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Abstract. On the condition (5) the boundary value problem (4) is solved when g ∈ Lp(.).
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We say that Γ is a regular rectifiable line and write Γ ∈ R if a singular integral

(Sφ)(τ) ≡ 1

πi

∫
Γ

φ(t)

t− τ
dt (1)

forms a bounded operator in the Lebesgue space Lp(Γ), p > 1. As is known, in [1], the
necessary and sufficient condition for Γ ∈ R is given.

In the sequel, we will need the space Lp(·)(Γ). We say that f ∈ Lp(·)(Γ), or f ∈ Lp(·),
if

Ip(Γ) ≡
∫
Γ

|f(t)|p(t) dt <∞,

where p(t) : Γ→ [1;∞). The norm on the above set is defined as follows:

∥f∥Lp(·) = inf
{
λ > 0 : Ip

(f
λ

)
≤ 1
}
.

In [2], it is shown that if p(t) satisfies the condition∣∣p(t1)− p(t2)∣∣ ≤ A

ln 1
|t1−t2|

, |t1 − t2| ≤
1

2
, t1, t2 ∈ Γ (2)

and Γ ∈ R, then the operator S defined by formula (1) is bounded in Lp(·).
The basic properties cited in [3] and [4] for the integral (1) in Lp(·) made it possible

to investigate various boundary value problems.
By Kφ, or by KΓφ, we denote the Cauchy type integral

Kφ ≡ 1

2πi

∫
Γ

φ(t)

t− τ
dt. (3)

A class of functions representable by formula (3) for φ ∈ Lp(·)(Γ) we denote by

{Kp(·)
Γ }, and that of functions representable in the form KΓφ + P , where P is a poly-

nomial, we denote by {Kp(·)
Γ + P}.
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The boundary value problem of linear conjugation is called the problem which is
formulated as follows: find a function ϕ(z) ∈ {Kp(·) + P}, ϕ(∞) = 0 satisfying on Γ
the boundary condition

ϕ+(t) +G(t)ϕ−(t) = g(t), t ∈ Γ, (4)

where G and g are the given functions.
We consider this problem on the unclosed simple arc with the ends a and b; the arc

is directed from a to b and denote it by Γab.
Assume that Γab ∈ R, G(t) is continuous on Γab, g(t) ∈ Lp(·) and p(t) satisfies the

condition (2).
To solve the problem, we will need the result due to Seifullaev [5] which after [1]

can be formulated as follows: if Γab ∈ R, then there exist finite limits

lim
t→c

arg(t− c)
| ln |t− c||

= ∆c, lim
t→c

arg(t− c)
| ln |t− c||

= ∆c, c = a, b.

In the present work we assume that ∆c = ∆c, i.e., there exist the limits for c = a
and c = b:

lim
t→c

arg(t− c)
| ln |t− c||

= ∆c. (5)

We represent the function G(t) in the form G = G1 ·G2, where

G1(t) ≡ exp
[
lnG(t)− lnG(a)− lnG(b)− lnG(a)

b− a
(b− a)

]
≡ expω1,

G2(t) ≡ exp
[
lnG(a) +

lnG(b)− lnG(a)

b− a
(b− a)

]
≡ expω2,

t ∈ Γab

and complement the arc Γab to the closed Jordan line Γ of the class R (what is, as is
known [6], always possible) and define G1(t) = G2(t) = 1 for t ∈ Γ/Γab.

Using equality (5), just in the same way as in [7], in the neighborhood of the points
a and b we obtain

exp(Kω2)(z) = ϕ2(z) exp |z − a|β(a)|z − b|β(b),

where 0 ̸= m < ϕc(z) < M ,

β(a) =
ln |G(a)|

2π
∆a −

argG(a)

2π

and

β(b) = − ln |G(b)|
2π

∆b −
argG(b)

2π
.

Assume that β(a) ̸= 2π
p(a)

(mod 2π), β(b) ̸= 2π
p(b)

(mod 2π). We choose integers κa
and κb such that

β(a) = κa + αa, β(b) = κb + αb,

− 1

p(a)
< αa <

1

q(a)
, − 1

p(b)
< αb <

1

q(b)
,

q(c) = p(c) · (p(c)− 1)−1, c = a, b.

(6)
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Denote
κ = −κa − κb (7)

and X2(z) ≡ (z − a)−κa(z − b)−κb exp(Kω2)(z).
Since the function p(t) is continuous, we find that X±

2 (t) ∈ Lp(·)(Γ), (X
−1
2 )± ∈

Lq(·)(Γ). Next, it can be shown that X2(z) ∈ {Kp(·) +P}, X−1
2 (z) ∈ {Kq(·) +P}. Thus

X2(z) is a factor function of G2.
Consider the operator

A ≡ P +GQ, P ≡ I + S, Q ≡ I − S.

We choose a rational function r(t) such that∣∣∣G1(t)− r(t)
r(t)

∣∣∣ < 1

∥Q∥
for t ∈ Γ.

Let r± be factorization of r. For κ = 0, the operator A can be represented as

A = r+X+
2

(
I +

G− r
r

Q
)( 1

r+X+
2

P +
1

r−X−
2

Q
)

and its inverse as

A−1 = (r+X+
2 P + r−X−

2 Q)
(
I +

G1 − r
r

Q
)−1

(r+X+
2 )

−1.

This implies that the boundary value problem (4) for g ∈ Lp(·)(Γab) and κ = 0 has
a unique, vanishing at infinity solution. If we denote

X(z) ≡ (z − a)−κa(z − b)−κb expK lnG,

then this solution can be written by the formula

ϕ(z) = X(z)
(
KΓab

g

X+

)
(z). (8)

Taking into account (8), it is not difficult to conclude that X+(t) is the weighted
function for S, now for any κ.

From the above reasoning we arrive at the following
Theorem 1. Let Γab be the simple unclosed arc and Γab ∈ R. Moreover, let G(t)

be the continuous function on Γab. Then:

(a) the index κ of the boundary value problem (4) is defined by formulas (6) and (7);

(b) solutions (if any) are given by the formula,

ϕ(z) = X(z)KΓab

( g

X+

)
(z) +X(z)Pκ−1(z),

where Pn(z) for n > 0 is an arbitrary polynomial of the n-th degree, and Pn(z) ≡ 0
for n ≤ 0;
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(c) if κ = 0, then the problem has a unique solution. If κ > 0, then the problem
has κ linear independent solutions, while if κ < 0, then for the solvability of the
problem it is necessary and sufficient that∫

Γab

tkg(t)

X+(t)
dt = 0, k = 0, 1, . . . ,−κ − 1.

Remark. The results of Theorem 1 differ from the classical ones by especially the
formula for the index.
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