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Abstract

We provide and study an equivariant theory of group (co)homology of a gsowjih coefficients
in a I'-equivariantG-moduleA, when a separate groupacts onG andA, generalizing the classical
Eilenberg—MacLane (co)homology theory of groups. Relationship with equivariant cohomology of
topological spaces is established and application to algekrdfeory is given.
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0. Introduction

Itis well known that the study of groups with operators has many important applications
in algebra and topology. The category of groups enriched with an action by automorphisms
of a given group provides a suitable setting for the investigation of an extensive list of sub-
jects with recognized mathematical interest. See, for instance, recent results in equivariant
stable homotopy theory [6] and articles devoted to equivariant algeKrdieory [13,29,

24]. The origin of the equivariant investigation in homological algebra, particularly in ex-
tension theory of groups, goes back to the article of Whitehead [36]. It should be noted that
recently a theory of cohomology of groups with operators was developed [8], motivated by
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the graded categorical groups classification problem which was suggested by Frohlich and
Wall [16]. This problem was solved [7,10] by using the third cohomology of groups with
operators introduced in [8]. An equivariant version of the classical Brauer—Hasse—Noether
result was proved [9] showing that for any Galois finite field extengigik on which a
separate group of operatofsis acting, there is an isomorphism of equivariant isomor-
phism classes of finite dimensional central simflealgebras endowed with A-action

and containingF’ as an equivariant strictly maximal subfield and the second cohomology
of groups with operators defined in [8] of the Galois group of the extension. A homology
theory of groups with operators corresponding to the cohomology theory of groups with
operators [8] has been treated in [11].

In [8] it was stated that the second cohomology group BfgroupG with coefficients
in a I'-equivariantG-module A classifies theg-equivariant extensions @ by A. From
this result arises the natural problem about the cohomological characterization of those
equivariant extensions @ by A which arel"-splitting. The solution of this problem (see
Theorem 20) has motivated an attempt to develop a different equivariant (co)homology
theory of groups, which is presented in this paper.

By definition for a I'-group G its equivariant homology and cohomology groups,
HnF(G, —) and H} (G, —), are defined as relative 'Ifb—rand Ext-, n > 0O, functors re-
spectively in the category of -equivariantG-modules (Definition 1). Therefore this
(co)homology theory of groups can be considered as a part of the relative homological al-
gebra [12]. We provide equivariant versions of classical homological theorems: (co)chain
and cotriple presentations of the homology and cohomology of groups, Hopf formula for
the second integral homology, universal coefficient formulas, universal central extensions,
cohomological classification of extensions of groups, exact (co)homology sequences, Tate
(co)homology of groups and the cup product. Applications in algeliatbeory (Corol-
lary 24) and the relationship with equivariant cohomology of topological spaces (Theo-
rem 22) are established.

Corollary 24 motivates the following:

Conjecture. There is an isomorphisrkiz(A) = H?,SI(Z) (St(A)) for any ring A.

For its proof equivariant versions of relevant classical homotopy theorems will be prob-
ably needed. This is well known whetis a unital ring [17] and in this case &) acts
trivially on St(A).

Another application will be the construction of an alternative equivariant algebraic
K-theoryK! by usingI"-equivariant commutators (Section 6). Moreover in the near fu-
ture it is intended to investigated for any ring (not necessarily with unit) the relationship of
higher Quillen’s algebrai& -groups with the equivariant integral homology of the general
linear group under the action of the Steinberg group of the ring of integers. It is also in-
tended to establish the relationship of this alternative equivariant algebrdieory with
existing equivariant algebraik -theory and equivariant homotopy theory and to provide
higher Hopf formulae for equivariant integral homology of groups.
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1. Definition and (co)cycle description of the equivariant (co)homology of groups

Before defining the equivariant (co)homology of groups we briefly recall the definition
of the cohomology of groups with operators introduced in [8].

Then-cochains of & -group G with coefficients in al"-equivariantG-module A (see
definition below) are the maps

f:UGP+1xFq—>A, p+g=n-—-1,

normalized in the sense th#(xy, ..., xp41,01,...,04) =0 whenever; =1 oro; =1
forsomei =1,...,p+1o0rj=1,...,q, and the coboundary operator is introduced in
a natural way. One gets a cochain complex whose homology groups are the cohomology
groups of thel"-groupG. Note that in this theory the zero cohomology group is trivial and
as mentioned above the second cohomology group describ&sdggivariant extensions
of the I'-groupG by theG x I'-moduleA.

Now we will give our definition of the equivariant (co)homology of groups. et
be ar-group. A I'-equivariantG-module A is a G-module equipped with &-module
structure and both actions 6fandI” on A satisfy the following condition:

”(xa)zgx(”a), xeG,oel,acA. Q)

The category of "-equivarianiG-modules is equivalent to the category®f I"-modules,
whereG x I' denotes the semidirect product@fand I (see [8]). LetB andC be two
I'-equivariantG-modules. Clearly a mag : B — C is aG x I'-homomorphism if and
only if it is compatible with the actions af andI". A G x I'-module free as &-module
with basis al"-subset will be called a relatively freg x I"-module. Denote by the class
of G x I'-modules which are retracts of relatively fréex I"-modules. The elements &f
will be called relatively projectivé&s x I'-modules. AG x I'-homomorphisny : B — C of
G x I'-modules is @&-epimorphism if it isI"-splitting, that is there is &-mapy : C — B
such thatfy = 1¢. The group ringZ(G) is a relatively freeG x I'-module in a natural
way with the action of” by

7 (Zmigi) =Y mgi.
i i

Let A be aG x I'-module. Denote by;« A the subgroup ofA generated by the
elements®?a —a=8(°a) —a, g€ G, o €I', a € A, and byAg - the quotient group
of Aby Is.rA. Thenitis easily checked that one has canonical isomorphisms

Z(G)®Gur ASAr,  Z®Gur A= Agxr,  HOoMgxr(Z(G), A) = A",

Clearly if I' acts trivially onA, thenZ(G) ®¢xrr A =Homg « r (Z(G), A) = A.

In the category oG x I'-modules there are sufficient relatively projective (fréey I'-
modules. IfA is aG x I'-module, take the fre€-moduleF (A) generated byl and define
the action ofl” on F(A) by

7(glal)="g|°al, g€G,o€rl, acA.
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Then F(A) becomes a relatively fre€ x I'-module with basisA being al"-subset of
F(A) and the canonical map(A) — A is aP-epimorphism, since it i$"-splitting by the
map

y:A— F(A), y(@)=lal, acA.
It is standard to show that one has isomorphisms
H,(P4(A) ®Gxr B) = Hy(A®Gur P«(B)), n>0,

where P, (A) and P,(B) are’P-projectiveG x I"-resolutions ofA and B, respectively.
Now we are ready to define the equivariant homoldgy (G, A) and cohomology
H}.(G, A) of aI"-groupG with coefficients in al"-equivariantG-moduleA.

