariant group
mology of the spaceX/G with the equivariant group cohomology of the groupG with
coefficients inA with trivial actions ofG andΓ . �

Property (c) holds wheneverΓ acts trivially on the groupG and on the acyclic spaceX.
Therefore Theorem 22 is an equivariant version of the classical Theorem 11.5 [27,
ter IV].

6. Applications to algebraic K-theory

Let A be a unital ring andI its ideal. The groupEn(A, I) is the normal subgroup o
the groupEn(A) of elementaryn-matrices generated byI -elementaryn-matricesεn of
the formεn = In + aeij with a ∈ I andi = j (see [2]). The groupE(A, I) is defined as
lim−→n

En(A, I). It is known [2] that

En(A, I) = [
En(A),En(A, I)

]
for n � 3.

It follows that the groupEn(A, I), n � 3, which is not perfect in general, is aEn(A)-
perfect group, the groupEn(A) acting onEn(A, I) by conjugation. Clearly the same
true for the relative elementary groupE(A, I), that isE(A, I) is aE(A)-perfect group.

Now let A be a ring not necessarily with identity. Denote byA+ the unital ring given
by A+ = {(a,n), a ∈ A, n ∈ Z} with usual sum and product

(a,n) · (a′, n′) = (aa′ + na′ + n′a,nn′).
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One has a short split exact sequence of rings

0→ A
σ−→ A+ τ−→ Z → 0, (11)

whereσ(a) = (a,0), τ(a,n) = n and with splitting mapγ :Z → A+, γ (n) = (0, n).
By definition E(A) = KerE(τ), St(A) = KerSt(τ ) andK2(A) = KerK2(τ ). Clearly

E(A) = E(A+,A). Whence we have the following short exact sequence of short
sequences induced by (11):

0→ (
0→ K2(A) → St(A)

β−→ E(A) → 1
) → (

0→ K2
(
A+)

→ St
(
A+) β+

−→ E
(
A+) → 1

) → (
0→ K2(Z) → St(Z) → E(Z) → 1

) → 0.

One gets an action of St(Z) on St(A) by conjugation using the splitting map St(γ ). The
groupE(A) and the general linear groupGL(A) also become St(Z)-groups by conjugation
via the mapβ+ · St(γ ). Clearlyβ is a St(Z)-homomorphism and St(Z) acts trivially on
K2(A). Therefore the central extension of the groupE(A)

0→ K2(A) → St(A)
β−→ E(A) → 1 (12)

is a sequence of St(Z)-groups.
There is a presentation of the Steinberg group St(A) as a St(Z)-group as follows [32].

The generatorsxa
ij for i, j � 1, i = j, a ∈ A, satisfy the relations

(1) xa
ij x

b
ij = xa+b

ij .

(2) [xa
ij , x

b
km] = 1, j = k, i = m.

(3) [xa
ij , x

b
jk] = xab

ik .

(4) xz
ij x

a
ij (x

z
ij )

−1 = xa
ij , z ∈ Z.

(5) xz
ij x

b
km(xz

ij )
−1 = xb

km, z ∈ Z, i = m, j = k.

(6) xz
ij x

b
jk(x

z
ij )

−1 = xzb
ik xb

jk, z ∈ Z, i = k.

(7) xz
ij x

b
ki(x

z
ij )

−1 = x−zb
kj xb

ki, z ∈ Z, j = k.

Theorem 23. The sequence(12) is a universal centralSt(Z)-equivariant extension o
E(A).

Proof. The mapκ+ : {ea+
ij } → St(A+) of elementary matrices given byκ+(ea+

ij ) = xa+
ij ,

a+ ∈ A+, i = j , induces a St(Z)-mapκ :E(A) → St(A) such thatβκ = 1E(A) by using
the proof of a similar fact in the case of Corollary 15 and taking into account the acti
St(Z) on the generatorsea

ij . We conclude that (12) is a central St(Z)-equivariant extensio
of E(A).

From the above condition (6) on generators one hasx1
ij x

b
jk(x

1
ij )

−1 = xb
ikx

b
jk , i = k,

b ∈ A. It follows that [St(A),St(Z)] = St(A) showing the groups St(A) and E(A) are
St(Z)-perfect groups. Following Theorem 16, it remains to show that any central S(Z)-
equivariant extension of St(A) splits.

Let

o → C → Y
θ−→ St(A) → 1 (13)
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be a central St(Z)-equivariant extension of St(A) with splitting St(Z)-mapγ̄ : St(A) → Y .
Consider the following exact sequence

0→ C → Y � St(Z) → St(A) � St(Z) → 1 (14)

induced by (13) and by the given action of St(Z) on this sequence. Clearly St(A+) ∼=
St(A) � St(Z) and (14) is a central extension of St(A+). Therefore (14) splits, sinc
β+ : St(A+) → E(A+) is a universal central extension ofE(A+). Obviously St(A+) is
generated byxa

ij andxz
kl, a ∈ A, z ∈ Z.

Following the proof of Theorem 5.10 [28], the section for (14) can be constructe
follows. For i = j chose an indexh distinct fromi andj . Take the elementsy = γ̄ (x1

ih)

andy′ = γ̄ (xa
hj ). Then the needed section is defined byxa

ij �→ [y, y′] = sa
ij , xz

jk �→ xz
jk . In

[28] it is shown that this section does not depend onh and the elementssa
ij , x

z
jk satisfy all

the Steinberg relations. This implies that the elementssa
ij , x

z
jk satisfy the relations (1)–(7

of the St(Z)-presentation of St(A). It follows that by sendingxa
ij to sa

ij , a ∈ A, i = j , this
map gives rise to the required splitting St(Z)-homomorphisms : St(A) → Y . �
Corollary 24. There is an isomorphism

K2(A) ∼= H
St(Z)
2

(
E(A)

)
and H

St(Z)
2

(
St(A)

) = 0

for any ringA.

Proof. The proof follows from Theorems 17, 23 and 20.�
Finally we provide the construction of an alternative equivariant algebraicK-theoryKΓ∗

by usingΓ -equivariant commutators.
Let Γi(G), i � 0, be the lowerΓ -equivariant central series of aΓ -group G [11],

whereΓ0(G) = G, Γ1(G) = [G,G]Γ andΓi+1(G) = [G,Γi(G)]Γ , i � 0. First we give
the equivariant version of theZ-completion functorZ∞ :G → G defined on the categor
of groups [3], by setting

ZΓ∞(G) = lim←−
i

G/Γi(G),

where{Γi(G)} is theΓ -equivariant lower central series of theΓ -groupG. We obtain a
covariant functorZΓ∞ :GΓ → GΓ .

Let A be a ring andΓ a group acting on the general linear groupGL(A). Define the
Γ -equivariant algebraicK-functors by

KΓ
n (A) = L

PF
n−1Z

Γ∞
(
GL(A)

)
, n � 1, (15)

wherePF is the projective class induced by the free cotripleF in the categoryGΓ of
Γ -groups. This definition could actually be considered as an equivariant version of
len’s algebraicK-theory, since in the case of the trivial action ofΓ on GL(A) it is proved
that the left derived functors of the functorZ∞ with respect to the projective class induc
by the free cotriple in the category of groups are isomorphic to Quillen’sK-groups up to
dimension shift [23,20]. It would be interesting to establish the relationship of the
defined equivariant algebraicK-theory (15) with the equivariant algebraicK-theory given
in [13].
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