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ON MEAN-VALUE PROPERTY FOR HYPERBOLIC
EQUATIONS

The mean-value property for equations with real characteristics which to
some extent differs from the same property for harmonic functions or, in
general, for elliptic equations, is given. For some hyperbolic equations, this
property is expressed in terms of relations between values of each of their
solutions at opposite apexes of an arbitrary characteristic quadrangle. To
the class of such behavior belong, for example, hyperbolic equations with
general integrals representable explicitly in the form

A(x, t, u) = f
[
B(x, t, u)

]
+ g

[
B(x, t, u)

]
.

The arguments B and C of sufficiently smooth arbitrary functions f, g are
characteristic combinations determined by the principal part of the equa-
tion. This class involves second order equations with coefficients as poly-
nomials of lower derivatives of unknown solutions. For the string equation
these combinations are

A(x, t, u) = u, B(x, t, u) = x + t, C(x, t, u) = x− t.

As an example, we consider the following hyperbolic equation:
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with an admissible parabolic degeneracy. Because of the singularity of the
lower term in the right-hand side, it can be considered as a nonlinear gen-
eralization of the Euler-Darboux equations. Both characteristic families are
given by the following relations:

u = const, x− t = const,

and the general integral has one of the two equivalent forms

u(x, t) = f
[
sg(x− t)

]
or f

[
u(x, t)

]
+ xg(x− t) = 0, ∀ f, g ∈ C2(R1).

Assuming that a set of four points (x1, t1), (x3, t3) and (x2, t2), (x4, t4) are
the pairwise opposite apexes of the characteristic quadrangle, the equality
of products x1x3 = x2x4 is proved. Consequently, the mean-value property
in the given case is expressed as “proportional argument property”. Relying
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on this property, the initial and mixed problems can be considered. There
is one of the nonlinear versions of the Goursat characteristic problem and
among them is: find a solution of the equation by its values ϕ(x) on J =
{(x, t) : t = x, 0 < a ≤ x ≤ b}, if the arc of the first characteristic family is
given as

γ =
{
(x, t) : t = µ(x), µ′(x) 6= 1, µ(a) = a, a ≤ x ≤ k

}
.

A solution of the problem and of its domain of definition is to be found si-
multaneously. Assuming the existence of a single sufficiently smooth inverse
M to the function

ν(x) =
[
µ(x)− x

]
,

the existence of a hyperbolic solution to the problem is proved. The solution
is defined in the domain

D =
{

(x, t) : (x− t) ∈ [
0, b− µ(b)

]
,

x

M(x− t)
∈ [0, 1]

}
.

In such a case, the solution is unique. If these conditions aren’t fulfilled,
then neither solutions nor domains of their definition are unique.
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