Definition 1. H[(G, A) = TornP(Z, A) andH[ (G, A) = Ext,(Z, A) for n > 0, whereG
and " act trivially onZ.

Itis clear thatH,! (G, A) = H,(G, Ar) and H!"(G, A) = H"(G, AT") forn > 0, if I
acts trivially onG and therefore this case is not interesting from the equivariant point of
view.

A short exact sequence 6f x I"'-modules

0—>C1—>Ci>C2—>O (2)
will be called proper ifg is I'-splitting, i.e., there is @ -map y :C2> — C such that
ﬁy = 1C2-

Let
> B,—~--+—>B1—>By—~>7Z—>0 3)

be the bar resolution df,, where By = Z(G), and B,, n > 0, is the freeZ(G)-module
generated bygi, g2, ..., gn1, & € G. Define the action of the group on the bar reso-
lution as follows.I" acts trivially onZ, the action ofl” on By is already defined and if
n > 0then?(glg1,82,...,8:]) =°g[° 21,7 g5, ..., g,] for the action ofl" on B,. The
well known contractiory_1:7Z — Bo, y—-1(z) = z1, ¥u:Bn — Bui1, vu(glg1, ..., gul) =
g, g1,...,8n], n >0, is clearly aI'-map. We deduce that under this action Iofthe
bar resolution (3) becomes an exact sequena@ ef I'-modules such that eadb), is a
relatively freeG x I'-module and the sequences

0— Kero, - B, —>1md, -0, n=>0
and
0— Kere - Bg— Z— 0,

are proper short exact sequencesCof« I'-modules. Therefore (3) is a relatively free
G x I'-resolution ofZ which will be called the™-equivariant bar resolution &. It follows
that

H) (G, A) = Hy(B. ®Gxr A), H}(G, A) = Hy(HOmG » (By, A)), n=0.
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These isomorphisms allow us to produce an alternative description by (co)cycles of the
equivariant (co)homology of groups. The case of the equivariant homology of groups is
clear. To this end consider the Abelian groQp (G, A) of I'-mapsf:G" — A, n > 0,

which will be called the group otth I"'-cochains. By using the classical cobord operators
§":.CL(G, A) — C}’fl(G, A), n > 0, one gets a cochain complex

0— C%(G, A) = CL(G, A) = C2(G,A) — --- = C"(G, A) — ---,

whereC,Q = A", Kers! = Derr (G, A) is the group ofl"-derivations, and the homology
groups of this complex give thE-equivariant cohomology groups 6f with coefficients
inthe G x I'-moduleA.

It is easily checked that any proper short exact sequence @)of"-modules induces
long exact homology and cohomology sequences

= HI1(G,C2) — HI' (G, C1) — -~ — Hj (G, C2) — Hi (G, C1)
— HI(G,C) - H{ (G, C2) — HY (G, C1) — HL (G, C) — HS (G, C2) - 0,

0— H2(G,C1) » H2(G, C) - H%(G, C2) > HE(G,C1) — HE(G, C)
— HX(G,C2) — H2(G,C1) = --- — HNG, C2) » HY(G, C1) — -+

2. Equivariant (co)homology of groups as cotriple (co)homology

To present the equivariant (co)homology of groups as cotriple (co)homology we will
use the free cotriple defined in the categgiy of I'-groups given in [21,22] to develop
a non-Abelian homology theory of groups. This cotriple corresponds to the tripleability
of G over I'-sets. The resulting cotripl& = (F, t, §) is the free cotriple in the category
of groups endowed with th&'-action defined as follows. For any-group G the action
of I on the free groupF (G) is given by?|g| =|°¢l|, ¢ € G, o € I'". The cotriple thus
defined essentially differs from the cotriple introduced in [8] for the cotriple interpretation
of the cohomology of groups with operators. [/2t be the projective class induced by the
cotriple F in the categony . It is easy to see that a morphisfn G — H of I"-groups
is aPr-epimorphism if it is surjective and’-splitting. Since the category has finite
limits, any I"-group G has aP£-projective resolution( X, 88, G) in the categongr in
the sense of [34], that i¥ . is an augmented pseudo-simplicialgroup which isP --exact
[34,20] and eaclx,,, n > 0, belongs to the clas8r. Many examples of pseudo-simplicial
sets which are not simplicial are given in [25,14,15]PA-epimorphismf : P — G with
P an object of the clasB# will be called a projective presentation of thegroupG. Any
projective presentation @ induces in a natural way Bz-projective resolutior?, — G,
constructed as follows:

2
13 1

— ; ; 1
L F(LG) 2% LG = F(L1G) 8 1.6 — P L. G,
= 1_8) 13

where(L1G, 1%, 1}) is the simplicial kernel of the morphistfi, (L>G, 12,12,13) the sim-
plicial kernel of the pair of morphism@iz,,¢. lit.,6) and if (L,G. 13, ..., ") has been
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constructed, theL,,+1G, lg“, e, l;’ﬁ) is the simplicial kernel of the sequence of mor-
phisms(lgt.,G, ...l 11,6). Simplicial kernels are defined in [34,20]. Dendte= P,
P, = F(L,(G)) andd!' =1ty () forn > 0.

Let T be a functor from the categoiy, to the category of groups. Then by defin-
ition the left cotriple derived functorsnfT(G) are equal tor, (T F«(G)), n > 0, where
7. Fy(G) — G is the free cotriple resolution off with Fo = F(G), F, = F(F"(G)),
n>1,09"=FtF" s =F§F"" (see [33]) and the left derived functors * 7(G)
with respect to the projective cla®%- are equal tor, (T (X)), n > 0 (see [19,20]). If the
functor T is a contravariant functor with values in the category of Abelian groups, one has
also its right derived functors.

Proposition 2. The left cotriple derived functors of a functér. G- — G are isomorphic
to its left P r-derived functors.

Proof. Let (P, 88, G) be the standar® r-resolution ofG. Then it is easy to see that this
resolution is left contractible in the category Bfsets. Thus the augmented pseudosim-
plicial I"-groups(F; (Py), Fi(ag), F;(G)) are left contractible for > 0 in the category of
I'-groups (for the categorical definition of left contractibility see [33,20]). On the other
hand the augmented simplici@l-groups (Fy(P;), tj, P;) are also left contractible for

j = 0. It follows that the homotopy groups,, n > 0, of the pseudosimplicial groups

T F;(Py) andT F,(P;) for i, j > O are trivial and the homotopy groups o§(7 F; (Px))

and o(T F.(P;)) give the left projective and cotriple derived functors respectively of
the functorT. Consider now the bipseudosimplicial groGp.(G) by puttingG ,,(G) =

T F,(P,(G)) and apply the Quillen spectral sequences [30,19,20] for a bipseudosimpli-
cial group. It follows that theith homotopy groups; > 0, of T P.(G) and T F.(G) are

both isomorphic to theth homotopy group of the diagonal pseudosimplicial gra\(@,. .

