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Abstract. This is an overview of results from our experiment of merging
two seemingly unrelated disciplines – higher algebraic K-theory of rings and
the theory of lattice polytopes. The usual K-theory is the “theory of a unit
simplex”. A conjecture is proposed on the structure of higher polyhedral
K-groups for certain class of polytopes for which the coincidence of Quillen’s
and Volodin’s theories is known.
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1. Introduction

We overview the results from our experiment of merging two seemingly un-
related disciplines – the higher algebraic K-theory of rings and the theory of
lattice polytopes. The usual K-theory is the “theory of a unit simplex”.

The text is based on the works [2, 6, 7].
At the end of the paper we propose a general conjecture on the structure of

higher polyhedral K-groups for certain class of polytopes for which the coinci-
dence of Quillen’s and Volodin’s theories is known.

All rings, considered below, are commutative and for a ring R its multiplica-

tive group of units is denoted by R∗.

2. Motivation and Applications

To defuse the impression on the experiment to be too damn-fool, here we
describe the motivation behind our polyhedral K-theory.

Demazure’s paper [10] that initiated the theory of toric varieties in the early
1970s gave an exhaustive description of the automorphism group of a complete
smooth toric variety. (Much later this was extended to arbitrary complete toric
varieties by Cox [9] and Buehler [8].) Theorem 3.3 below gives an analogous
result for the graded automorphism group of the affine cone over a projective
toric variety, not necessarily smooth. As explained in Section 3.E, this ap-
proach leads to polytopal generalizations of the groups GLn(k), k a field and
the standard fact that SLn(k) = En(k). Our motivating question is: to what
extent the polytopal linear groups and the associated higher K-groups resemble

ISSN 1072-947X / $8.00 / c© Heldermann Verlag www.heldermann.de



656 W. BRUNS AND J. GUBELADZE

the ordinary K-groups? We work with the techniques of Quillen’s + construc-
tion and Volodin’s definition of higher K-groups. This seems the only possible
framework in our essentially non-additive situation.

On the level of K2, polyhedral K-theory can be thought of as complementary
to the theory of universal Chevalley groups [11, 17, 18]. This is so because poly-
topal linear groups are semidirect products of unipotent groups and reductive
groups of type Al, see [6, Section 1].

For higher groups one is naturally led to the study of the integral homology
of interesting examples of linear groups, see Section 8.

As an application to toric geometry, we have obtained results on retractions

of toric varieties [3], automorphisms of arrangements of toric varieties [4], and
autoequivalences of the category of toric varieties [5].

3. Polytopes, Their Algebras, and Their Linear Groups

3.A. General polytopes. By a polytope P ⊂Rn, n∈N, we always mean a finite

convex polytope, i.e., P is the convex hull of a finite subset {x1, . . . , xk}⊂Rn:

P =conv(x1, . . . , xk) :={a1x1 + · · ·+akxk : 0≤a1, . . . , ak≤1, a1 + · · ·+ak =1}.

Polytopes of dimension 1 are called segments and those of dimension 2 are
called polygons.

The affine hull aff(X) of a subset X ⊂ Rn is the smallest affine subspace
of R

n containing X. If dim aff(X) = k − 1 for a subset X = {x1, . . . , xk} of
cardinality k, then x1, . . . , xk are affinely independent and the polytope P =
conv(x1, . . . , xk) is called a simplex.

For a halfspace H ⊂ Rn containing P , the intersection P ∩ ∂H of P with the
affine hyperplane ∂H bounding H is called a face of P . The polytope itself is
also considered as a face.

The faces of P are themselves polytopes. Faces of dimension 0 are vertices

and those of codimension 1 (i.e., of dimension dim P − 1) are called facets. A
polytope is the convex hull of the set vert(P ) of its vertices. If dim P ⊂ Rn has
dimension n, then there is a unique halfspace H for each facet F ⊂ P such that
P ⊂ H and ∂H ∩ P = F .

3.B. Lattice polytopes. A polytope P ⊂ Rn is called a lattice polytope if the
vertices of P belong to the integral lattice Zn. More generally, a lattice in Rn

is a subset G = x0 + G0 with x0 ∈ R
n and an additive subgroup G0 generated

by n linearly independent vectors. A polytope P with vert(P ) ⊂ G is called a
G-polytope if the vertices of P belong to G. However, since all the properties of
G-polytopes we are interested in remain invariant under an affine automorphism
of R

n mapping G to Z
n, we can always assume that our polytopes have vertices

in Zn. More generally, lattice polytopes P and Q that are isomorphic under
an integral-affine equivalence of aff(P ) and aff(Q) are equivalent objects in our
theory. We simply speak of integral-affinely equivalent polytopes.

