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1 Introduction

Groups enriched with an action (by automorphisms) of a given group Γ, that
is, Γ-groups, provide a suitable setting for the treatment of an extensive list of
subjects with recognized mathematical interest. This paper is concerned with
a homology theory on the category of Γ-groups and Γ-equivariant homomor-
phisms between them.

The use of cohomological tools in the study of groups with operators goes
back to Whitehead in [18]. There he made an appropriate treatment of Γ-
group extensions by working with a vector cohomology theory of the kind
considered by Lyndon in [13]. Some recent results have come to justify a
renewed interest in this body of research, starting with [2] where a study on
a specific cohomology theory for Γ-groups, denoted Hn

Γ
(G,A), is done (see

also [11] for a relative theory, in which applications in algebraic K-theory are
established). Indeed, by involving the low dimensional cohomology groups
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H2
Γ
(G,A) and H3

Γ
(G,A), precise theorems on the homotopy classification of

graded categorical groups and their homomorphisms are stated in [3]. Also,
the classification of several types of equivariant crossed products constructions,
such as Rédei extensions of monoids by groups with operators, crossed product
Γ-algebras, equivariant graded Clifford systems or strongly graded Hopf Γ-
algebras, is given in [3]. Furthermore, the following theorem, which states a
suitable counterpart for an equivariant situation of the classic Brauer-Hasse-
Noether result, is proved in [5]: if F/K is a Galois finite field extension on
which a group Γ is acting by automorphisms, then the equivariant Brauer group
Br

Γ
(F/K) and the cohomology group H2

Γ

(
Gal(F/K), F×

)
are isomorphic.

The present work is embedded in this research program that Whitehead
began about cohomological properties of Γ-groups. An early justification for
studying homology of groups with operators came from their cohomology the-
ory and however, by now, there is no any systematic study on a specific homol-
ogy theory for these algebraic structures in the literature. Hence the purpose of
this paper is to provide an appropriate and fundamental source of information
on that subject. Indeed, we specialize here Barr-Beck cotriple homology [1] to
define the homology groups of a Γ-group G with coefficients in an equivariant
G-module A, denoted by H

Γ

n(G,A). The article is then mainly dedicated to
state and prove several desirable properties of this homology theory.

The article is organized in seven sections, with the following headings:
Section 1: Introduction
Section 2: Equivariant derivations and differentials of a Γ-group
Section 3: Homology of Γ-groups
Section 4: Low-dimensional Homology of Γ-group extensions
Section 5: The integral homology of a Γ-group
Section 6: Homology and the lower Γ-central series
Section 7: Universal central equivariant extensions of Γ-groups

2 Equivariant derivations and differentials of

a Γ-group

Throughout the paper Γ stands for any fixed group. We denote by Γ-Gp the
category of Γ-groups, that is, the category whose objects are groups enriched
with a left Γ-action by automorphisms and whose morphisms are those homo-
morphisms p : G→ H that are Γ-equivariant, in the sense that p(σx) = σp(x),
σ ∈ Γ, x ∈ G. Such a morphism is usually termed a Γ-homomorphism. The
category of abelian Γ-groups, that is, of Γ-modules, is denoted by Γ-Mod.

If G is a Γ-group, then a Γ-equivariant G-module A [2, Definition 2.1] is
a Γ-module, also denoted by A, equipped with a G-module structure by a
Γ-equivariant action map G× A→ A, which means that the two actions of Γ
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and G on A are compatible in the following sense:

σ(xa) = (σx)(σa) (σ ∈ Γ, x ∈ G, a ∈ A) . (1)

Homomorphisms between Γ-equivariant G-modules f : A → B are those
abelian group homomorphisms that are of both Γ- and G-modules, that is,
such that f(σa) = σf(a) and f(xa) = xf(a).

For any Γ-group G, the category of Γ-equivariant G-modules is isomorphic
to the category (G o Γ)-Mod of modules over the semidirect product group
G o Γ (by means of the identification (x,σ)a = x(σa)). Henceforth we will
make no distinction between a Γ-equivariant G-module and a (GoΓ)-module.
Moreover, we should note that the category (Go Γ)-Mod is equivalent to the
category of abelian group objects in the comma category Γ-Gp/G of Γ-groups

over G (by the functor A 7→ (AoG
pr→G), see [2, Theorem 2.1]).

If p : H → G is a Γ-homomorphism, then any Γ-equivariant G-module A
can be given a Γ-equivariant H-module structure “via” p by defining

ha = p(h)a (a ∈ A, h ∈ H) ,

and keeping the same Γ-action on A. We also denote this Γ-equivariant H-
module by A, p being understood.

Let A be a Γ-equivariant G-module. A Γ-derivation from G into A is a
Γ-equivariant derivation from the group G into the G-module A, that is, a
map d : G→ A with the properties

i) d(xy) = xd(y) + d(x) (x, y ∈ G),
ii) d(σx) = σd(x), (σ ∈ Γ, x ∈ G).
The abelian group of all Γ-derivations d : G → A, is denoted Der

Γ
(G,A).

If p : H → G is any Γ-homomorphism and f : A → B is any morphism of
Γ-equivariant G-modules, then there is an induced homomorphism

p∗f∗ = f∗p
∗ : Der

Γ
(G,A)→ Der

Γ
(H,B), d 7→ f d p .

