
Proc. A. Razmadze Math. Inst. 136 (2004), 137–140

E. Gordadze

ON A BOUNDARY VALUE PROBLEM OF LINEAR CONJUGATION
FOR UNCLOSED ARCS OF THE CLASS R

(Reported on 01.06.2004)

1. Denote by Γ some simple rectifiable line, and by Γab an unclosed simple continuous
arc with the ends a and b, directed from a to b. Sometimes the use will be made of the
notation Γ[a,b] and Γ(a,b) in case, when the end points belong or do not belong to the
arc.

We say that Γ ∈ R, if the singular integral

(

Sϕ
)

(τ) ≡
1

πi

∫

Γ

ϕ(t)dt

t − τ

forms a bounded in Lp(Γ), p > 1 operator, i.e.,
∥

∥Sϕ
∥

∥

Lp(Γ)
≤ Mp

∥

∥ϕ
∥

∥

Lp(Γ)
, p > 1, ∀ϕ ∈ Lp(Γ).

Such lines are called regular or Carleson lines.
We say that an analytic on the plane, cut along Γ, function φ(z) belongs to the class

{KΓ,p
} if it is representable by the Cauchy type integral with density from Lp(Γ), i.e.,

φ(z) =
1

2πi

∫

Γ

ϕ(t)

t − z
dt ≡ (KΓϕ)(z), ϕ ∈ Lp(Γ), z∈Γ.

Similarly, φ(z) ∈ {KΓ,p
+ Pn}, if φ(z) = (KΓϕ)(z) + Pn(z) where ϕ ∈ Lp(Γ), and Pn(z)

is the polynomial of the n-th degree.
Under the boundary value problem of linear conjugation we mean the problem which

is formulated as follows: Find an analytic on the plane, cut along Γ, function φ(z) of
preassigned class whose boundary values satisfy the condition

φ+(t) = G(t)φ−(t) + g(t), t ∈ Γ. (1)

(For the exact definition of φ± see [1] and [2]). The functions G(t) and g(t) in formula
(1) are given a priori.

Problem (1) for piecewise smooth curves, when the given functions belong to the
classes H, H0, H∗ and the unknown function is piecewise holomorphic, has been studied
thoroughly in [1], in which the reader can also find the definitions of the above-mentioned
classes. For Lyapunov curves, problem (1) in discontinuous statement has been investi-
gated in [2], where besides basic results the work presents the definition of continuous
and discontinuous statement of the problem. Problem (1) was being studied by many
authors under different assumptions on the contour, as well as on the given and unknown
functions.

Of special interest is the consideration of problem (1) in the discontinuous statement
for lines of the class R, because this class of lines is the most common, and the singular
integral operator, corresponding to that problem, may be Noetherian in Lp.

In [3] we have considered the discontinuous problem (1) for closed contours of the
class R in the case if G(t) are continuous, and for the contours of the class Rρ in the
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case of piecewise continuous coefficients with some additional requirement at the points of
discontinuity G(t). The function ρ(t) represents the power weight with the corresponding
restriction to the exponents. This investigation was carried out when nobody yet knew
David’s theorem [4] and geometry of curves of the class R. At present, many authors
consider power weights for Γ ∈ R and it becomes clear that the requirement Γ ∈ Rρ in
[3] is superfluous, because it is always fulfilled if Γ ∈ R.

After [4] it became obvious that the lines, considered by Salaev and his pupils for
continuous problems under certain conditions for G and g, coincide with the lines of the
class R. Although this work does not involve the question on the consideration of problem
(1) for g ∈ Lp or φ ∈ (KΓ,p

+ P ) and the question on the boundedness of the operator

S in Lp(Γ), but some properties of these lines and of the singular integral on these lines
have been studied. We will use the following result of Seyfulaev (Salaev’s pupil).

Theorem. (Seyfulaev [5]). If Γab ∈ R, then

lim
z→c

arg(z − c)

| ln |z − c||
= ∆c, lim

arg(z − c)

| ln |z − c||
= ∆c,

where c is any end of the arc, i.e., c = a or c = b, ∆c and ∆c are finite numbers.
Under arg(z−a) we mean a continuous branch on the plane, cut along Γ[a,b]∪Γ(b,∞),

(Γ[a,b]∩Γ(b,∞) = ∅) and for z ∈ Γ we mean boundary value of that branch from the left.

We will consider a particular case assuming that ∆c = ∆c = ∆c, i.e.,

lim
z→c

arg(z − c)

| ln |z − c||
= ∆c, (2)

which is equivalent to

arg(z − c) = ∆c

∣

∣ ln |z − c|
∣

∣ + o
(

ln |z − c|
)

, (2′)

in the neighborhood of the point c.
In some cases our requirement will be more strict, i.e.,

arg(z − c) = ∆c

∣

∣ ln |z − c|
∣

∣ + O(1), (3)

in the neighborhood of the point c.
2. The goal of paper is to consider problem (1) in the case in which Γ = Γab ∈ R, the

function G(t) is continuous on Γ[a,b], g ∈ Lp(Γab), φ(z) ∈ {KΓ,p} and (3) is satisfied.

3. Let G(t) be the function, continuous on Γ[a,b] and different from zero. Under

lnG(t) is meant the value of some continuous branch. We represent this function by

analogy with [6] in the form

ln G(t) = ω1(t) + ω2(t),

where

ω1(t) = ln G(t) − ln G(a) −
ln G(b) − ln G(a)

b − a
(t − a),

ω2(t) = ln G(a) +
ln G(b) − ln G(a)

b − a
(t − a).