Faces of a lattice polytope are again lattice polytopes.
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For a lattice polytope P ⊂ Rn we put LP = P ∩ Zn. A simplex ∆ is called
unimodular if

∑

z∈vert(∆) Z(z − z0) is a direct summand of Zn for some (equiv-

alently, every) vertex z0 of ∆. All unimodular simplices of dimension n are
integral-affinely equivalent. Such a simplex is denoted by ∆n and called a
unit n-simplex. Standard realizations of ∆n are conv(O, e1, . . . , en) ⊂ Rn or
conv(e1, . . . , en+1) ⊂ Rn+1. (ei is the ith unit vector.)

There is no loss of generality in assuming that a given lattice polytope P
is full dimensional (i. e. dim P = n) and that Zn is the smallest affine lattice
containing LP . In fact, we choose aff(P ) as the space in which P is embedded
and fix a point x0 ∈ LP as the origin. Then the lattice x0 +

∑

x∈LP
Z(x − x0)

can be identified with Zr, r = dim P .
Under this assumption let F be a facet of P and choose a point z0 ∈ F . Then

the subgroup
FZ :=

(
− z0 + aff(F )

)
∩ Z

n ⊂ Z
n

is isomorphic to Z
n−1. Moreover, there is a unique group homomorphism

〈F,−〉 : Zn → Z, written as x 7→ 〈F, x〉, such that Ker(〈F,−〉) = FZ,
Coker(〈F,−〉) = 0, and on the set LP , 〈F,−〉 attains its minimum bF at the
lattice points of F .

The Z-linear form 〈F,−〉 can be extended in a unique way to a linear function
on Rn. The description of P as an intersection of halfspaces yields that x ∈ P
if and only if 〈F, x〉 ≥ bF for all facets F of P .

All polytopes, considered below, are lattice polytopes.

3.C. Column structures. Let P ⊂ Rn be a polytope. A nonzero element
v ∈ Zn is called a column vector for P if there exists a facet F ⊂ P such that
x + v ∈ P whenever x ∈ LP \F . In this situation F is uniquely determined
and called the base facet of v. We use the notation F = Pv. The set of column
vectors of P is denoted by Col(P ). A column structure is a pair of type (P, v),
v ∈ Col(P ). Figure 1 gives an example of a column structure. Familiar examples

v

Figure 1. A column structure

of column structures are the unit simplices ∆n with their edge vectors.

3.D. Polytopal semigroups and their rings. To a polytope P ⊂ Rn one
associates the additive subsemigroup SP ⊂ Zn+1, generated by {(z, 1) : z ∈
LP} ⊂ Z

n+1. Let CP ⊂ R
n+1 be the cone {az : a ∈ R+, z ∈ P}. Then CP is

the convex hull of SP . It is a finite rational pointed cone. In other words, CP

is the intersection of a finite system of halfspaces in Rn+1 whose boundaries are
rational hyperplanes containing the origin O ∈ Rn+1, and there is no affine line
contained in CP .
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As in Subsection 3.B, there is no loss of generality in assuming that Zn is the
lattice spanned affinely by LP in Rn. This is equivalent to gp(SP ) = Zn+1.

While the points x ∈ LP are identified with (x, 1) ∈ Z
n+1, a column vector v

is to be identified with (v, 0) ∈ Zn+1.
Let F be a facet of P . We use the function 〈F,−〉 to define the height of

x = (x′, x′′) ∈ Rn+1 = Rn × R above the hyperplane H through the facet CF of
CP by setting

htF (x) = 〈F, x′〉 − x′′bF .

For lattice points x the function htF counts the number of hyperplanes between
H and x (in the direction of P ) that are parallel to, but different from H and
pass through lattice points. If v is a column vector, then htv stands for htPv

.
Moreover, we are justified in calling htF (v, 0) = 〈F, v〉 the height of v with

respect to F , since v is identified with (v, 0).
Although the semigroup SP may miss some integral points in the cone CP this

cannot happen on the segments parallel to a column vector v. More precisely,
the following holds:

z + v ∈ SP for all z ∈ SP \ CPv
. (1)

(CPv
⊂ CP is the face subcone, corresponding to Pv.)

