ON THE BOUNDARY VALUE PROBLEM OF LINEAR CONJUGATION FOR

 UNCLOSED CARLWSON ARCS IN THE SPACES $L_{p(\cdot)}$Gordadze E.

Abstract. On the condition (5) the boundary value problem (4) is solved when $g \in L_{p(.)}$.
Keywords and phrases: Boundary value problem, Cauchy type integral, regular lines.
AMS subject classification: 30E20, 30E25.
We say that Γ is a regular rectifiable line and write $\Gamma \in R$ if a singular integral

$$
\begin{equation*}
(S \varphi)(\tau) \equiv \frac{1}{\pi i} \int_{\Gamma} \frac{\varphi(t)}{t-\tau} d t \tag{1}
\end{equation*}
$$

forms a bounded operator in the Lebesgue space $L_{p}(\Gamma), p>1$. As is known, in [1], the necessary and sufficient condition for $\Gamma \in R$ is given.

In the sequel, we will need the space $L_{p(\cdot)}(\Gamma)$. We say that $f \in L_{p(\cdot)}(\Gamma)$, or $f \in L_{p(\cdot)}$, if

$$
I_{p}(\Gamma) \equiv \int_{\Gamma}|f(t)|^{p(t)} d t<\infty
$$

where $p(t): \Gamma \rightarrow[1 ; \infty)$. The norm on the above set is defined as follows:

$$
\|f\|_{L_{p(\cdot)}}=\inf \left\{\lambda>0: I_{p}\left(\frac{f}{\lambda}\right) \leq 1\right\}
$$

In [2], it is shown that if $p(t)$ satisfies the condition

$$
\begin{equation*}
\left|p\left(t_{1}\right)-p\left(t_{2}\right)\right| \leq \frac{A}{\ln \frac{1}{\left|t_{1}-t_{2}\right|}}, \quad\left|t_{1}-t_{2}\right| \leq \frac{1}{2}, \quad t_{1}, t_{2} \in \Gamma \tag{2}
\end{equation*}
$$

and $\Gamma \in R$, then the operator S defined by formula (1) is bounded in $L_{p(\cdot)}$.
The basic properties cited in [3] and [4] for the integral (1) in $L_{p(\cdot)}$ made it possible to investigate various boundary value problems.

By $K \varphi$, or by $K_{\Gamma} \varphi$, we denote the Cauchy type integral

$$
\begin{equation*}
K \varphi \equiv \frac{1}{2 \pi i} \int_{\Gamma} \frac{\varphi(t)}{t-\tau} d t . \tag{3}
\end{equation*}
$$

A class of functions representable by formula (3) for $\varphi \in L_{p(\cdot)}(\Gamma)$ we denote by $\left\{K_{\Gamma}^{p(\cdot)}\right\}$, and that of functions representable in the form $K_{\Gamma} \varphi+P$, where P is a polynomial, we denote by $\left\{K_{\Gamma}^{p(\cdot)}+P\right\}$.

The boundary value problem of linear conjugation is called the problem which is formulated as follows: find a function $\phi(z) \in\left\{K^{p(\cdot)}+P\right\}, \phi(\infty)=0$ satisfying on Γ the boundary condition

$$
\begin{equation*}
\phi^{+}(t)+G(t) \phi^{-}(t)=g(t), \quad t \in \Gamma \tag{4}
\end{equation*}
$$

where G and g are the given functions.
We consider this problem on the unclosed simple arc with the ends a and b; the arc is directed from a to b and denote it by $\Gamma_{a b}$.

Assume that $\Gamma_{a b} \in R, G(t)$ is continuous on $\Gamma_{a b}, g(t) \in L_{p(\cdot)}$ and $p(t)$ satisfies the condition (2).