It remains to apply Theorems 1.2 and 2.1 of [19] showing that the definition of the left
projective derived functors are independent of the projective resolutiéh of

Note that this proposition is known for the left derived functors of functors (right derived
functors of contravariant functors) with values in the category of Abelian groups [34].
Let A be a fixedI"-module ands G the category off"-groups acting om such that
the condition (1) holds. Consider the following functors from the categ@y to the
category of Abelian groups:(—) ®gxr A and Def-(—, A), wherel(G) is the kernel
of the canonical homomorphism: Z(G) — Z of G x I'-modules and Der(G, A) is
the group of"-derivations fromG to A consisting of derivationg : G — A such that

f8)="f(g), 8€G, oel[8]
Theorem 3. There are isomorphisms

HI'(G, A= L] (I1(G) ®cur A).
H}G, A)= R 'Derr (G, A), n>2.
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Proof. Apply the functor/ (—) to the free cotriple resolution: F, — G of the I"'-group
G. One gets an augmented simplic@lx I'-module! (F,) — I(G). We introduce the
notations:

IF(G) = )" Z(F™(G))(y — ) = Du(G),
YEF'(G)

> ZG)(y—e) =En(G)

yEF(G)

forn >0, FO%(G)=G.
There are natural homomorphisms

ay:Dy(G) — Ex(G), n=1,

induced by the homomorphismd3d2 - -- 92265 1: F"(G) — G such that we obtain a
morphism of augmented simpliciél x I"-modules

(D+(G) = I(G)) = (E+«(G) = 1(G)).

The left I"-contractibility of the cotriple resolutiot,(G) — G implies thel"-contracti-
bility of the corresponding induced Abelian chain complexes

«oo=> Dy(G) — --- — D2(G) — D1(G) — 1(G) — 0O,
co > En(G) > -+ > E2(G) =5 E1(G) —> 1(G) - 0,

whereg, = Zi(—l)is;’, n > 1. In effect the canonical-injections{ f, f,, n > 1},
f:G— F(G), fa i F'(G) — F"™NG) = (F(F'(G))), n>1,

yield the left I'-contractibility of F.(G) — G in the category ofl'-sets (see [33,
Lemma 1.2]). Therefore we obtaii-homomorphisms

Z(f):Z(G) — Z(F(G)),
Z(f): Z(F"(G)) — Z(F"TY(G)), n>1,

of free AbelianI"-groups induced byf, f,, n > 1}, where the action of onZ(F"(G)),

n >0, FO(G) = G, is induced by the above defined action/ofon F"(G). The action
of FonlF,(G)= ZyeF”(G) Z(F"(G))(y —e), n >0, is induced by the action df on

Z(F"(G)), namely

”(x(y - e)) = "x("y - e), x € Z(F"(G)), y € F*(G).
The I'-homomorphism$Z( f), Z( f,), n > 0} inducelI"’-homomorphisms
1G — I Fo(G), IF"(G)—)IF”+1(G), n>0,

2
2

and yield the required’-contraction in/ F.(G).
Thus each short exact sequence

0— Kerg, —» E;,(G) —>Imeg, -0, n=1,

is I'-splitting and it follows that(E.(G) — 1(G)) is a relatively free resolution of the
G x I'-modulel (G).
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It is obvious that the homomorphismag, » > 1, induce isomorphisms
Dy (G) ®rnGyxr A= En(G) ®cur A,
Homgr Gy (Dn(G), A) = Homg w1 (En(G), A). 4)

Whence we deduce from (4) that” (1(G) ® A) = Tor” (1(G), A), n > 0. It is easily
checked that the well-known isomorphism

Homgn 6y (D (G), A) = Der(F"(G), A)

is compatible with the action ofl", whence its restriction on the subgroup
Homg Gy r(Dn(G), A) gives an isomorphism with DeKF"(G), A). Thus from (4)
one getsR’-Derr (G, A) ZExt,(1(G), A), n >0,

The proper short exact sequence®t I"'-modules

0—-I1(G)—= Z(G)—»Z—0 (5)

yields long exact sequences of the relative derived functors of the fune®s. - A and
Homg «  (—, A) implying the isomorphisms

HI (G, A)=Tor? (1(G), A) and
H}Y G, A) = ExS(1(G), A), n>=1,
which give the required isomorphismsQ
Itis clear thatL. (1(G)®cxr A) = 1(G)®cxr A andR%-Derr (G, A) = Derr (G, A).

Definition 4. A I'-groupG will be calledI"-free, if itis a free group with basis/a-subset.

Corollary 5. If G is a retract of aI"-free group, therd! (G, A) = 0 and Hp(G,A)=0
forn > 1and anyG x I'-moduleA.

Proof. The augmented simplicial group,(G) — G is left contractible [33] implying
the triviality of the homotopy groups,, (I Fx(G) Qg xr A) andr, Derr (F,(G), A) for
n>1 0O

Corallary 6. If G andI" act trivially on Z, thenHlF(G, Z)=1(G) Qgur Z.

Proof. The proof follows immediately from the long exact sequence of the functors
Tor” (—, Z) induced by (5), SiNC&(G) ®Gur Z=7Z. O

Proposition 7. The cotriple derived functoanlef(—, A) are isomorphic tcH’erl(—, A),
n> 0.

Proof. The long exact sequence of the functors’Ter, A) for the sequence (5) yields
the exact sequence

0— H{ (G,A) = I(G) ®Gur A— Z(G) ®xr A — Z&cxr A— 0.
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It follows that there is a functorial short exact sequence
0— H{ (G, A) - I(G)®Gxr A— IgurA/IrA—0
inducing a short exact sequence of Abelian simplicial groups
0— HlF(F*(G), A) = I(Fu(G)) ®xr A= Ik GyxrA/Ir A — 0.

It remains to apply the corresponding long exact homotopy sequence and to see that
Ir,c)xrA/Ir A is a constant Abelian simplicial group.O

Denote by{G, G]r the subgroup of thé'-groupG generated byG, G] and by the ele-
ments of the formfg- g1, g € G, o e I'. This subgroup will be called the-commutator
subgroup ofG. It is obvious tha{ G, G] is a normall"-subgroup ofG and I" acts triv-
ially on the Abelian grougs/[G, G]r. If H is a normall"-subgroup ofG, we denote by
[G, H]r the subgroup o6 generated by the element&yx~1y~1, wherex € G, y € H,
oel.