Let R be a ring and P ⊂ Rn a lattice polytope. The semigroup ring R[P ] :=
R[SP ] – the polytopal R-algebra of P – carries a graded structure R[P ] = R ⊕
R1 ⊕ · · · in which deg(x) = 1 for all x ∈ LP . By definition of SP it follows that
R1 generates R[P ] over R.

We are interested in the group gr. autR(P ) of graded R-algebra automor-
phisms of R[P ]. For a field R = k the group gr. autk(P ) is naturally a k-linear
group. In fact, it is a closed subgroup of GLm(k), m = # LP . We call gr. autk(P )
the polytopal k-linear group of P . Its structure will be given in Theorem 3.3.

In the special case when P is a unimodular simplex, the ring R[P ] is iso-
morphic to a polynomial algebra R[X1, . . . , Xm], m = # LP . Therefore, the
category Pol(R) of polytopal R-algebras and graded homomorphisms between
them contains a full subcategory that is equivalent to the category of free R-
modules.

3.E. Polytopal linear groups. Assume R is a ring and P a polytope. Let
(P, v) be a column structure and λ ∈ R. As pointed out above, we identify
the vector v with the degree 0 element (v, 0) ∈ Zn+1, and further with the
corresponding monomial in R[Zn+1]. Then we define a mapping from SP to
R[Zn+1] by the assignment

x 7→ (1 + λv)htv xx.

Since htv is a group homomorphism Zn+1 → Z, our mapping is a homomor-
phism from SP to the multiplicative monoid of R[Zn+1]. Now it is immediate
from (1) in Subsection 3.D that the (isomorphic) image of SP lies actually in
R[P ]. Hence this mapping gives rise to a graded R-algebra endomorphism eλ

v

of R[P ] preserving the degree of an element. But then eλ
v is actually a graded

automorphism of R[P ] because e−λ
v is its inverse.
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It is clear that eλ
v is just an elementary matrix in the special case when

P = ∆n, after the identification gr. autR(P ) = GLn+1(R). Accordingly, the
automorphisms of type eλ

v are called elementary, and the group they generate
in gr. autR(P ) is denoted by ER(P ).

Remark 3.1. Above we have generalized the basic building blocks of higher
K-theory of rings to the polytopal setting: general linear groups and their
elementary subgroups. As mentioned in Section 2, the real motivation for us to
pursue the analogy has been the main result of [2] (Theorem 3.3 below). It is
the polytopal version of the fact that an invertible matrix over a field can be
diagonalized by elementary transformations on rows (or columns) – or, putting
it in different words, the group SK1 is trivial for fields.

Proposition 3.2. Let R be a ring, P a polytope, and v1, . . . , vs pairwise

different column vectors for P with the same base facet F = Pvi
, i = 1, . . . , s.

Then the mapping

ϕ : (R, +)s → gr. autR(P ), (λ1, . . . , λs) 7→ eλ1

v1
◦ · · · ◦ eλs

vs
,

is an embedding of groups. In particular, eλi
vi

and e
λj
vj commute for all i, j ∈

{1, . . . , s}, and the inverse of eλi
vi

is e−λi
vi

.

In the special case, when R is a field the homomorphism ϕ is an injective

homomorphisms of algebraic groups.

For the rest of this subsection we assume that k is a field, n = dim P , and
A(F ) is the image of the map ϕ in Proposition 3.2

After A(F ) we introduce some further subgroups of gr. autk(P ). First, the
(n + 1)-torus Tn+1 = (k∗)n+1 acts naturally on k[P ] by restriction of its action
on k[Zn+1] that is given by

(ξ1, . . . , ξn+1)(ei) = ξiei, i ∈ [1, n + 1];

here ei is the i-th standard basis vector of Zn+1. This gives rise to an algebraic
embedding Tn+1 ⊂ gr. autk(P ), and we will identify Tn+1 with its image. It
consists precisely of those automorphisms of k[P ] that multiply each monomial
by a scalar from k∗.

Second, the automorphism group Σ(P ) of the semigroup SP is in a natural
way a finite subgroup of gr. autk(P ). It is the group of integral affine transfor-
mations mapping P onto itself.

Third, we have to consider a subgroup of Σ(P ) defined as follows. Assume v
and −v are both column vectors. Then for every point x ∈ P ∩ Z

n there is a
unique y ∈ P ∩ Zn such that htv(x, 1) = ht−v(y, 1) and x − y is parallel to v.
The mapping x 7→ y gives rise to a semigroup automorphism of SP : it ‘inverts
columns’ that are parallel to v. It is easy to see that these automorphisms
generate a normal subgroup of Σ(P ), which we denote by Σ(P )inv.