Thus Der
Γ
(−,−) becomes a functor from the cartesian product category of

the comma category of Γ-groups over a given Γ-group G by the category of
Γ-equivariant G-modules into the category of abelian groups. For any Γ-
homomorphism p : H → G and any Γ-equivariant G-module A, there is a
natural isomorphism [2, Proposition 2.5]

Der
Γ
(H,A) ∼= Hom

Γ-Gp/G

(
H

p→ G, AoG
pr
� G

)
. (2)

For any Γ-group G, the ring-group Z(G) is a Γ-equivariant G-module with
the Γ-action:

σ
(∑
x∈G

mxx
)

=
∑
x∈G

mx
σx .
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Then, the augmentation ε : Z(G) → Z,
∑
x∈G

mxx 7→
∑
x∈G

mx, becomes a ho-

momorphism of Γ-equivariant G-modules, Z being trivial both as Γ- and G-
module. Hence the sequence

0→ I(G)→ Z(G)
ε→ Z→ 0 , (3)

where I(G) is the augmentation ideal of the group G, is an exact sequence of
Γ-equivariant G-modules.

IfA is a Γ-equivariantG-module, we know that Der(G,A) ∼= Hom
G

(I(G), A)
(by the mapping d 7→ fd,where fd(x−1) = d(x)), and it is immediate that this
isomorphism carries the subgroup of Γ-equivariant derivations onto the sub-
group of all Γ-equivariant G-module homomorphisms from I(G) to A. Thus
there is a natural isomorphism

Der
Γ
(G,A) ∼= Hom

GoΓ
(I(G), A) , (4)

and therefore I(G) is a Γ-equivariant G-module of differential forms of the Γ-
group G. For any Γ-group over G, H → G, we have the natural isomorphisms

Hom
GoΓ

(
Z(Go Γ)⊗

HoΓ
I(H), A

) ∼= Hom
HoΓ

(
I(H), A

) ∼= Der
Γ
(H,A)

∼= Hom
Γ-Gp/G

(
H

p→ G, AoG
pr
� G

)
,

which means that Diff
Γ

G
(H) = Z(GoΓ)⊗

HoΓ
I(H) is a Γ-equivariant G-module

of relative differential forms of H over G, and also that the functor of relative
differentials

Diff
Γ

G
(−) : Γ-Gp/G −→ (Go Γ)-Mod ,

is a left adjoint functor to the forgetful-embedding functor (G o Γ)-Mod →
Γ-Gp/G, A 7→ (AoG

pr→G).

3 Homology of Γ-groups

The category of Γ-groups is tripleable over the category of sets [14], since it
is a variety of universal algebras, and so it is natural to specialize Barr-Beck
cotriple (co)homology [1] to the definition of (co)homology of a Γ-group G with
coefficients in a Γ-equivariant G-module A.

Given a Γ-group G, the resulting cotriple (G, ε, δ) in the comma category

Γ-Gp/G is as follows. For each Γ-group H
ϕ→ G over G, G(H

ϕ→ G) =

FH ϕ→ G, where FH is the free Γ-group on the set H (i.e., the free group
on the set H × Γ with the Γ-action such that σ(h, τ) = (h, στ)), and ϕ :
FH → G is the Γ-homomorphism such that ϕ(h, σ) = σϕ(h). The counit
δ : G → id sends H → G to the Γ-homomorphism FH → H such that
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δ(h, σ) = σh, and the comultiplication ε : G → G2 sends H → G to the Γ-
homomorphism FH → FFH such that ε(h, σ) = ((h, 1), σ), for each h ∈ H and
σ ∈ Γ. This cotriple produces an augmented simplicial object in the category

of endofunctors in Γ-Gp/G, G•
δ→ id, which is defined by Gn = Gn+1, with

face and degeneracy operators di = Gn−iδGi : Gn → Gn−1, 0 ≤ i ≤ n, and
sj = Gn−j−1εGj :Gn−1 → Gn, 0 ≤ j ≤ n − 1. Hence, for any Γ-equivariant
G-module A, one obtains a cosimplicial object in the category of abelian group
valuated functors from Γ-Gp/G

Der
Γ
(G•(−), A) ,

and a simplicial object

A⊗
GoΓ

Diff
Γ

G
G•(−)

(as usual, we regard A as a right (Go Γ)-module by setting a(x,σ) = (x,σ)−1
a =

σ−1
(x
−1
a)). Then one gets the corresponding associated (co)chain complexes

(also denoted by Der
Γ
(G•(−), A) and A ⊗

GoΓ
Diff

Γ

G
G•(−), respectively), ob-

tained by taking alternating sums of the (co)face operators

0→ Der
Γ
(G(−), A)→ Der

Γ
(G2(−), A)→ Der

Γ
(G3(−), A)→ · · ·

and

· · · → A⊗
GoΓ

Diff
Γ

G
G3(−)→ A⊗

GoΓ
Diff

Γ

G
G2(−)→ A⊗

GoΓ
Diff

Γ

G
G(−)→ 0 .

These (co)chain complexes give the cotriple (co)homology groups of the
Γ-group G with values in A:

Hn
Γ

(G,A) = Hn−1
(
Der

Γ
(G•(G), A)

)
,

H
Γ

n(G,A) = Hn−1

(
A⊗

GoΓ
Diff

Γ

G
G•(G)

)
, n ≥ 1 .