Let B be an Abelian group on which acts trivially andf : G — B a homomorphism
of I'-groups. Thenf factorizes uniquely througlv /[G, G]. Consider the subgroup of
G generated by the elements of the foxfiyx1y™1, x,y € G, o € I'. It is easily seen
that this subgroup coincides wiflG;, G]. The elements® yx~1y~1 =[x, y], will be
calledI"-commutators ot5, the groupG/[G, G]r the F—abelianizatiorG?f’ of G and the
corresponding functoG +— G“Fb the I'-abelianization functor.

Proposition 8. There is a functorial isomorphism
I(G)®exr AZG/[G,Glr ® A,
whereG and I" act trivially on A.
Proof. Itis enough to show that(G) s« Z = G/[G, G]r. This isomorphism is given

by (g —e) @ n +— n[g]. Its converse is defined ly] — (g — ¢) ® 1. We have only to show
the correctness of the converse map.

One has
(x”yxilyfl — e) ®1
= (x”yx_ly_l —x+x—e)®1
=x(0yx_1y_1 —e) Rl+(x—e)®1
= ("yxily*l—e) R1+(x—e)®1
=y =y 4y ) @1+ (x—e)®1

=Jy(x_1y_l—e)®1+(Gy—e)®1+(x—e)®1
=yl ®l+(r-0)®1l+x—e)®1
=(x_ly_l—x_l—l—x_l—e)®1+(y—e)®l+(x—e)®l
=x_1(y_l—e)®1+(x_1—e)®1+(y—e)®1+(x—e)®1
= yil—e)®1+(xil—e)®1+(y—e)®l+(x—e)®1.
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But for any element € G the following equalities hold:

0=0®1= (xx_l—e) RlI=x—e)R1+ (x_l —e) ® 1
It follows that under the afore defined converse map Brgommutator becomes 0 show-
ing its correctness. O

The isomorphism of Proposition 8 holds only for trivial actions4mnd it is natural
in the sense that in this case it is functorial and in fact uniquely defined. For an arbitrary
G-module in the classical case there exists another form of this isomorphism, where its
right side is replaced by the non-Abelian tensor product of the gréuasd A.

3. Theequivariant integral homology

Denote thel"-equivariant integral homology grougs! (G,Z) = H! (G), n > 0, the
groupsG andI” acting trivially onZ.
Coroallary 9. There is a functorial isomorphism
H{(G)=G/IG,Glr.

Proof. The proof follows from Corollary 6 and Proposition 80

Note that the groupG, G1r/[G, G] shows the difference between the classical and
the I'-equivariant abelianization functors. We denoteThly the functor assigning to any
I'-groupG the Abelian grougG, G1r/[G, G]. We also denote by - G the subgroup of
G generated by the elemerfig - ¢~1, g € G, o € I'. One has a natural homomorphism

Bn:Hy(G) = Hy (G), n>0,
induced by the morphism of Abelian simplicial groups
(1(Fu(G)) ®6 Z) = I(F«(G)) ®Gxr L.

Theorem 10.

(i) There is an isomorphism
LY (G¥)=HL,(G), n=0.
(ii) There are a functorial short exact sequence
0— I'-G/[G,GINT -G — Hi(G) — H{ (G) - 0,
and a long exact homology sequence
= HI(G)— L]_,TI'(G) - H,(G) — H'(G)
— LY ,TI(G) = - — HY (G)— L] TT'(G) — Ha(G)
— H} (G) — LTI (G) - Hi(G) — H{ (G) — 0.
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Proof. (i) The proof follows from Proposition 7 and Corollary 9.
(i) The commutative diagram

H1(G) —B— HI'(G)

;l l;

G/IG,Gl——=G/[G,G]r

shows that Keg is isomorphic tdG, G]r/[G, G] and itis clear thatG, G|y =[G, G] -
(T T (G)). By applying the short exact sequence (ii) to the cotriple resolufigd) — G,
we obtain a short exact sequence of simplicial Abelian groups

0— TT'(Fu(G)) —» Hi(F.(G)) — H{ (F«(G)) - 0
inducing a long exact homology sequence and it remains to recall that the catttiple
derived functor of the first integral homology gives tlret 1)th integral homology group,
n>0. O

Let A be aG x I'-module on whichG andI" act trivially. Then

H (G, A= 1(G)®cur ASH (G)® A=G/[G,Glr ® A
and

HE(G, A) = Derr (G, A) ZHomG 1 (1(G) ®Gxr Z, A)

=Hom(G/[G, G1r. A).

On the other hand, i; is a I"-free group with basi andg:G — G/[G, G]r is the
canonicall’-homomorphism, thei; /[G, G] is a free Abelian group with basg(X).
Any mapy :8(X) — B to an Abelian groupB induces al"-mapyf:X — B which is
uniquely extended to &-homomorphisnG — B assumingl” acts trivially onB and one
gets a uniquely defined homomorphisiY[G, G]; — B whose restriction o8 (X) is
equal toy .

We deduce that for ang; x I"-module A with trivial actions of G andI" on A we
obtain universal coefficient formulas for the equivariant (co)homology gréfpeG, A)
andH/.(G,A), n > 0.

Theorem 11. There are short exact splfhot naturally) sequences

0— H(G)® A— H, (G, A) — Tory(H}_1(G), A) — 0,
0— Ext'(H! 1(G), A) » HMG, A) — Hom(H] (G), A) - 0

forn > 0.

4. Universal central I'-equivariant extensionsand Hopf formula

Let G be ar-group andA a G x I'-module.
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Definition 12. A I"-equivariant extensio of the I"-group G by the I"-equivariantG-
moduleA is an extension of; by the G-moduleA

E0>A-SB 651

satisfying the following conditions:

(1) E is asequence df'-groups,
(2) E is I'-splitting, that is there is & -mapy : G — B such thai8y = 1¢.

E is called a central"-equivariant extension of thE-group G, if «(A) belongs to the
center ofB and " acts trivially onA.

Note thatI"-equivariant extensions df'-groups investigated in [8] do not in general
satisfy the condition (2).

A central I"-equivariant extensiotU, 8) of G is called universal, if for any central
I'-equivariant extensioX, «) of G there is a uniqué’-homomorphisnV — X overG.

Two I'-equivariant extensiong and E’ of G by A are called equivalent if there is a
morphismE — E’ which is the identity oA and G. We denote byE (G, A) the set of
equivalence classes 6f-equivariant extensions @ by A.