Finally, Col(P ) is the set of column structures on P . Now the main result of
[2] is:

Theorem 3.3. Let P be an n-dimensional polytope and k a field.
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(a) Every element γ ∈ gr. autk(P ) has a (not uniquely determined) presen-

tation

γ = α1 ◦ α2 ◦ · · · ◦ αr ◦ τ ◦ σ,

where σ ∈ Σ(P ), τ ∈ Tn+1, and αi ∈ A(Fi) such that the facets Fi are

pairwise different and #(Fi ∩ Z
n) ≤ #(Fi+1 ∩ Z

n), i ∈ [1, r − 1];
(b) For an infinite field k the connected component of unity gr. autk(P )0 ⊂

gr. autk(P ) is generated by the subgroups A(Fi) and Tn+1. It consists

precisely of those graded automorphisms of k[P ] which induce the iden-

tity map on the divisor class group of the normalization of k[P ];
(c) dim gr. autk(P ) = # Col(P ) + n + 1;
(d) One has gr. autk(P )0 ∩ Σ(P ) = Σ(P )inv and

gr. autk(P )/gr. autk(P )0 ≈ Σ(P )/Σ(P )inv.

Furthermore, if k is infinite, then Tn+1 is a maximal torus of gr. autk(P ).

4. Stable Groups of Elementary Automorphisms and

Polyhedral K2

4.A. Product of column vectors. The product of two column vectors u, v ∈
Col(P ) is defined as follows: we say that the product uv exists if u + v 6= 0
and for every point x ∈ LP \Pu the condition x + u /∈ Pv holds. In this case,
we define the product as uv = u + v. It is easily seen that uv ∈ Col(P ) and
Puv = Pu.

Figure 2 shows a polytope with all its column vectors and the two existing
products w = uv and u = w(−v).

w = uv u

v

−v

w u = w(−v)

Figure 2. The product of two column vectors

In the case of a unimodular simplex the product of two oriented edges, viewed
as column vectors, exists if and only if they are not opposite to each other and
the end point of the first edge is the initial point of the second edge.

4.B. Balanced polytopes. A polytope P is called balanced if 〈Pu, v〉 ≤ 1
for all u, v ∈ Col(P ). One easily observes that P is balanced if and only if
|〈Pu, v〉| ≤ 1 for all u, v ∈ Col(P ).

The reason we introduce balanced polytopes is that the main results of [6, 7]
are only proved for this class of polytopes. However, it is not yet excluded that
everything generalizes to arbitrary polytopes.
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We give the classification result in dimension 2. It uses the notion of pro-
jective equivalence: n-dimensional polytopes P, Q ⊂ Rn are called projectively

equivalent if and only if P and Q have the same dimension, the same combinato-
rial type, and the faces of P are parallel translates of the corresponding ones of
Q. An alternative definition in terms of normal fans is given in Subsection 6.D.

Recall the notation ∆n = conv(O, (1, . . . , 0), . . . , (0, . . . , 1)) for the unit
n-simplex.

Theorem 4.1. For a balanced polygon P there are exactly the following

possibilities (up to integral-affine equivalence):

(a) P is a multiple of the unimodular triangle Pa = ∆2. Hence Col(P ) =
{±u,±v,±w} and the column vectors are subject to the obvious rela-

tions;

(b) P is projectively equivalent to the trapezoid Pb = conv
(
(0, 0), (2, 0), (1, 1),

(0, 1)
)
, hence Col(P ) = {u,±v, w} and the relations in Col(P ) are uv =

w and w(−v) = u;

(c) Col(P ) = {u, v, w} and uv = w is the only relation;

(d) Col(P ) has any prescribed number of column vectors, they all have the

same base edge (clearly, there are no relations between them);
(e) P is projectively equivalent to the unit lattice square Pe, hence Col(P ) =

{±u,±v} with no relations between the column vectors;

(f) Col(P ) = {u, v} so that Pu 6= Pv with no relations in Col(P ).

It turns out that polyhedral K-groups are invariants of the projective equiv-
alence classes of polytopes (in arbitrary dimension); see Proposition 6.4 below.