A systematic study on the cohomology groups Hn
Γ

(G,A) was done in [2].
Here, our goal is the homology theory. Some basic properties are immediate
consequences of its definition; thus for example:

H
Γ

1 (G,A) = A⊗
GoΓ

I(G) , (5)

H
Γ

n(F,A) = 0 for all n ≥ 2, whenever F is a free Γ-group, (6)

Any short exact sequence 0 → A → B → C → 0 of Γ-equivariant G-
modules provides a long exact sequence

· · · → H
Γ

n+1(G,C)→ H
Γ

n(G,A)→ H
Γ

n(G,B)→ H
Γ

n(G,C)→ · · · . (7)
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Theorem 3.1 For any Γ-group G and any Γ-equivariant G-module A, there
are natural isomorphisms

H
Γ

n(G,A) ∼= Tor
GoΓ

n−1

(
A, I(G)

)
, n ≥ 1 . (8)

Proof : By definition H
Γ

n(G,A) = Hn−1

(
A ⊗

GoΓ
Diff

Γ

G
G•(G)

)
. The theorem

follows from the fact that the augmented complex of (Go Γ)-modules

Diff
Γ

G
G•(G)→ I(G)→ 0

is a projective resolution of I(G). Indeed, every Diff
Γ

G
Gn(G) is actually a free,

hence projective, GoΓ-module, and for the exactness it suffices to observe that
for any injective (GoΓ)-module I, the cochain complex Hom

GoΓ
(Diff

Γ

G
G•(G), I)

is exact at dimensions ≥ 1. But, for all n ≥ 1,

Hn
(

Hom
GoΓ

(Diff
Γ

G
G•(G), I)

)
∼= Hn

(
Der

Γ
(G•(G), I)

)
= Hn+1

Γ
(G, I) = 0 ,

by [2, Section 3, point c)]. |||||

In the following theorem we show a basic relationship between the coho-
mology groups H

Γ

n(G,A) with the ordinary homology groups Hn(GoΓ, A) and
Hn(Γ, A), by means of a long exact sequence linking these groups. We should
stress that the projection G o Γ � Γ induces, in general, no homomorphism
Hn(Go Γ, A)→ Hn(Γ, A).

Moreover, let us remark that from Theorem 3.2 below and the isomor-
phism (5), it follows that there are natural isomorphisms between the homology
groups H

Γ

n(G,A) and the (ordinary) relative homology groups Hn(GoΓ,Γ, A)
(cf. [2, (12)] for the corresponding fact in cohomology).

Theorem 3.2 Let G be a Γ-group and let A be a Γ-equivariant G-module.
Then there is a natural long exact sequence

· · · // H
Γ

3 (G,A) // H2(Γ, A) // H2(Go Γ, A)

rrfffffffffffffffffff

H
Γ

2 (G,A) // H1(Γ, A) // H1(Go Γ, A)

rrfffffffffffffffffff

H
Γ

1 (G,A) // H0(Γ, A) // H0(Go Γ, A) // 0 .

(9)

Proof : Let us apply the functor A⊗
GoΓ
− to the exact sequence (3). Then we

get the long exact sequence

· · · // Tor
GoΓ

n+1

(
A, I(G)

)
// Tor

GoΓ

n+1

(
A,Z(G)

)
// Tor

GoΓ

n+1

(
A,Z

)
rrdddddddddddddddddddddddddddd

Tor
GoΓ

n

(
A, I(G)

)
// Tor

GoΓ

n

(
A,Z(G)

)
// · · · .

(10)
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By Theorem 3.2 Tor
GoΓ

n

(
A, I(G)

) ∼= H
Γ

n+1(G,A) and the lemma below

shows that Tor
GoΓ

n

(
A,Z(G)

) ∼= Hn(Γ, A). Since Tor
GoΓ

n

(
A,Z

) ∼= Hn(GoΓ, A),
the announced long exact sequence (9) follows from the sequence (10). |||||

Lemma 3.3 For any Γ-group G and any Γ-equivariant G-module A, there are
natural isomorphisms

Tor
GoΓ

n

(
A,Z(G)

) ∼= Hn(Γ, A) , n ≥ 0 . (11)

Tor
GoΓ

n

(
Z(Γ), A

) ∼= Hn(G,A) , n ≥ 0 , (12)

where Z(Γ) is considered as a trivial G-module.

Proof : We only prove (11) since the proof of (12) is entirely parallel.
Case n = 0: First observe that, for any Γ-equivariant G-module B, there are
isomorphisms

Hom
GoΓ

(Z(G), B) ∼= BΓ ∼= Hom
Γ
(Z, B) .

f � // f(1) f�oo

(13)

Then, for any abelian group X, we have

Hom
(
A⊗

GoΓ
Z(G), X

) ∼= Hom
GoΓ

(
Z(G),Hom(A,X)

)
(13)∼= Hom

Γ

(
Z,Hom(A,X)

)
∼= Hom

(
A⊗

Γ
Z, X

)
,

where Hom(A,X) is a G o Γ-module by the action (x,σ)f : a 7→ f(σ
−1

(x
−1
a)).

Therefore
A⊗

GoΓ
Z(G) ∼= A⊗

Γ
Z , (14)

which proves (11) for n = 0.

Arbitrary n: Let P• → A be any projective G o Γ-module presentation of A.
Then it is also a Γ-module projective presentation of A and therefore

Tor
GoΓ

n

(
A,Z(G)

)
= Hn

(
P• ⊗GoΓ

Z(G)
) (14)∼= Hn

(
P• ⊗Γ

Z
)

= Hn(Γ, A) . |||||

The ordinary integral homology groups, Hn(G) = Hn(G,Z), are actually par-
ticular equivariant homology groups of a Γ-group G:

Proposition 3.4 There are natural isomorphisms

H
Γ

n(G,Z(Γ)) ∼= Hn(G) , n ≥ 1 , (15)

where Z(Γ) is considered as a trivial G-module.
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Proof : For n = 1, we have

H
Γ

n

(
G,Z(Γ)

) (5)∼= Z(Γ)⊗
GoΓ

I(G)
(12)∼= H0

(
G, I(G)

) ∼= H1(G,Z).