Definition 13. A I'-group G is called I"-perfect, if G coincides with itsI"-commutator
subgroug G, G1r (see also [26]).

Below we give important examples @f-groups which ard™-perfect but not perfect
(see Section 6).

Proposition 14. If (X, ¢) is a central I'-equivariant extension of &'-perfect groupG,
then thel"-commutator subgrou’ = [G, G is I'-perfect and maps ont6.

Proof. SinceG is I'-perfect, it is clear thap mapsX’ ontoG. It follows that any element
x € X can be written as a produefc with x” € X’ andc belongs to Kep. Therefore every
generator ofX” of the form[x1, x2] is equal to[x}c], x5¢5] = [x], x5] with x7, x5 € X’
and of the form? x - x~1 is equal to” (x'c) - (x’c)"1 = x" . x’~1 with x’ € X’. Whence
X' =[X,X1r. O

Coroallary 15. (X', ¢|x/) is a centralI"-equivariant extension af.

Proof. We have only to show thatX’, ¢|x) is I'-splitting. Lety be thel"-splitting map
for (X, @), that ispy = 15. Then arI -splitting mapy’ for the extension(X’, ¢|x/) is
defined as follows: consider the decomposit{@,} of G into orbits with respect to the
action ofI" on G. Choose a representatiyg € D, for eachD, and choose an expression

Zy = [x1, y1loy - [x2, y2lop - - [Xks Vi 1o

of z,, in terms of "-commutators. The equalities
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(. ylo) =7 (T yx "y =71y (x ) (7Y
— cr/xcr’mr’fl(n’y)o’(xfl)a’(yfl) — [o’x’ G/y]g/gg’*l’
x,y €G, 0,0’ € I',imply the expression

o

GZ'I = [le’ Gyl]aalcr—l : [sz’ yz]aazo—l e [ka’ Gyk]mfka—l

for®z,, oer.
Clearly any elemeng € G has the fornf z,, for somez,, € D, ando € I'. The required
I'-splitting mapy’: G — X' is given by setting

V'@ =7'("z) = ["v 0. Ty O], o012, 7Y 02)] g1

[Ty 0.y O0],gp-1- O

Theorem 16. A centralI"-equivariant extensiof/, 8) of a I"-group G is universal if and
only if U is I'-perfect and every central equivariaft-extension W, «) of U splits.

Proof. We will follow Milnor's proof of the classical case [28]. Lal/ be I'-perfect
and every central”-equivariant extension df splits. Let(X, ¢) be an arbitrary central
I'-equivariant extension af. Take the following diagram with exact rows

0—>C—=XxUL>Uy—>1
)
0 C X—2 >G 1

whereX x U is the fiber product oK — G < U. Itis easy to check that the top row is a
centrall"-equivariant extension df . Therefore one hasi@-sections:U — X x U. Thus
the I'-homomorphismf = ¢s : U — X is overG and the diagram

0 D v-"Log 1
Lo
0 C Xx—~¢G 1

is commutative. To prove thgU, 8) is universal, it remains to show the uniqueness of
such anf. Let f1, fo: U — X be two I"'-homomorphisms ovet;. Then one gets & -
homomorphisnk : U — C given byh(u) = fi(u) - f>(u)~1, u € U, which is trivial, since
U is I'-perfect and™ acts trivially onC.

Let (X, ¢) and(Y, ¥) be centrall"-equivariant extensions @f. Then, as we have seen,
if Y is I'-perfect there exists at most ofichomomorphism front to X overG. If Y is
not I'-perfect, then there is a suitable centfalequivariant(X, ¢) of G such that there
exists more than oné&-homomorphism front to X over G. Indeed in this case there
exists a nontrivial"-homomorphisny from Y to some Abelian grou@ on whichI™ acts
trivially. Take the central"-equivariant split extension

0-A—->AxG—-G— 1
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Setting f1(y) = (0, ¥ (y)) and f2(y) = (f(y), ¥ (y)) one gets two distinc"-homomor-
phismsf1 and f> fromY to A x G overG.

Now let (U, B) be a universal centrdl-equivariant extension & and(W, «) a central
I’-equivariant extension df . Since(U, B) is a universal central’-equivariant extension
of G, the groupU is I'-perfect. We will show thatW, Ba) is a centrall"-equivariant
extension ofG. Take xg € KerSa. Thena(xg) belongs to the center df and I" acts
trivially on Kerpga. In effect, if y:U — W is a I'-section of(W, @), one has’ (xg —
ya(xg)) = xo — ya(xp); on the other hand (xg — ya(xg)) = %x0 — y%a(xp) = “x0 —
ya(xg). Whence” xg = xo, xo € KerBa, o € I'. We obtain al"-homomorphisnk: W —
W overU given byh(x) = xoxxo_l, x € W. Since[W, W] is I'-perfect, the restriction
of i to theI"-commutator subgrouV, W], of W is the identity map. Thugy commutes
with elements of W, W] implying xo belongs to the center d¥, sinceW is generated
by [W, W] and Kerx.

We deduce that there is a uniqgue morphidih 8) — (W, Ba) overG, since(U, B) is
universal. Therefore the composité of the induced"-homomorphisnk: U — W over
G with « is equal to the identity showing th&W, «) splits. O

It should be noted that centrdl-equivariant extensions without-splitting property
were used in [26] to characterize universal central relative extensions of an epimorphism
v: I — Q of groups.

Lett: P — G be a projective presentation of tiiegroupG and R denotes the kernel
of t. Then thel"-homomorphisnt sends the normar-subgroug P, R] of P to 1 and
therefore induces &-homomorphism’: [P, P]1r /[P, R]r — [G, G]r which is surjec-
tive.

Theorem 17.

() If G is I'-perfect, then([P, P1r-/[P, R]r,t’) is a universal centrall-equivariant
extension of5.
(i) ForanyI'-groupG the group(R N [P, P]r)/[P, R] isisomorphic toHZF(G).

Proof. (i) The extensior{P /[P, R], t) is a central”-equivariant extension a@¥. Clearly
this extension is central. The group acts trivially on Kerr = R/[P, R]r. Indeed the
elemenfx-x~1, x € R, belongstqP, R] foranyo € I.