To solve the problem, we will need the result due to Seifullaev [5] which after [1] can be formulated as follows: if $\Gamma_{a b} \in R$, then there exist finite limits

$$
\varlimsup_{t \rightarrow c} \frac{\arg (t-c)}{|\ln | t-c| |}=\bar{\Delta}_{c}, \quad \varliminf_{t \rightarrow c} \frac{\arg (t-c)}{|\ln | t-c| |}=\bar{\Delta}_{c}, \quad c=a, b
$$

In the present work we assume that $\bar{\Delta}_{c}=\underline{\Delta}_{c}$, i.e., there exist the limits for $c=a$ and $c=b$:

$$
\begin{equation*}
\lim _{t \rightarrow c} \frac{\arg (t-c)}{|\ln | t-c| |}=\Delta_{c} \tag{5}
\end{equation*}
$$

We represent the function $G(t)$ in the form $G=G_{1} \cdot G_{2}$, where

$$
\begin{aligned}
G_{1}(t) & \equiv \exp \left[\ln G(t)-\ln G(a)-\frac{\ln G(b)-\ln G(a)}{b-a}(b-a)\right] \equiv \exp \omega_{1} \\
G_{2}(t) & \equiv \exp \left[\ln G(a)+\frac{\ln G(b)-\ln G(a)}{b-a}(b-a)\right] \equiv \exp \omega_{2}
\end{aligned}
$$

and complement the arc $\Gamma_{a b}$ to the closed Jordan line Γ of the class R (what is, as is known [6], always possible) and define $G_{1}(t)=G_{2}(t)=1$ for $t \in \Gamma / \Gamma_{a b}$.

Using equality (5), just in the same way as in [7], in the neighborhood of the points a and b we obtain

$$
\exp \left(K \omega_{2}\right)(z)=\phi_{2}(z) \exp |z-a|^{\beta(a)}|z-b|^{\beta(b)}
$$

where $0 \neq m<\phi_{c}(z)<M$,

$$
\beta(a)=\frac{\ln |G(a)|}{2 \pi} \Delta_{a}-\frac{\arg G(a)}{2 \pi}
$$

and

$$
\beta(b)=-\frac{\ln |G(b)|}{2 \pi} \Delta_{b}-\frac{\arg G(b)}{2 \pi}
$$

Assume that $\beta(a) \neq \frac{2 \pi}{p(a)}(\bmod 2 \pi), \beta(b) \neq \frac{2 \pi}{p(b)}(\bmod 2 \pi)$. We choose integers \varkappa_{a} and \varkappa_{b} such that

$$
\begin{gather*}
\beta(a)=\varkappa_{a}+\alpha_{a}, \quad \beta(b)=\varkappa_{b}+\alpha_{b} \\
-\frac{1}{p(a)}<\alpha_{a}<\frac{1}{q(a)}, \quad-\frac{1}{p(b)}<\alpha_{b}<\frac{1}{q(b)} \tag{6}\\
q(c)=p(c) \cdot(p(c)-1)^{-1}, \quad c=a, b
\end{gather*}
$$

Denote

$$
\begin{equation*}
\varkappa=-\varkappa_{a}-\varkappa_{b} \tag{7}
\end{equation*}
$$

and $X_{2}(z) \equiv(z-a)^{-\varkappa_{a}}(z-b)^{-\varkappa_{b}} \exp \left(K \omega_{2}\right)(z)$.
Since the function $p(t)$ is continuous, we find that $X_{2}^{ \pm}(t) \in L_{p(\cdot)}(\Gamma),\left(X_{2}^{-1}\right)^{ \pm} \in$ $L_{q(\cdot)}(\Gamma)$. Next, it can be shown that $X_{2}(z) \in\left\{K_{p(\cdot)}+P\right\}, X_{2}^{-1}(z) \in\left\{K_{q(\cdot)}+P\right\}$. Thus $X_{2}(z)$ is a factor function of G_{2}.