Let n ≥ 2 and consider the long exact sequence (9) for A = Z(Γ). Since,
for every m ≥ 1, Hm

(
Γ,Z(Γ)

)
= 0 we get isomorphisms

H
Γ

n

(
G,Z(Γ)

) ∼= Hn

(
Go Γ,Z(Γ)

)
= Tor

GoΓ

n

(
Z(Γ),Z

) (12)∼= Hn(G,Z). |||||

4 Low-dimensional Homology of Γ-group ex-

tensions

Let 1→U i→ E
p→ G→1 be a short exact sequence of Γ-groups, thus U can be

identified with a normal Γ-subgroup of E and E/U ∼= G as Γ-groups.
The abelianized group Uab= U/[U,U ] becomes both a Γ- and a G-module

with actions

σ(u[U,U ]) = σu[U,U ] (σ ∈ Γ, u ∈ U),

x(u[U,U ]) = eue−1[U,U ] (x ∈ G, u ∈ U, e ∈ p−1(x)) .

Furthermore, since σ(eue−1) = σe σu (σe)−1 and p(σe) = σp(e), it follows that
σ(x(u[U,U ]) = (σx)(σ(u[U,U ])), for all σ ∈ Γ, x ∈ G and u ∈ U . Hence Uab is a
Γ-equivariant G-module, and, for any Γ-equivariant G-module A, we have

Theorem 4.1 There is a natural exact sequence

H
Γ

2 (E,A)→ H
Γ

2 (G,A)→ A⊗
GoΓ

Uab → H
Γ

1 (E,A)→ H
Γ

1 (G,A)→ 0 . (16)

Proof : The group extension 1→U → E
p→ G→1 induces a short exact se-

quence of G-modules [10, Theorem VI.6.3],

0→ Uab κ→ Z(G)⊗E I(E)
ν→ I(E)→ 0 , (17)

in which κ(u[U,U ]) = 1⊗ (u− 1) and ν(x⊗ (e− 1)) = x(p(e)− 1) = xp(e)−x.
The G-action on Z(G)⊗E I(E) being given by x(y ⊗ (e− 1)) = xy ⊗ (e− 1).

Short exact sequence (17) is actually of Γ-equivariant G-modules, where Γ
acts on Z(G)⊗EI(E) by σ(x⊗ (e−1)) = σx⊗ (σe−1). By applying the functor
A⊗

GoΓ
−, we obtain the exact sequence

Tor
GoΓ

1

(
A,Z(G)⊗

E
I(G)

)
// Tor

GoΓ

1

(
A, I(G)

)
rreeeeeeeeeeeee

A⊗
GoΓ

Uab // A⊗
GoΓ

Z(G)⊗E I(E) // A⊗
GoΓ

I(G) // 0 ,

(18)
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in which we see that A ⊗
GoΓ

I(G) = H
Γ

1 (G,A), Tor
GoΓ

1

(
A, I(G)

) (8)∼= H
Γ

2 (G,A)
and

A⊗
GoΓ

Z(G)⊗
E

I(E)
(11)∼= A⊗

Γ
Z⊗

E
I(E)

(12)∼= A⊗
Γ
Z(Γ)⊗

EoΓ
I(E)

∼= A⊗
EoΓ

I(E)
(12)∼= H

Γ

1 (E,A) .

(19)

The exact sequence (16) follows from (18) since, we claim, there is a natural
epimorphism

H
Γ

2 (E,A) −→ Tor
GoΓ

1

(
A,Z(G)⊗

E
I(E)

)
→ 0 . (20)

To see this, note that all isomorphisms in (19) are natural in A, so that

H
Γ

1 (E,−) ∼= − ⊗GoΓ
Z(G)⊗

E
I(E) .

If 0 → K → P → A → 0 is any Γ-equivariant G-module projective presenta-
tion of A, there is an induced exact sequence (7)

→ H
Γ

2 (E,P )→ H
Γ

2 (E,A)→ K⊗
GoΓ

Z(G)⊗
E
I(E)→ P⊗

GoΓ
Z(G)⊗

E
I(E)→ .

Since

Ker
(
K⊗

GoΓ
Z(G)⊗

E
I(E)→ P⊗

GoΓ
Z(G)⊗

E
I(E)

)
= Tor

GoΓ

1

(
A,Z(G)⊗

E
I(E)

)
,

the claimed epimorphism (20) arises as the one induced by the homomorphism
H

Γ

2 (E,A)→ K ⊗
GoΓ

Z(G)⊗
E

I(E) in the above exact sequence. |||||

Because of the isomorphisms (15), when one takes A = Z(Γ) in Theorem
4.1, the resulting 5-term exact sequence (16) becomes the known Stallings-
Stammbach [16, 17] exact sequence in integral homology

H2(E)→ H2(G)→ U/[E,U ]→ Eab → Gab → 0 ,

since Z(Γ) ⊗
GoΓ

Uab
(12)∼= Z ⊗

G
Uab and Z ⊗

G
Uab ∼= U/[E,U ] by the mapping

1⊗ u[U,U ] 7→ u[E,U ]. Actually, by naturalness, Stallings-Stammbach 5-term
exact sequence is of Γ-modules (note that a Γ-group is the same as a functor
G : Γ→ Gp, so that, by functoriality, the integral homology groups Hn(G) of
a Γ-group are indeed Γ-modules).
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5 The integral homology of a Γ-group

In this section we study the homology groups H
Γ

n(G,A), of a Γ-group G with
trivial coefficients, that is, with coefficients in abelian groups A, regarded as
Γ-equivariant G-modules on which both groups Γ and G are acting trivially.
Particularly, we consider the equivariant integral homology groups

H
Γ

n(G) = H
Γ

n(G,Z) , n ≥ 1 . (21)

The category of abelian groups is a reflexive subcategory of the category
of Γ-groups. To describe the quotient (reflector) functor Γ-Gp � Ab we
introduce the following concept:

Definition 5.1 The Γ-commutator [G,U ]
Γ

for a Γ-subgroup U of a Γ-group
G is the subgroup generated by the Γ-commutator elements

x σux−1u−1 = [x, u;σ] , x ∈ G, u ∈ U, σ ∈ Γ .