By Proposition 14 the groupP, Pl /[P, Rl is I"-perfect and maps ontG'. By
Corollary 15 it follows that the extensiopP, P]r/[P, R]r — G has al -equivariant
splitting map. Let(X, ¢) be a centrall"-equivariant extension of;. Then there is a
I'-homomorphismf : P — X overG. Since(X, v) is a centrall"-equivariant extension
of G, it is easy to see that ([P, R];) = 1. Therefore the restriction of on [P, P]r in-
duces a uniqué&-homomorphisniP, P1r /[P, Rl — X overG, since[P, P1r /[P, R]f
is aI"-perfect group. We deduce that the short exact sequence

0— (RN[P,PIr)/[P,Rlr — [P, PIr/[P,Rlr > G —1

is a universal central’-extension of thd -perfect groupG.
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(ii) Let P, — G be the’Pr-projective resolution of the™-group G induced by the
projective presentatiom: P — G, which we have defined in Section 2. The long exact
homotopy sequence induced by the short exact sequence

1 ([P Plr — [G.Glr) = (P« — G) — (PO - G*) —> 1
of augmented pseudosimplicial groups yields, according to Theorem 10(i), the exact se-
quence

0— HI(G) = mo([Ps. Pulr) > G. ©6)

where the image ot’ is [G, G]r. It is clear thatP, — G is simplicially exact. For the
calculation ofro([ P«, P«]1r) we will prove the equality

Kerad N [P, Pilr = [ P1, Kerdg] .. 7)

It suffices to show the inclusion Ké& N [Py, P1lr C [P1, Keraé]p, since the converse
inclusion is obvious. First we will prove the equality

[Py, P11 = [P1 Kerdg],. - (LPL. PLlr Nso(Po)). (8)
In effect, if [x, ylo € [P1, Pilr, then forx =d - so(c), y = b - so(a) with Bé(x) =c,
33(y) =a andb, d € Kerd}, one has
[x, ylo =[x, b s0(@)] = x7b7 (so(@))x " - so(@) "t b~
=[x,bly - bx® (so(a)) RN () W
=[x, blo - bdso(c)? (s0(@))so(c) ™t -d Lso(a@) ™t - b7t
=[x, by - bd[s0(c), so(@)] . - so(@d tso(at) - b1
=[x, bls - 2+ [s0(c), s0(@)], - bd - so(@)d ™ tso(a) 1ot
=[x,bls -2+ [s0(c), s0(@)], - b [d.so(@)] b7t
with z € [Py, Kerdd1r, bld, so(a)1b~1 € [P1, Kerdd] and[so(c), so(a)] € so(Po).
It follows that[x, y]r belongs to[ Py, Kel’Bé][‘ - ([P1, P1lr N so(Poy)) that proves the
required equality (8).
Letw e [Py, P1]r NKerdg. Then by (8)w € [P1, Kerdd]- ([P1, P1lr Nso(Po)), that is
w=w-x"withw’ € [P, KerB&]p andx’ € [P1, P11 Nso(Po). It follows thatx’ = w'~ 1w

belongs to Keﬁ& N so(Po) = 1. Whencew = w’ and the equality (7) is proved.
Sinced] (Kerdg) = R, using the equality (7) one gets

o

o

31 (LPr, Prlr NKerdd) = a1 ([ P1, Kerdd],.) = [Po. RIr

showing thatro([ Py, P«lr) = [P, P1r /[P, R]r. The required isomorphism of the theo-
rem follows now from the exact sequence (61

The result of Theorem 1.17(ii) will be called the equivariant Hopf formula. In a
forthcoming paper equivariant higher Hopf type formulas will be established for the
I'-equivariant integral homologi,! (G).
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Corollary 18. The groupR N [P, Plr /[P, Rl does not depend on the projective pre-
sentationP — G of the I'-group G. A I'-group has a universal central’-equivariant
extension if and only if it ig”-perfect.

Theorem 19. Let1 — N — E —= G — 1 be a short exact sequence Bfgroups such
that theI"-homomorphisna has al"-excision andr : P — E a projective presentation of
the I'-group E. Then there is an exact sequence

0— U — HJ (E)— HI(G) 2 NJIE,Nlr — HI(E) - H] (G) >0,
whereU is the kernel of the"-homomorphisniP, S1/[P, Rl — [E, N1, R =Kerr,
S =Kerat, induced byr.

Proof. Using the exact sequence (6) thehomomorphisnmx induces the following com-
mutative diagram with exact rows and columns:

0 1 1 1
0——Kery’ Kery — N N/n(Kery)—=0
0—— Hj (E) ——=mno([Px, P<Ir) E HI(E)——0

Y’ Y o
0—= H](G)—=mo( P, PS) ) — G —— H] (G)—0

1 1 0

whereP, — E and P’ — G arePx-projective resolutions of andG induced byr and
at, respectively. Clearly Ker = [P, S]r /[P, R]r. It follows that the imagen(Kery))
of Kery is equal to[E, N] and Kem is isomorphic to Key’. Therefore this diagram
yields the required exact sequence, where the connecting homomorpligtefined in a
natural way. O

Theorem 1.19 is a generalized equivariant version of the well-known Stallings—
Stammbach exact sequence in integral homology [31].
Theorem 20. If A is a I'-equivariantG-module, then there is a bijection
Er(G,A) = H2(G, A).

Proof. We will use the isomorphisn#’2 (G, A) = R%-Der(G, A) (see Theorem 3) and

show the bijectiorE (G, A) = R}T Der(G, A). Take the free cotriple resolutiof, — G
of the I'-group G which is simplicially exact. ThernF; — Fp factors throughF; —
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M — Fy, lpt1 = 80, 171 = 3}, where M is the simplicial kernel ofr and t1 is sur-
jective. If f € Derp(F1, A) such that) f(-1) 82 0, then there |sf e Derr(M, A)
such thatf’'ty = f and f/(A) =0, A = {(x,x), x € Fo}. Denote byDerp(M A) the
subgroup of Der (M, A) consisting of"-derivations f with f(A) = 0. Conversely, if
fle Der-(M, A), then Yo fr(=! 82 =0. 1t foIIows that it is sufficient to estab-
lish a bijection with Coken, wheren: Derp(Fo, A) —> Derp(M A), n=Derr(p, A) —
Derp (i1, A).