4.C. Doubling along a facet. Let P ⊂ Rn be a polytope and F ⊂ P be a
facet. For simplicity we assume that 0 ∈ F , a condition that can be satisfied
by a parallel translation of P . Denote by H ⊂ Rn+1 the n-dimensional linear
subspace that contains F and whose normal vector is perpendicular to that of
Rn = Rn ⊕ 0 ⊂ Rn+1 (with respect to the standard scalar product on Rn+1).
Then the upper half space H∩

(
R

n×R+

)
contains a congruent copy of P which

differs from P by a 90◦ rotation. Denote the copy by P |F , or just by P | if there
is no danger of confusion.

Note that P | is not always a lattice polytope with respect to the standard
lattice Zn+1. However, it is so with respect to the sublattice (Zn) |F which is the
image of Z

n under the 90◦ rotation.
The operator of doubling along a facet is then defined by

P F = conv(P, P |) ⊂ R
n+1.

The doubled polytope is a lattice polytope with respect to the subgroup
(Zn) F = Zn + (Zn) |F ⊂ Rn+1. After a change of basis in Rn+1 that does
not affect R

n we can replace (Zn) F by Z
n+1, and consider P F as an ordinary

lattice polytope in Rn+1. In what follows, whenever we double a lattice polytope
P ⊂ Rn along a facet F , the lattice of reference in Rn+1 is always Zn + (Zn) |F .
For simplicity of notation this lattice will be denoted by Zn+1.

In case F = Pv for some v ∈ Col(P ) we will use the notation P F = P v .
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P

P
|

F

v
−

v
|

Figure 3. Doubling along the facet F

4.D. The stable group of elementary automorphisms. An ascending in-
finite chain of lattice polytopes P = (P = P0 ⊂ P1 ⊂ . . . ) is called a doubling

spectrum if the following conditions hold:

(i) for every i ∈ Z+ there exists a column vector v ⊂ Col(Pi) such that
Pi+1 = P v

i ;
(ii) for every i ∈ Z+ and any v ∈ Col(Pi) there is an index j ≥ i such that

Pj+1 = P v

j .

Here we use the natural inclusion Col(Pi) ⊂ Col(Pi+1).
One says that v ∈ Col(Pi) is decomposed at the jth step in P for some j ≥ i

if Pj+1 = P v

j .
Associated to a doubling spectrum P is the ‘infinite polytopal’ algebra

R[P] = lim
i→∞

R[Pi]

and the filtered union

Col(P) = lim
i→∞

Col(Pi).

The product of two vectors from Col(P) is defined in the obvious way, using
the definition for a single polytope. Also, we can speak of systems of elements
of Col(P) having the same base facets, etc.

Elements v ∈ Col(P) and λ ∈ R give rise to a graded automorphism of R[P]
as follows: we choose an index i big enough so that v ∈ Col(Pi). Then the
elementary automorphisms eλ

v ∈ ER(Pj), j ≥ i constitute a compatible system
and, therefore, define a graded automorphism of R[P]. This automorphism will
also be called ‘elementary’ and it will be denoted by eλ

v .
The group E(R, P) is by definition the subgroup of gr. autR(R[P]), generated

by all elementary automorphisms.

Remark 4.2. Unlike the classical situation of unimodular simplices, the group
E(R, P) can not be represented as a direct limit of the ‘unstable’ groups ER(Pi),
i ∈ Z+.

Theorem 4.3. Let R be a ring and P be a polytope (not necessarily balanced)
admitting a column structure. Assume P = (P ⊂ P1 ⊂ P2 ⊂ . . . ) is a doubling

spectrum. Then:

(a) E(R, P) is naturally isomorphic to E(R, Q) for any other doubling spec-

trum Q = (P ⊂ Q1 ⊂ Q2 ⊂ . . . );
(b) E(R, P) is perfect;

(c) The center of E(R, P) is trivial;
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(d) eλ
u ◦ eµ

u = eλ+µ
u for every u ∈ Col(P) and λ, µ ∈ R;

(e) If P is balanced, u, v ∈ Col(P), u + v 6= 0 and λ, µ ∈ R then

[eλ
u, e

µ
v ] =

{

e−λµ
uv if uv exists,

1 if u + v /∈ Col(P).

The difficult parts of this theorem are the claims (c) and (e), which in the
special case P = ∆n are just standard facts.

Thanks to Theorem 4.3(a) we can use the notation E(R, P ) for E(R, P).

Remark 4.4. Theorem 4.3(e) is the generalization of Steinberg’s relations be-
tween elementary matrices to balanced polytopes.