Proposition 5.2 Let U ⊆ G be a Γ-subgroup.

1. [G,U ]
Γ
⊆ G is a Γ-subgroup.

2. If U is a normal subgroup, then [G,U ]
Γ

is a normal subgroup of G and
moreover [G,U ]

Γ
⊆ U .

3. [G,U ]
Γ

= 1 if and only if U is central in G and Γ acts trivially on U .

Proof :

1. This follows from the equality τ [x, u;σ] = [τx, τu; τστ−1].

2. Let U be normal in G. Then we have [x, u;σ] = (x σux−1)u−1 ∈ UU = U ,
and thus [G,U ]

Γ
⊆ U . Further, the equality

y[x, u;σ]y−1 = [y, [x, u;σ]; 1][x, u;σ] ,

shows that [G,U ]
Γ

is closed under conjugation in G.

3. Suppose that [G,U ]
Γ

= 1. Since [G,U ] = [G,U ]1 ⊆ [G,U ]
Γ
, it follows

that U is central in G. Furthermore, for any σ ∈ Γ and u ∈ U ,

1 = [1, u;σ] = σuu−1 ,

and Γ acts trivially on U . The converse is trivial.

|||||
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Let G be a Γ-group. The quotient G/[G,G]
Γ

is an abelian group on which
both Γ and G act trivially. Moreover, any Γ-homomorphism G → A, from G
to an abelian group A, endowed with the trivial Γ- and G-actions, factorizes
uniquely through G/[G,G]

Γ
. That is, the canonical projection G� G/[G,G]

Γ

induces a bijection

Hom
(
G/[G,G]

Γ
, A
) ∼= Hom

Γ-Gp
(G,A) . (22)

Hence, the “ Γ-abelianization functor ”

U : Γ-Gp→ Ab, G 7→ G/[G,G]
Γ
, (23)

is left adjoint to the inclusion Ab ↪→ Γ-Gp. The next theorem shows that
this Γ-abelianization functor is the same as the equivariant homology functor
H

Γ

1 (−).

Theorem 5.3 For any Γ-group G,

H
Γ

1 (G) ∼= G/[G,G]
Γ
. (24)

Proof : Let A be any abelian group considered as a trivial Γ- and G-module.
Then, we have natural isomorphisms

Hom
(
H

Γ

1 (G), A
) (5)∼= Hom

(
Z⊗

GoΓ
I(G), A

) ∼= Hom
GoΓ

(
I(G),Hom(Z, A)

)
∼= Hom

GoΓ

(
I(G), A

) (4)∼= Der
Γ
(G,A) = Hom

Γ-Gp
(G,A)

(22)∼= Hom
(
G/[G,G]

Γ
, A
)
,

from where the theorem follows. An explicit description of the isomorphism
(24), H

Γ

1 (G) = Z⊗
GoΓ

I(G) ∼= G/[G,G]
Γ
, is: 1⊗ (x− 1) 7→ x[G,G]

Γ
. |||||

Note also that

H
Γ

1 (G) ∼= Z⊗
GoΓ

I(G) = H0

(
Go Γ, I(G)

) ∼= I(G)

I(Go Γ)I(G)
.

Corollary 5.4 For each n ≥ 1, the functor H
Γ

n(−) : Γ-Gp → Ab is the
cotriple (n− 1)-th derived functor of the Γ-abelianization functor (23). More-
over, if A is any abelian group regarded as a trivial Γ-equivariant G-module,
then each H

Γ

n(−, A) is the cotriple (n − 1)-th derived functor of the functor
G 7→ A⊗G/[G,G]

Γ
.
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Proof : Let G be any Γ-group. Then,

H
Γ

n(G,A) = Hn−1

(
A⊗

GoΓ
Diff

Γ

GG•(G)
) ∼= Hn−1

(
A⊗G•(G)oΓ

I(G•(G))
)

∼= Hn−1

(
A⊗ Z⊗G•(G)oΓ

I(G•(G))
) (5)∼= Hn−1

(
A⊗HΓ

1 (G•(G))
)

(24)∼= Hn−1

(
A⊗G•(G)/[G•(G),G•(G)]

Γ

)
.

|||||

Analogously, as it happens for ordinary group cohomology, there are univer-
sal coefficient formulas which allow us to compute the (co)homology of a group
with operators with trivial coefficient modules from its integral homology:

Theorem 5.5 Let G be a Γ-group and let A be an abelian group considered
as a trivial Γ-equivariant G-module. There are isomorphisms

H
Γ

1 (G,A) ∼= A⊗HΓ

1 (G) , H1
Γ
(G,A) ∼= Hom

(
H

Γ

1 (G), A
)
, (25)

and, for any n ≥ 1, short exact split sequences

0→ A⊗H Γ

n+1(G)→ H
Γ

n+1(G,A)→ Tor
(
A,H

Γ

n(G)
)
→ 0 , (26)

0→ Ext
(
H

Γ

n(G), A
)
→ Hn+1

Γ
(G,A)→ Hom

(
H

Γ

n+1(G), A
)
→ 0 . (27)

Proof : For the isomorphisms (25), we have

H
Γ

1 (G,A)
(5)
= A⊗

GoΓ
I(G) ∼= A⊗ Z⊗

GoΓ
I(G)

(5)
= A⊗HΓ

1 (G) ,

and

H1
Γ
(G,A) = Der

Γ
(G,A) = Hom

Γ-Gp
(G,A)

(22,24)∼= Hom
(
H

Γ

1 (G), A
)
.