(4)

Evidently, the both functions are continuous and ω1(a) = ω1(b) = 0. In [6], Chibrikova
considers the continuous problem when the line is piecewise smooth and G(t) the func-
tion of Hölder class. In our case we adopted from [6] only representation (4), and for
the estimation of the functions (exp Kω2)(z) and (exp Kω1(z) our reasoning somewhat
differs. To study the function exp Kω1(z) in our assumptions presented in Section 2, we
have used the Banach theorem on the invertibility of operators and our theorem from [3]
for continuous G(t) and closed contours. We obtain

X1(z) ≡
(

exp Kω1

)

(z) ∈
⋂

p>1

{

KΓ,p

}

(5)

(

X
p1

1 (t)
)+

=
(

exp(p1Kω1)
)+

∈ Wp(Γ), ∀p1 ≥ 1, p > 1. (6)
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Here Wp(Γ) is the set of measurable functions ρ(t) satisfying the inequality
∥

∥ρSρ−1ϕ
∥

∥

Lp
≤ Mp,ρ

∥

∥ϕ
∥

∥

Lp
, ∀ϕ ∈ Lp(Γ).

Further, we investigate the function (exp Kω2)(z). It is not difficult to calculate the
integral (Kω2)(z):

(

Kω2
)

(z) =
lnG(b)

2πi
ln(z − b) −

ln G(a)

2πi
ln(z − a)+

+
lnG(b) − lnG(a)

2πi

(

(z − b) ln(z − b) − (z − a) ln(z − a)
)

. (7)

Here under ln(z−a) and ln(z−b) we mean fully definite continuous branches on the plane

with the cutting Γ[a,b] ∪ Γ(b,∞) whose difference is the branch of the function ln z−b
z−a

,

vanishing at infinity. The functions ln(z−a) and ln(z−b) are discontinuous when passing

through the line Γ(b,∞), but the branches are chosen such that ln z−b
z−a

is continuous for

z ∈ Γ(b,∞). By means of Seyfulin’s theorem, in the neighborhood of the point b from (7)

we obtain
(

exp Kω2
)

(z) = φb(z)|z − b|−
ln G(b)

2π
∆b+ε1(z)+

arg G(b)
2π (8)

and in the neighborhood of the point a we have

(

exp Kω2
)

(z) = φa(z)|z − a|
ln G(a)

2π
∆b+ε2 (z)−

arg G(a)
2π . (8′)

In (8) and (81) it is assumed that |φc(z)| < M , lim
z→c

εi(z) = 0 where c = a or c = b, and

i = 1, 2.
Obviously, one can always choose integers κa and κb such that

−
ln |G(b)|

2π
∆b +

arg G(b)

2π
= κb + αb, (9)

ln |G(b)|

2π
∆a −

arg G(b)

2π
= κa + αa, (9′)

−
1

p
≤ αa <

1

q
, −

1

p
≤ αb <

1

q
, (10)

where q = p(p − 1)−1.
We choose p such that the strict inequality

−
1

p
< αa <

1

q
, −

1

p
< αb <

1

q
, (11)

is fulfilled. Note that if for a particular p inequality (10) is fulfilled, but not fulfilled
inequality (11), then its fulfilment will depend on sufficiently close to p numbers p1 ∈
(p − ε, p + ε).

Taking now in (8) and (8′) the neighborhoods of end points sufficiently small, the
expressions (9), (9′) and (11) will be true (if p in the latter expression is taken appropri-
ately).

Thus we can show that

X2(z) ≡ (z − a)−κa (z − b)−κb
(

exp Kω2

)

(z) ∈
{

KΓ,p + P
}

. (12)

From the above-said we can easily prove the following

Theorem 1. If Γab ∈ R, ∆c = ∆c where c are end points a and b, G(t) is continuous
on Γ[a,b], then

X(z) = (z − a)−κa (z − b)−κb
(

exp ln G
)

(z) ∈
{

KΓ,ρ + P
}

X−1(z) = (z − a)κa (z − b)κb
(

exp ln G−1
)

(z) ∈
{

KΓ,q + P
}

.
(13)
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To use X(z) for the solution of problem (1) in {KΓ,p
+ P}, it is necessary that

X+(t) ∈ Wp(Γab), and towards this end we have to show that X+
2 is the weight function.

This can be easily achieved if we additionally require (21). But this condition is seemingly

not necessary, but here we restrict ourselves just to this case because we get easily visible
result.

Denote κ = κa + κb.

Theorem 2. If Γab ∈ R, condition (2′) is fulfilled, G(t) is continuous on Γ[a,b], and

g ∈ Lp, then the solution (if any) of problem (1) in {KΓ,p
} has the form

Φ(z) = X(z)

∫

Γab

g(t)dt

X+(t)(t − z)
+ Pκ−1(z)X(z),

where Pn(z) is the polynomial of the n-th degree for n ≥ 0 and Pn(z) ≡ 0 if n < 0.
If κ > 0, then the problem has κ linearly independent solutions; if κ = 0, then the

solution is unique; if κ < 0, then for the solvability of the problem it is necessary and

sufficient that the conditions
∫

Γ
ab

tkg(t)

X+(t)
= 0, k = 0, 1, . . . , κ − 1

be fulfilled.

Thus the best possible result differs from the classical one only by the expression for
the index κ which is given by formulas (9), (9′) and by the function X(z) which depends
on the number ∆c characterizing rotation of the line Γ

ab
at the end points.
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Ann. Sci. École Norm. Sup. (4) 17(1984), No. 1, 157–189.
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