4.E. The Schur multiplier. Let P be a balanced polytope and P = (P ⊂
P1 ⊂ P2 ⊂ . . . ) be a doubling spectrum. Then for a ring R we define the
stable polytopal Steinberg group St(R, P ) as the group generated by symbols xλ

v ,
v ∈ Col(P), λ ∈ R, which are subject to the relations

xλ
vx

µ
v = xλ+µ

v

and

[xλ
u, x

µ
v ] =

{

x−λµ
uv if uv exists,

1 if u + v /∈ Col(P) ∪ {0}.

The use of the notation St(R, P ) is justified by the fact that, like in Theorem
4.3(a), the stable Steinberg groups are determined by the underlying doubling
spectra (with the same initial polytope) up to canonical isomorphism.

The central result of [6] is the following

Theorem 4.5. For a ring R and a balanced polytope P the natural surjec-

tive group homomorphism St(R, P ) → E(R, P ) is a universal central extension

whose kernel coincides with the center of St(R, P ).

The group Ker
(
St(R, P ) → E(R, P )

)
is called the polyhedral Milnor group.

We denote it by K2(R, P ). Clearly, when P is a unimodular simplex K2(R, P )
is the usual Milnor group K2(R) [13].

5. Rigid Systems of Column Vectors

We can speak of the product
∏m

i=1 vi of elements vi ∈ Col(P ) whenever the
following two conditions are satisfied:

(i) the products vivi+1 exist for all i ∈ [1, m − 1];
(ii)

∑s

i=r vi 6= 0 for all 1 ≤ r < s ≤ m.

In this case every bracketing of the sequence v1v2 . . . vm yields pairs of column
vectors whose products exist.

It is useful to have another, a weaker notion of product. We say that
∏m

i=1 vi

exists weakly if there is a bracketing of the sequence

v1v2 · · · vm
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such that all the recursively defined products of pairs of column vectors exist.
Since v1 · · · vn = v1 + · · · + vn in the case of weak existence, the value of the
product does not depend on the bracketing.

By 〈V 〉 we denote the hull of V in Col(P ) under products (of two column
vectors). One has v ∈ 〈V 〉 if and only if there exist v1, . . . , vm ∈ V such that
v = v1 · · · vm is their weak product.

For simplicity we introduce the following convention: v1 · · · vm ∈ [V ] means
that the product of v1, . . . , vm exists (in the strong sense), whereas v1 · · · vm ∈
〈V 〉 means that the product of v1, . . . , vm exists in the weak sense.

We will represent certain partial product structures on sets of column vectors
by equivalence classes of directed paths in graphs. The graphs considered here
are finite directed graphs G satisfying the following conditions:

(i) G has no isolated vertices;
(ii) G has no multiple edges and no edges from a vertex to itself;
(iii) if vertices a and b are connected by an edge, then there is no other

directed path connecting a and b.

Condition (iii) implies that there are no directed cycles in G (but the existence
of non-directed cycles is not excluded). A path is always assumed to be oriented.

The set of nonempty paths in a graph F carries a natural partial product
structure – ll′ exists if the end point of the path l is the initial point for l′. The
set of all paths in F is denoted by pathF. There is an equivalence relation on
pathF: two paths are considered to be equivalent if they have the same initial
and the same end point. We let pathF denote the corresponding quotient set.

Definition 5.1. A system of column vectors V ⊂ Col(P ) is called rigid if
the following conditions are satisfied:

(a) [V ] does not contain a subset of type {v,−v}, v ∈ Col(P );
(b) [V ] = 〈V 〉;
(c) there exist a graph F and an isomorphism [V ] ≈ pathF of partial prod-

uct structures.

6. Higher Polyhedral K-Groups

In this section we assume that R is a ring and P is a balanced polytope
admitting a column structure.

6.A. Triangular subgroups in E(R, P ) and St(R, P ). We fix a doubling
spectrum P = (P ⊂ P1 ⊂ · · · ). Thanks to Theorem 4.3(a) (and its straight-
forward analogue for polyhedral Steinberg groups) all the objects defined below
are independent of the fixed spectrum.

We say that V ⊂ Col(P) is a rigid system if there exists an index j ∈ N such
that V is a subset of Col(Pj) and is rigid.

Definition 6.1.

(a) A subgroup G ⊂ E(R, P ) is called triangular if there exists a rigid system
V ⊂ Col(P) such that G is generated by the elementary automorphisms
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eλ
v , where λ runs through R and v through V . The triangular subgroup

corresponding to a rigid system V is denoted by G(R, V ), and T(R, P )
is the family of all triangular subgroups of E(R, P );

(b) The triangular subgroups of St(R, P ) are defined similarly.