To prove the existence of exact sequences (26) and (27), let F• � I(G)
be any free resolution of I(G) as a (G o Γ)-module. Then A ⊗

GoΓ
F• ∼=

A⊗
(
Z⊗

GoΓ
F•
)

and Hom
GoΓ

(
F•, A

) ∼= Hom
(
Z⊗

GoΓ
F•, A

)
, where Z⊗

GoΓ
F• is a

complex of free abelian groups. Universal Coefficient Theorem in (co)homology
gives the (split) short exact sequences

A⊗Hn

(
Z⊗

GoΓ
F•
)
� Hn

(
A⊗

GoΓ
F•
)
� Tor

(
A,Hn−1(Z⊗

GoΓ
F•)
)
,

Ext
(
Hn−1(Z⊗

GoΓ
F•), A

)
� Hn

(
Hom

GoΓ
(F•, A)

)
� Hom

(
Hn(Z⊗

GoΓ
F•), A

)
,

which can be identified with (26) and (27) respectively, by taking into account
(8) and that, by [2, Theorem 2.6] and (4), there are natural isomorphisms
Hn+1

Γ
(G,A) ∼= Extn

GoΓ
(I(G), A) for all n ≥ 0. |||||
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Next we focus our attention on the homology groups H
Γ

2 (G).

Theorem 5.6 Any extension of Γ-groups 1 → U → E
p→ G → 1 induces an

exact sequence

H
Γ

2 (E)→ H
Γ

2 (G)→ U/[E,U ]
Γ
→ E/[E,E]

Γ
→ G/[G,G]

Γ
→ 0 . (28)

Proof : Sequence (28) is obtained from the sequences (16) in Theorem 4.1 where
coefficients are taken in the trivial Γ-equivariant G-module A = Z. Indeed,
by (24), we know that H

Γ

1 (E) ∼= E/[E,E]
Γ

and H
Γ

1 (G) ∼= G/[G,G]
Γ
. Also

Z ⊗
GoΓ

Uab = H1

(
G o Γ, Uab

) ∼= Uab/I(G o Γ)Uab, where I(G o Γ)Uab is the
subgroup of Uab generated by the elements(

(p(e), σ)− (1, 1)
)
(u[U,U ]) = e σu e−1u−1[U,U ] , e ∈ E, u ∈ U , σ ∈ Γ .

And thus we see that Z⊗
GoΓ

Uab ∼= U/[E,U ]
Γ
. |||||

Let us now consider 1→ R→ F → G→ 1, any exact sequence of Γ-groups
with F a free Γ-group. By (6) we have H

Γ

2 (F ) = 0 and the corresponding
associated exact sequence (28) yields a natural isomorphism

H
Γ

2 (G) ∼= Ker
(
R/[F,R]

Γ
−→ F/[F, F ]

Γ

)
,

whence we obtain the “Hopf formula” for groups with operators

H
Γ

2 (G) ∼=
R ∩ [F, F ]

Γ

[F,R]
Γ

, (29)

which, in particular, implies that its right term does not depend of the cho-
sen free presentation of the Γ-group G. In a natural sense, (29) shows that
H

Γ

2 (G) generalizes the idea of the Schur multiplier. Moreover, the abelian
group R ∩ [F, F ]

Γ
/[F,R]

Γ
is the Baer-invariant of G relative to the variety of

abelian groups, defined by Fröhlich in [7] and by Furtado-Coelho in [9] (where
it is denoted by D1U(G), U being the quotient functor (23), G 7→ G/[G,G]

Γ
).

6 Homology and the lower Γ-central series

The homology of a group in low dimensions is related to the lower central series
of the group. The key result, from which a large number of interesting appli-
cations can be found in the literature, is due to Stallings [16] and Stammbach
[17]. This result establishes that if h : G→ G′ is a homomorphism inducing an
isomorphism H1(G) ∼= H1(G′) and mapping H2(G) onto H2(G′), then for each
integer n ≥ 0, h induces an isomorphism G/Gn

∼= G′/G′n and an embedding
G/G∞ ⊆ G′/G′∞. Here Gn denotes the n-th term of the lower central series
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of G and G∞ =
⋂
nGn. We shall show next that Stallings-Stammbach basic

theorem is an instance of a more general result concerning Γ-groups (cf. [9]
for a very general treatment of the subject).

Let us recall from Proposition 5.2 that, for any normal Γ-subgroup U E G
of a Γ-group G, the Γ-commutator (see Definition 5.1) [G,U ]

Γ
⊆ U is contained

in U , and it is again a normal Γ-subgroup of G. Furthermore, [G,U ]
Γ

= 1
means that U ⊆ Z

Γ
(G), where Z

Γ
(G) is the “Γ-center” of G, that is,

Z
Γ
(G) = {x ∈ G | xy = yx, σx = x for all y ∈ G, σ ∈ Γ} .

We introduce the lower Γ-central series {ΓnG, n ≥ 0} of a Γ-group G,

· · · ⊆ Γn+1G ⊆ ΓnG ⊆ · · · ⊆ Γ1G ⊆ Γ0G = G ,

by
Γn+1G = [G,ΓnG]

Γ
.

Also let Γ∞G =
⋂
n ΓnG.