Defineamap: Er (G, A) — H%(G, A) as follows. If[E]€ Ef(G,A), E:0— A —
B — G — 1, sinceE is I'-splitting, there is a commutative diagram
o
M% Fo——=G

|k,

A*>B*>G

where Fo = F(G), ¢ is a I'-homomorphism andf (x) = ¢lo(x) - (pll_l(x), xeM.lt
is easily seen thaft is a I'-derivation such thaf (A) = 0 and define} ([E]) = [f]. Con-
versely, if[f] € HI%(G, A), then take the semidirect produtt« G and introduce a relation

(a,x)~(d',x) &= t(x) =1
anda - f(x,x") =d’. Itis easy to check that this relation is a congruence an€ le¢ the
guotientA x G/~ which is aI"-group. One gets a commutative diagram
Iy
M=—FF(G) =G
1
|k
A—2—>C—"—>G
where o (a) = [(a,x)], u([(a,x)]) = 1(x), ¥(x) = [(0,x)]. The extensionE:0 —
AL ¢ L5 G — 1is ar-equivariant extension of by A, the splitting I"-map is

given byy (g) =¥ (0, |g]), g € G. Define?’: H12~(G, A) = Er(G,A) by 9'([f]) =[E]
It is standard to show that and¢’ are well defined and inverse to each othem

Note that Theorem 20 could also be proved using the corresponding factor set the-
ory for I'-groups and the bijectiott is in fact an isomorphism with respect to the “Baer
sum” which could be introduced oA (G, A). The description of highef -equivariant
group cohomology{"“(G, A), n > 2, by extensions is also realizable usimdold I"-
equivariant extensions @ by A, that means extensions of the form

E0-A—>X1—>Xo— > X,—>G—1,

where 0+ A - X1 — Ima; — 0,0— Ima;_1 — X; > Ima; — 0, for 1<i <n —1,
are proper short exact sequencesof I'-modules and 6> Ima,,_1 — X, - G — 1lis
a I'-equivariant extension af by Ime,,_1, and by introducing thé -equivariant charac-
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teristic classq (E) of a I'-equivariant extensiof of G by A, which means by constructing
for any I'-equivariant extensio® of G by A:

EO0>A-SB 651

the exact sequence 6f x I'-modules

x(E)y=0—> A F(B)/L LN 7(G) - 7. — 0,

where F(B’) is the relatively freeG x I'-module generated by thE-setB’ = {[b], b €

B, b#0} with [0] =0, ?(x[p]) =°x[°b]forx € G,o e ', be B'; LisitsG x I'-
submodule generated by the elemdmntst+ b2] — B(b1)[b2] — [b1], Wherebq, bo € B, and
the G x I'-homomorphismg’, 8’ are induced in a natural way lyand 8, respectively.

Using the cochain description (see Section 1) of hequivariant cohomology of

groups H} (G, A) the cup product can be defined, since the tensor product [1] of
I'-cochains is again &-cochain. Therefore there is a cup product

HE(G,A)® HL(G, B) - HE™ (G, A® B)
for p,q > 1, endowing o[- (G, A) a structure offf ;. (G)-module.
For any short exact sequence®fx I'-modules
04 -Salia o
such thats is I"-splitting the sequences
0—> PQRgur A= P®cur A— P®gur A" —0
and
0— Homgy (P, A" = Homgx (P, A) — Homgx (P, A”) = 0

are exact for any relatively projective x I"-module P implying exactI"-equivariant
homology and cohomology sequences, respectively.

Let G be finite and let us consider the homomorphiSg: A — A, Ng(a) =) ;. °a,
where A is a G x I'-module. Assume thaf” acts trivially on Ng(A). Therefore one
has the inclusioriVg (A) ¢ A9*!" and N induces a homomorphis; : HOF(G, A) —
HIQ(G,A). For this we have only to show tha¥;(°a — a) = 0. In effect Ng(a) =
" Ng(a) =Y ,ec’a) =Y regCa) = 6 s(°a) = Ng(°a). Under the afore given
assumption we can defing-equivariant Tate cohomology grou;b%ﬂ(G, A),ne€Z,hby
setting

H}(G, A)=H}G. A), n>1,
H2(G,A)=KerN;,  HyY(G, A) = CokerNg,
Hi"(G,A)=HF (G, 4), n>2

Proposition 21. For any short exact sequence@fx I'-modules
B

E0>A -5 A5 A S0
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such thatg is I"-splitting there is a long exact sequencdbequivariant Tate cohomology
groups

o> HYG, A"y > H(G, A') > HI(G, A)
— HNG,A") - HMHG, A — -

Proof. By using for E the exactI"-equivariant homology and cohomology sequences the
proof is similar to the classical case (see [1, Chapter IV, Theorem 6.4).

Note that it would be interesting to construct tiieequivariant versions of Farell
cohomology theory of groups [5] and Vogel (co)homology theory of groups [18,35] gen-
eralizing the above definefd-equivariant Tate cohomology theory of groups.

5. Relationship with equivariant cohomology of topological spaces

Let X be a topological space. If a group acts onX, then this action induces an
action of G on the singular comple$(X) of X given bygf, f:4, —> X, f € S(X),
makingS(X) a chain complex o&-modules, wherg : X — X is the homeomorphism of
X induced by the action of € G.

Throughout out this sectioi is a G-space the grougs acting onX properly. That
means each point of X belongs to some proper open subseXofRecall that an open
subsetU of X is called proper with respect to the action®@fif U N U is empty for all
elementgy # 1 of G [27].

We will assume also that a separate grdupacts onG and X such that the following
condition holds:

7(x) ="8("x), 9)

forxeX, geG,oerl.

For example ifX is aG-space, takd™ = G with the actions of” on G by conjugation
and onX asG is acting.

Then the augmented singular compleX) — Z:

c > S(X) > Sp-1(X) = -+ = S1(X) —> So(X) > Z—0 (10)

is a chain complex of; x I"-modules, where the grougsand ™ act trivially onZ.
It will be said that the topological spacéhas the property (c), if the singular complex
(10) is exact and any induced short exact sequence

0— Kerdy — S (X) - Imo, — 0

is I"-splitting fork > 0.

For instanceX satisfies the condition (c) if eitheéf is acyclic andl” acts trivially onX
or X is I'-contractible, that is the identity mag1X — X is I'-homotopic to a constant
map fo: X — xp€ X.



H. Inassaridze / Topology and its Applications 153 (2005) 66—89 85

Theorem 22. If a topological spaceX satisfies the conditio(t), then there is an isomor-
phism

H(G, A) = HM.(X/G, A)

for n > 0, whereA is an Abelian group on whiclr and I" act trivially and H.(X/ G, A)
is the equivariant cohomology of topological spapés

Proof. SinceG acts properly onX, by Lemma 11.2 [27, Chapter V] the sequence (10)
is a chain complex of fre&-modules. Therefore eact (X), n > 0, is aG x I'-module
which is free agz-module and its basis consisting of singuiéin simplexes is d”-subset.
It follows that (10) is a relatively fre€ x I'-resolution ofZ.