Consider the operator

$$
A \equiv P+G Q, \quad P \equiv I+S, \quad Q \equiv I-S
$$

We choose a rational function $r(t)$ such that

$$
\left|\frac{G_{1}(t)-r(t)}{r(t)}\right|<\frac{1}{\|Q\|} \text { for } t \in \Gamma \text {. }
$$

Let $r^{ \pm}$be factorization of r. For $\varkappa=0$, the operator A can be represented as

$$
A=r^{+} X_{2}^{+}\left(I+\frac{G-r}{r} Q\right)\left(\frac{1}{r^{+} X_{2}^{+}} P+\frac{1}{r^{-} X_{2}^{-}} Q\right)
$$

and its inverse as

$$
A^{-1}=\left(r^{+} X_{2}^{+} P+r^{-} X_{2}^{-} Q\right)\left(I+\frac{G_{1}-r}{r} Q\right)^{-1}\left(r^{+} X_{2}^{+}\right)^{-1}
$$

This implies that the boundary value problem (4) for $g \in L_{p(\cdot)}\left(\Gamma_{a b}\right)$ and $\varkappa=0$ has a unique, vanishing at infinity solution. If we denote

$$
X(z) \equiv(z-a)^{-\varkappa_{a}}(z-b)^{-\varkappa_{b}} \exp K \ln G
$$

then this solution can be written by the formula

$$
\begin{equation*}
\phi(z)=X(z)\left(K_{\Gamma_{a b}} \frac{g}{X^{+}}\right)(z) . \tag{8}
\end{equation*}
$$

Taking into account (8), it is not difficult to conclude that $X^{+}(t)$ is the weighted function for S, now for any \varkappa.

From the above reasoning we arrive at the following
Theorem 1. Let $\Gamma_{a b}$ be the simple unclosed arc and $\Gamma_{a b} \in R$. Moreover, let $G(t)$ be the continuous function on $\Gamma_{a b}$. Then:
(a) the index \varkappa of the boundary value problem (4) is defined by formulas (6) and (7);
(b) solutions (if any) are given by the formula,

$$
\phi(z)=X(z) K_{\Gamma_{a b}}\left(\frac{g}{X^{+}}\right)(z)+X(z) P_{\varkappa-1}(z),
$$

where $P_{n}(z)$ for $n>0$ is an arbitrary polynomial of the n-th degree, and $P_{n}(z) \equiv 0$ for $n \leq 0$;
(c) if $\varkappa=0$, then the problem has a unique solution. If $\varkappa>0$, then the problem has \varkappa linear independent solutions, while if $\varkappa<0$, then for the solvability of the problem it is necessary and sufficient that

$$
\int_{\Gamma_{a b}} \frac{t^{k} g(t)}{X^{+}(t)} d t=0, \quad k=0,1, \ldots,-\varkappa-1 .
$$

Remark. The results of Theorem 1 differ from the classical ones by especially the formula for the index.

REFERENCES

1. David G. Operateurs intégraux singuliers sur certaines courbes du plan complexe. Ann. Sci. École Norm. Sup. (4) 17, 1 (1984), 157-189.
2. Kokilashvili V., Samko S. Singular integral equations in the Lebesgue spaces with variable exponent. Proc A. Razmadze Math. Inst., 131 (2003), 61-78.
3. Kokilashvili V., Paatashvili V., Samko S. Boundary value problems for analytic functions in the class of Cauchy type integrals with density in $L^{p(\cdot)}(\Gamma)$. J. Boundary Value Problems, 1 (2005), 1-30.
4. Kokilashvili V., Paatashvili V., Samko S. Boundedness in Lebesgue spaces with variable exponent of the cauchy singular operator on Carleson curves. Operator Theory. Adv. Appl., 170 (2006), 167-186.
5. Seifullaev R. K. A Riemann boundary value problem on a nonsmooth open curve. (Russian) Mat. Sb. (N.S.), 112(154), 2(6) (1980), 147-161.
6. Böttcher A., Karbovich I. Carleson Curves, Mackenhoupt Weights and Toeplity Operators. Birkhäuser, 1997.
7. Gordadze E. On a boundary value problem of linear conjugation for unclosed arcs of the class R. Proc. A. Razmadze math. Inst., 136 (2004), 137-140.

Received 4.10.2011; revised 17.09.2011; accepted 23.11.2011.
Author's address:
E. Gordadze
A. Razmadze Mathematical Institute
Iv. Javakhishvili Tbilisi State University

2, University St., Tbilisi 0186
Georgia
E-mail: eteri@rmi.ge/mail