6.B. Volodin’s theory.

Definition 6.2.

(a) The d-simplices of the Volodin simplicial set V(E(R, P )) are those se-
quences (ε0, . . . , εd) ∈ (E(R, P ))d+1 for which there exists a triangular
group G ∈ T(R, P ) such that εkε

−1
l ∈ G, k, l ∈ [0, d]. The ith face (resp.

degeneracy) of V(E(R, P )) is obtained by omitting (resp. repeating) εi;
(b) The simplicial set V(St(R, P )) is defined analogously;
(c) The higher Volodin polyhedral K-groups of R are defined by

KV
i (R, P ) = πi−1

(
|V(E(R, P ))|, (Id)

)
, i ≥ 2.

where | − | refers to the geometric realization of a simplicial set.

The definition of the Volodin simplicial set is independent of the choice of P
and one has

KV
i (R, P ) = πi−1

(
V(St(R, P ))

)
, i ≥ 3.

When P is a unimodular simplex of arbitrary dimension Definition 6.2 gives the
usual Volodin theory [20].

6.C. Quillen’s theory. We define Quillen’s higher polyhedral K-groups by

KQ
i (R, P ) = πi

(
B E(R, P )+

)
, i ≥ 2,

where B E(R, P )+ refers to Quillen’s + construction applied to B E(R, P ) with
respect to the whole group E(R, P ) = [E(R, P ), E(R, P )] (Theorem 4.3(b)).

We have the equalities

KQ
i (R, P ) = πi

(
B St(R, P )+

)
, i ≥ 3,

where the + construction is considered with respect to the whole group St(R, P ).

Proposition 6.3. KQ
2 (R, P ) = K2(R, P ) = KV

2 (R, P ).

For a unimodular simplex P = ∆n we recover Quillen’s theory [15].

6.D. Functorial properties. Let Q be another balanced polytope. If there
exists a mapping µ : Col(P ) → Col(Q), such that the conditions

(i) 〈Pw, v〉 = 〈Qµ(w), µ(v)〉 and (ii) µ(vw) = µ(v)µ(w) if vw exists,

hold for all v, w ∈ Col(P ), then the assignment xλ
v 7→ xλ

µ(v) induces a homomor-
phism

St(R, µ) : St(R, P ) → St(R, Q).

Moreover, if µ is bijective, then

St(R, P ) ≈ St(R, Q), E(R, P ) ≈ E(R, Q), K2(R, P ) ≈ K2(R, Q).
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This observation allows one to study polyhedral K-theory as a functor also in
the polytopal argument. The map µ is called a K-theoretic morphism from P
to Q. Though we cannot prove K2-functoriality for all maps µ, it is useful to
note the St-functoriality, since it implies bifunctoriality of the higher polyhedral
K-groups with covariant arguments:

KQ
i (−,−), KV

i (−,−) : Commutative Rings × Balanced Polytopes →

→ Abelian Groups, i ≥ 3.

The normal fan N (P ) of a finite convex (not necessarily lattice) polytope
P ⊂ Rn is defined as the complete fan in the dual space (Rn)∗ = Hom(Rn, R)
given by the system of cones

(
{ϕ ∈ (Rn)∗ | max

P
(ϕ) = F}, F a face of P

)
.

Two polytopes P, Q ⊂ Rn are projectively equivalent (see Section 4.B) if and
only if N (P ) = N (Q).

Proposition 6.4. If P and Q are projectively equivalent balanced polytopes,

then KQ
i (R, P ) ≈ KQ

i (R, Q) and KV
i (R, P ) ≈ KV

i (R, Q) for i ≥ 2.

7. On the Coincidence of Quillen’s and Volodin’s Theories

All polytopes are assumed to be balanced and to admit a column vector,
unless specified otherwise.

Definition 7.1. A (balanced) polytope P is Col-divisible if its column vectors
satisfy the following condition:

(CD1) if ac and bc exist and a 6= b, then a = db or b = da for some d;
(CD2) if ab = cd and a 6= c, then there exists t such that at = c, td = b, or

ct = a, tb = d.

(See Figure 4.)

a b

c

d

a b

c

d
a c

b d

t

a c

b d

t

Figure 4. Col-divisibility

The main result of [7] is the following

Theorem 7.2. Suppose P is a Col-divisible polytope. Then

KQ
i (R, P ) = KV

i (R, P ), i ≥ 2.

The proof is a ‘polytopal extension’ of Suslin’s proof [19] of the coincidence
of the usual theories.