A Γ-group is called Γ-nilpotent (of class ≤ n) whenever ΓnG = 1.

Theorem 6.1 Let f : G → G′ be an equivariant homomorphism of Γ-groups
inducing an isomorphism H

Γ

1 (G) ∼= H
Γ

1 (G′) and an epimorphism H
Γ

2 (G) �
H

Γ

2 (G′). Then f induces isomorphisms

ΓnG/Γn+1G ∼= ΓnG
′/Γn+1G

′ , G/ΓnG ∼= G′/ΓnG
′ ,

for all n ≥ 0, and a monomorphism

G/Γ∞G� G′/Γ∞G
′ .

If G and G′ are both Γ-nilpotent, then f : G ∼= G′ is an isomorphism.

Proof : This is parallel to Stallings proof when Γ is trivial (also to the proof
of Theorem 1 in [6]). We proceed by induction. For n = 0 the assertion is
obvious and if n = 1 it is part of the hypothesis. For n ≥ 2, consider the exact
sequences of Γ-groups

1 // Γn−1G

��

// G
f

��

// G/Γn−1G

��

// 1

1 // Γn−1G
′ // G′ // G′/Γn−1G

′ // 1

and the associated exact sequences (28)

H
Γ

2 (G) //

f1
��

H
Γ

2 (G/Γn−1G) //

f2
��

Γn−1G
ΓnG

//

f3��

H
Γ

1 (G) //

f4
��

H
Γ

1 (G/Γn−1G) //

f5
��

0

H
Γ

2 (G′) // H
Γ

2 (G′/Γn−1G
′) // Γn−1G

′

ΓnG
′

// H
Γ

1 (G′) // H
Γ

1 (G′/Γn−1G
′) // 0 .
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By hypothesis, f1 is an epimorphism and f4 is an isomorphism. By induc-
tion, f2 and f5 are isomorphisms. Hence f3 is an isomorphism.

We now consider the commutative diagram

1 // Γn−1G/ΓnG
f3��

// G/ΓnG
f6��

// G/Γn−1G
f7��

// 1

1 // Γn−1G
′/ΓnG

′ // G′/ΓnG
′ // G′/Γn−1G

′ // 1 .

Since f7 is an isomorphism by induction, we conclude that f6 is an isomorphism
for all n.

If the induced homomorphism G/Γ∞G → G′/Γ∞G
′ had a nontrivial ker-

nel, then for some n the homomorphism G/ΓnG → G′/ΓnG
′ would have a

nontrivial kernel.

Finally, if both G and G′ are Γ-nilpotent, then the assertion follows from
the remark that there exists n ≥ 0 such that ΓnG = 1 = ΓnG

′. |||||

7 Universal central equivariant extensions of

Γ-groups

In this section we study central equivariant extensions of Γ-groups. It was
pointed out by Loday in [12] that these extensions take an interesting role in
relative K-theory of rings.

Definition 7.1 A central equivariant extension of a Γ-group G is a short
exact sequence E of Γ-groups

(E, p) : 1→ A→ E
p→ G→ 1

such that A ⊆ Z
Γ
(E) (or equivalently, such that [E,A]

Γ
= 1 what means that

A belongs to the center of E and Γ acts trivially on A).

A central equivariant extension (E, p) of G is called universal if for any
central equivariant extension (E ′, p′) of G there is a unique Γ-homomorphism
E → E ′ over G.

For any Γ-group G and abelian group A, equivalence classes of central
equivariant extensions of G by A are classified by the equivariant cohomology
group H2

Γ
(G,A) [2, Theorem 3.3].

Definition 7.2 [12, §3] A Γ-group G is called Γ-perfect, if G coincides with
its Γ-commutator subgroup [G,G]

Γ
.
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By the isomorphism (24) in Theorem 5.3, a Γ-group G is Γ-perfect if and
only if H

Γ

1 (G) = 0.
Many interesting examples of Γ-groups which are Γ-perfect but not perfect

arise for instance in algebraic K-theory by considering the elementary group
E(R) and the Steinberg group St(R) of a ring R which in general are not
perfect but are St(Z)-perfect groups (see [11]).

The results in the following lemma are due to Loday (see [12, Lemmas 8
and 10 and the proof of Lemma 9].

Lemma 7.3 (i) Let (E, p), (E ′, p′) be two central equivariant extensions of a
Γ-group G. If E is Γ-perfect, there exists at most one equivariant homomor-
phism from E to E ′ over G.

(ii) Let (E, p) be a a central equivariant extension of a Γ-group G. If E is
not Γ-perfect, then there is a suitable central equivariant extension (E ′, p′) of
G such that there is more than one Γ-homomorphism from E to E ′ over G.

(iii) If (E, p) is a central equivariant extension of a Γ-perfect Γ-group G,
then the Γ-commutator subgroup [E,E]

Γ
is Γ-perfect, and maps onto G.

Proof : (i) Let ϕ1, ϕ2 : E → E ′ be two Γ-homomorphisms over G. Then for
any x, y ∈ E and σ ∈ Γ we can write

ϕ1(x) = ϕ2(x)c, ϕ1(y) = ϕ2(y)c′, ϕ1(σy) = ϕ2(σy)c′ ,

where c, c′ ∈ Ker(p′) ⊆ Z
Γ
(E ′). Therefore ϕ1(x σyx−1y−1) = ϕ2(x σyx−1y−1).