By Proposition 11.4 [27, Chapter IV] the canonical mapX — X/G induces an iso-
morphism

p*: Homz(S(X/G), A) = Homg (S(X), A)

of chain complexes. Notice that the groiipacts naturally onX/G and the mapp is a
I'-map. Indeed, the action df given by? ([x]) =[°x], x € X, 0 € I", is well defined,
thanks to the equality (9); ifx = y for someg € G, then®y = (8x) = "¢(°x) for any
o € I'. Itis obvious that under so defined action/othe mapp is al"-map. This implies
that the isomorphismp* induces an isomorphism

Homp (S(X/G), A) = Homgx r(S(X), A)

of cochain complexes giving the required isomorphism of the equivariant group coho-
mology of the space&(/G with the equivariant group cohomology of the groGpwith
coefficients inA with trivial actions ofG andI". O

Property (c) holds whenevér acts trivially on the groug; and on the acyclic spacé.
Therefore Theorem 22 is an equivariant version of the classical Theorem 11.5 [27, Chap-
ter IV].

6. Applicationsto algebraic K-theory

Let A be a unital ring and its ideal. The grougE,, (A, I) is the normal subgroup of
the groupE, (A) of elementaryz-matrices generated bi-elementaryz-matricese,, of
the forms, = I,, 4+ ae;; with a € I andi # j (see [2]). The groufE (A, I) is defined as
lim E,(A, ). Itis known [2] that

En(A,1)=[En(A), Ex(A, D]

forn > 3.

It follows that the groupE, (A, I), n > 3, which is not perfect in general, isi, (A)-
perfect group, the grouf, (A) acting onE, (A, I) by conjugation. Clearly the same is
true for the relative elementary grodfiA, I), that iSE(A, I) is a E(A)-perfect group.

Now let A be a ring not necessarily with identity. Denote Ay the unital ring given
by A* ={(a,n), a € A, n € Z} with usual sum and product

(a,n)-(a',n)=(ad +na +n'a, nn).
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One has a short split exact sequence of rings
0>4-5 At 570, (11)
whereo (a) = (a, 0), T(a, n) = n and with splitting mag/ : Z — A", y(n) = (0, n).
By definition E(A) = KerE(t), St{A) = KerSt(tr) and K2(A) = KerKz(t). Clearly
E(A) = E(AT, A). Whence we have the following short exact sequence of short exact
sequences induced by (11):

0— (0— K2(A) — St(A) L, E4)— 1) > (0> K2(A™)

n
- st(at) L5 E(AY) - 1) - (0— K2(Z) — SUZ) — E(Z) — 1) — 0.
One gets an action of &) on S{A) by conjugation using the splitting map(g). The
groupE (A) and the general linear gro@l(A) also become $%)-groups by conjugation

via the mapg™ - St(y). Clearly 8 is a StZ)-homomorphism and 8f) acts trivially on
K>(A). Therefore the central extension of the gratif)

0— Ka(A) — StA) 2> E(A) > 1 (12)
is a sequence of 8f)-groups.

There is a presentation of the Steinberg groupiyas a StZ)-group as follows [32].
The generators;’j fori,j =1, i#j, a € A, satisfy the relations

+b
(1) xiul = xit,

(2) [xlj,ka] 1, j#k, i #m.

3) [xl],xjk]—x”b

(4) xfjxl‘;(xl]) 1—xi“j, zeZ.

(5) xf)x,i’m(xlzj)*l—x,l(’m, ze€Z, i#m, j#k.
(6) xu ]k(x )t =xiixl, zeZ, i #k.

(7) xf xkl(xlj) l—xklsz,fl, 2€Z, jF#k.

Theorem 23. The sequencél?) is a universal centralSt(Z)-equivariant extension of
E(A).

Proof The mapk™ : {ef; "} — St(A™) of elementary matrices given W(e )= xu ,
TeAt,i#j, mduces a SZ)-map« : E(A) — St(A) such thatBx = 1E(A) by using
the proof of a similar fact in the case of Corollary 15 and taking into account the action of
St(Z) on the generatoréa We conclude that (12) is a centrakBj-equivariant extension
of E(A).
From the above condition (6) on generators one k(x]) = xkx o i FE Kk,
b € A. It follows that [St(A), St(Z)] = St(A) showing the groups &t) and E(A) are
St(Z)-perfect groups. Following Theorem 16, it remains to show that any centid)-St
equivariant extension of &t) splits.
Let

0—>C—>Yi>St(A)—>l (13)
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be a central $Z)-equivariant extension of &) with splitting S{Z)-mapy : St(A) — Y.
Consider the following exact sequence

0— C — Y x S(Z) — St(A) x StZ) — 1 (14)

induced by (13) and by the given action of(Bt on this sequence. Clearly @t") =
St(A) x St(Z) and (14) is a central extension of(8t"). Therefore (14) splits, since
BT :StAT) — E(AT) is a universal central extension @&f(A*). Obviously StA™) is
generated by{, andx;;, a€ A, z € Z.

Following tfzne proof of Theorem 5.10 [28], the section for (14) can be constructed as
follows. Fori # j chose an index distinct fromi and j. Take the elementg = ;7(xilh)
andy’ = ¥ (x};;). Then the needed section is defineddly— [y, y'1=s{;, x5, = x5 In
[28] it is shown that this section does not depend:and the eIementg“j, xjk satisfy all
the Steinberg relations. This implies that the elemefj]tScjk satisfy the relations (1)—(7)
of the S{Z)-presentation of $#). It follows that by sendingf‘j tos, ac A, i # j,this

map gives rise to the required splittingB-homomorphism : St(A) — Y. O

Corollary 24. There is an isomorphism
K2(A) = H'™(E(A)) and Hy'™(StA)) =0
for any ring A.

Proof. The proof follows from Theorems 17, 23 and 203

Finally we provide the construction of an alternative equivariant algelfaiceory K |’
by usingI"-equivariant commutators.

Let I;(G), i > 0, be the lowerl"-equivariant central series of BA-group G [11],
wherely(G) = G, I'(G) =[G, Gy andI;41(G) =[G, I;(G)]r, i > 0. First we give
the equivariant version of th&-completion functoiZ., : G — G defined on the category
of groups [3], by setting

ZL(G) =lim G/ T (G),
1
where{TI;(G)} is the I'-equivariant lower central series of thiegroup G. We obtain a
covariant functoz’ :Gr — Gr.

Let A be a ring andl” a group acting on the general linear groBp(A). Define the

I'-equivariant algebrai& -functors by

kI (a)=1777L (GL)), n>1, (15)

wherePr is the projective class induced by the free cotriglen the categoryGr of
I'-groups. This definition could actually be considered as an equivariant version of Quil-
len’s algebraicK -theory, since in the case of the trivial actionlofon GL(A) it is proved

that the left derived functors of the funct@r, with respect to the projective class induced
by the free cotriple in the category of groups are isomorphic to Quill&aigroups up to
dimension shift [23,20]. It would be interesting to establish the relationship of the afore
defined equivariant algebrai¢-theory (15) with the equivariant algebraictheory given

in [13].
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