However, we expect that Quillen’s and Volodin’s theories diverge for general
balanced polytopes, see Remark 8.4.
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8. Computations

8.A. The case of polygons. The class of Col-divisible polytopes may at first
glance seem rather restricted. However, it follows immediately from Theorem
4.1 that all balanced polytopes of dimension 2 are Col-divisible.

Let R be a ring. In Theorem 4.1 we have grouped all balanced polygons in
six infinite series which give rise to the following isomorphism classes of stable
elementary automorphism groups:

Ea = E(R), (a)

Eb =

(
E(R) EndR(⊕NR)

0 E(R)

)

, (b)

Ec =





E(R) EndR(⊕NR) HomR(⊕NR, R)

0 E(R) HomR(⊕NR, R)

0 0 1



 , (c)

Ed,t =

(
E(R) HomR(⊕NR, Rt)

0 Idt

)

, t ∈ N, (d)

Ee = E(R) × E(R), (e)

Ef =

(
E(R) HomR(⊕NR, R)

0 1

)

×

(
E(R) HomR(⊕NR, R)

0 1

)

. (f)

Definition 8.1. A ring R is an S(n)-ring if there are r1, . . . , rn ∈ R∗ such
that the sum of each nonempty subfamily is a unit. If R is an S(n)-ring for all
n ∈ N, then R has many units.

The class of rings with many units includes local rings with infinite residue
fields and algebras over rings with many units.

Theorem 8.2. For every ring R and every index i ≥ 2 we have:

(a) πi(B E+
a ) = Ki(R);

(b) πi(B E
+
b ) = Ki(R) ⊕ Ki(R);

(c) πi(B E+
c ) = Ki(R) ⊕ Ki(R) if R has many units;

(d) πi(B E
+
d,t) = Ki(R) if R has many units;

(e) πi(B E+
e ) = Ki(R) ⊕ Ki(R);

(f) πi(B E
+
f ) = Ki(R) ⊕ Ki(R) if R has many units.

The proof is based on homological computations for the corresponding matrix
groups due to Nesterenko-Suslin [14] and Quillen [16].

8.B. Higher dimensional polytopes. It seems that a similar ‘almost trian-
gular’ matrix group interpretation is possible for the group of elementary au-
tomorphisms for all Col-divisible polytopes. Then, based on the techniques of
Berrick and Keating [1, 12], the corresponding K-groups should be computable
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in terms of the usual K-groups of the underlying ring. This remark leads us to
the following

Conjecture 8.3. For a commutative ring R and a Col-divisible polytope P
of arbitrary dimension we have

Ki(R, P ) = Ki(R) ⊕ · · · ⊕ Ki(R)
︸ ︷︷ ︸

c(P )

, i ≥ 2,

where c(P ) ≤ dim P is a natural number explicitly computable in terms of the

partial product table of Col(P ).

Remark 8.4. For balanced but not Col-divisible polytopes we may expect that
Quillen’s and Volodin’s theories diverge and we get really new K-groups. The
simplest candidate for such a deviation from the usual theory is the pyramid
over the unit square shown below – its column vectors are the four oriented
edges of the square and four oriented edges emerging from the top vertex. This
polytope has shown up several times in our papers as a counterexample to
several natural conditions.

Figure 5. The pyramid over the unit square
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Sci. École Norm. Sup. (4) 3(1970), 507–588.

11. W. van der Kallen and M. Stein, On the Schur multipliers of Steinberg and Chevalley
groups over commutative rings. Math. Z. 155(1977), No. 1, 83–94.

12. M. Keating, The K-theory of triangular matrix rings. II. Proc. Amer. Math. Soc.
100(1987), No. 2, 235–236.

13. J. Milnor, Introduction to algebraic K-theory. Annals of Mathematics Studies, No. 72.
Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971.

14. Yu. P. Nesterenko and A. A. Suslin, Homology of the general linear group over a
local ring, and Milnor’s K-theory. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 53(1989),
No. 1, 121–146; English transl.: Math. USSR-Izv. 34(1990), No. 1, 121–145.

15. D. Quillen, On the cohomology and K-theory of the general linear groups over a finite
field. Ann. of Math. (2) 96(1972), 552–586.

16. D. Quillen, Characteristic classes of representations. Algebraic K-theory (Proc. Conf.,
Northwestern Univ., Evanston, Ill., 1976), 189–216. Lecture Notes in Math., 551,
Springer, Berlin, 1976.
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