Since E = [E,E]
Γ

is generated by Γ-commutators we conclude that ϕ1 = ϕ2.
(ii) Let h be the projection of E onto H

Γ

1 (E) = E/[E,E]
Γ
. Then h is a

nontrivial Γ-equivariant homomorphism, where the group Γ acts trivially on
H

Γ

1 (E). Thus for the central equivariant split extension

1→ H
Γ

1 (E)→ H
Γ

1 (E)×G→ G→ 1

of the Γ-group G we have two distinct Γ-homomorphisms ϕ1 and ϕ2 from E
to H

Γ

1 (E) × G over G given by ϕ1(x) = (h(x), p(x)) and ϕ2(x) = (1, p(x)),
respectively.

(iii) Since G is generated by Γ-commutators, it is clear that p maps [E,E]
Γ

onto G. Hence every element x of E can be written as a product x = x′c
with x′ ∈ [E,E]

Γ
and c ∈ Z

Γ
(E). Therefore every generator [x1, x2;σ] of

[E,E]
Γ

is equal to [x′1c1, x
′
2c2;σ] = [x′1, x

′
2;σ] for some x′1, x

′
2 ∈ [E,E]

Γ
. Thus[

[E,E]
Γ
, [E,E]

Γ

]
Γ

= [E,E]
Γ
. |||||

The next theorem characterizes universal central equivariant extensions (cf.
[15, Theorem 5.3]. We use the following terminology: a central equivariant
extension (E, p) of G splits whenever it admits an Γ-equivariant section, that
is a Γ-homomorphism s : G→ E with ps = idG.
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Theorem 7.4 A central equivariant extension (E, p) of a Γ-group G is uni-
versal if and only if E is Γ-perfect and every central equivariant extension
(H, q) of E with Γ acting trivially on Ker(pq) splits.

Proof :Assume that the central equivariant extension (E, p) of G satisfies con-
ditions of the theorem. It will be shown that (E, p) is a universal central
equivariant extension of G. Let (E ′, p′) be a central equivariant extension of
G. Then one has a commutative diagram with exact rows

1 // Ker(p′)
i1 // E ′ ×G E

π1��

π2 // E
p

��

// 1

1 // Ker(p′) // E ′
p′ // G // 1 .

It is clear that the top row is a central equivariant extension of E and Γ acts
trivially on Ker(pπ2) ∼= Ker(p′)×Ker(p). Therefore there is a Γ-homomorphism
s : E → E ′ ×G E such that ps = idE. One gets a Γ-homomorphism ϕ = π1s :
E → E ′ over G. The uniqueness of such ϕ follows from Lemma 7.3. Therefore
(E, p) is a universal central equivariant extension of the Γ-group G.

To prove the converse, let (E, p) be a universal central equivariant extension
of the Γ-group G. By Lemma 7.3(ii) E is Γ-perfect. Let (H, q) be a central
equivariant extension of E such that Γ acts trivially on Ker(pq). We will show
that (H, pq) is a central equivariant extension of G. Take x ∈ Ker(pq). Since
Γ acts trivially on x, we obtain a Γ-homomorphism ϕ : H → H over E given
by ϕ(h) = xhx−1, h ∈ H. Therefore, by Lemma 7.3, the restriction of ϕ to
the Γ-perfect group [H,H]

Γ
is the identity map. It follows that x commutes

with the elements of [H,H]
Γ
. Since q maps [H,H]

Γ
onto E, it follows that

E is generated as a group by Ker(q) and [H,H]
Γ
, whence that x belongs

to the center of H for any x ∈ Ker(pq). Thus (H, pq) is a central equivariant
extension of G and there is a unique Γ-homomorphism s : E → H over G, since
(E, p) is a universal central equivariant extension of G. Clearly the composite
qks : E → E is a Γ-homomorphism over G, hence equals the identity map.
This shows that s is a Γ-equivariant section of (H, q). |||||

Let 1→ R→ F
p→ G→ 1 be any exact sequence of Γ-groups with F a free

Γ-group. Then the Γ-homomorphism p sends the normal subgroup [F,R]
Γ

of F
to 1 and therefore induces a surjective Γ-homomorphism p′ : [F, F ]

Γ
/[F,R]

Γ
→

[G,G]
Γ
.

Theorem 7.5 If G is Γ-perfect, then
(
[F, F ]

Γ
/[F,R]

Γ
, p′
)

is a universal central

equivariant extension of G and Ker(p′) is isomorphic to H
Γ

2 (G).

Proof :It is easily checked that
(
F/[F,R]

Γ
, p′
)

is a central equivariant extension
of G. Thus, by Lemma 7.3(iii), the group [F, F ]

Γ
/[F,R]Γ is Γ-perfect and it is
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mapped onto G. Therefore
(
[F, F ]

Γ
/[F,R]

Γ
, p′
)

is a central equivariant exten-
sion of the Γ-group G. Let (E, q)be any other central equivariant extension of
G. There is a Γ-homomorphism ϕ : F → E over G. Since (E, q) is a central
equivariant extension of G, it is easily seen that ϕ

(
[F,R]

Γ

)
= 1. Hence the

restriction of ϕ to [F, F ]
Γ

induces a Γ-homomorphism [F, F ]
Γ
/[F,R]Γ → E

over G, which is the unique one by Lemma 7.3(i). Therefore the sequence

1→ R ∩ [F, F ]
Γ

[F,R]
Γ

−→ [F, F ]
Γ

[F,R]
Γ

p′−→ G→ 1

is a universal central extension of G. According to (29), Ker(p′) is isomorphic
to H

Γ

2 (G). |||||
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(1966), 157-177.

[18] J. H. C. Whitehead, On group extensions with operators. Quart J.
Math., Oxford Ser. (2) 1 (1950), 219-228.

Received: November 7, 2003

View publication statsView publication stats

https://www.researchgate.net/publication/228529808

