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ABSTRACT. We consider a boundary value problem of linear conjugation with the boundary condition

        ,t G t t g t t    

where  is a simple closed Carleson line,  G t  and  g t are given functions on  ,  G t  is piecewise

continuous,  0 m G t M     , and      pg t L   . As usual    pL    denotes the Lebesgue

space with variable exponent. The sought function is representable by the Cauchy integral with the

principal part at infinity and a density from    pL   . Additional restrictions are imposed at the

discontinuity points of the function  G t  as in the works of other authors, while in the present paper

they are lesser than those of other authors. The solutions of the problem are written explicitly.
© 2017 Bull. Georg. Natl. Acad. Sci.
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1. Denote by  some simple closed Jordan line dividing the plane into the domains D  and D . It is

assumed that D . We will say that R  if the singular integral.

    1 t
S dt

i t


 

 



 (1)

generates a bounded operator in the Lebesgue space  pL  , 1p  . Such lines are called regular, some-

times Carleson lines and written as R .

In recent years, the operator (1) has been considered in nonstandard Lebesgue classes    pL   .

It is said that    pL    if

     p t
pI t dt 



   ,
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where  t  is a measurable function,  p t  is a continuous real function and  0 p p t p     ,  where

p  and p are constants.

The norm on the above set of functions is defined as follows

  inf 0, 1p pL
I


 




      
  

. (2)

The space    pL    has become interesting for mathematicians dealing with boundary value problems

after it was shown that by imposing certain conditions on  p t  we obtain the boundedness of the operator

(1) in  pL  .

Of the real function  p t , t  , it is required to satisfy the following conditions:

(a) If  infp p t ,  supp p t , then 1p  , p   ;

(b)    1 2

1 2

1
ln

const
p t p t

t t

 



, where 1 2 1 2
1

, ,
2

t t t t    .

For our consideration we will also need weight functions. We will say that  t is a weight and write

   pW    if

   
   

1 ,pp p pLL
S M M const    



  .

Let us consider the power function

 
1

1 1
, , 1,2, , ,k

n

k k k
k

t t t k n t
p p

 


      
  .

If  p p const   , R , kt  , 1,2, ,k n  , then the function  pW   (see e.g. [1, p. 30]).

This result was extended to the space    pL   . It is proved in [2] that if the Jordan line R , the

conditions (1) and the relations

       
 

1 1
, , , 1, 2, ,

1
k

k k k
k k k

p t
p t t k n

p t p t p t
      

 
 (3)

are fulfilled, then we have

    
1

: k
n

k p
k

t t t W
  



  .

2. Let a simple closed curve R  divide the complex plane into two domains D  and D , where

D . The direction on  , for which the domain D  remains on the left is assumed to be positive.

When considering a boundary value problem, usually the Cauchy type integral is used

     1
:

2

t
K z dt

i t z








 . (4)

We denote by    pK D  the class of functions  z  that can be represented by the formula (4) in D

and D , respectively, and assume that    pL   .
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Furthermore, if      0z z P z    , where      0 pz K D   and  P z  is a polynomial, then as

usual we denote the class of such functions by  pK 
 .

3. We call the following problem a boundary value problem of linear conjugation: Find analytic functions

in D  which belong to the definite classes and, for t  , satisfy the following condition

       t G t t g t     , (5)

where G and g are given functions,  m G t M  , 0m  , while the sought function  z  belongs to the

preliminarily defined classes.

We will consider the problem formulated as follows: Find a function    pz K 
   when  G t  is a

piecewise continuous function on   with discontinuity points   1

n
k k

t  ,  m G t M  , 0m  ,

   pg L   . The line   is assumed to be simple and closed and belonging to the class R, and satisfying

additional conditions at the points   1

n

k k
t


.

To formulate these conditions we recall the result due to Seifulaev [3] which we write in the following form:

If R  is a closed Jordan curve, 0t  ,  0arg z t , is some fixed branch on the plane cut along the line

0t
D   ( ab  is an open continuous line with ends a and b directed from a to b), then there exist  the limits

 
0

0

0

arg
lim

lnt t
t

t t

t t





  and

 
0

0

0

arg
lim

lnt t
t

t t

t t





.

In the present work, our requirements are somewhat larger, namely: for all discontinuity points of the

function  G t , i.e. at the points  1

n

k k
t


there exist one-sided limits

   arg arg
lim , lim

ln lnk k

k k
k k

t t t tk k
t t

t t t t

t t t t 

 

 
 

 
   

           (6)

and, besides, for points kt  there exist small arc-wise neighborhoods
1,k kk t t


  and
1,k kk t t


  for which

we have

   arg ln 1 ,k k k kt t t t O t        .        (7)

The final formulation of the problem reads as follows: Find functions      pz K D 
   satisfying the

boundary condition (5) if   is a simple closed line of the class R,  G t is a given piecewise continuous

function on  ,      pg t L    and the line   at the discontinuity points of the function  G t  satisfies the

condition (7).

If ab   ,  G t  is a continuous function on  , the condition (7) is fulfilled at the points a and b,

 p p const   , we solved the problem of linear conjugation in [4]. For  pL  , it is shown in [5] that

corresponding singular operator is Noetherian when at the discontinuity points of the function  G t  the
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conditions on the line   are more rigid than (7). The problem was for the first time posed in  pL  somewhat

earlier in [6] and solved completely when unilateral tangents are given at the discontinuity points of the

function  G t .

If  G t  and  g t  are piecewise Hölder and  is a smooth line, the problem is formulated and solved in

[7], [8] and other papers. These cases are called classical.

4. Let us assume   1

n
k k

t  , kt  , 1 1nt t   are the discontinuous points of function  G t . For the open

arc with the ends a and b  we use the notation ab . We consider direction from a to b as positive. In notation

kt t  we mean that tending is inside
1k kt t 

 , i.e.
1k kt tt


 . Also, k kt t as
1k kt tt


 .

Denote

   0 lim
k

k
t t

G t G t


    and    0 lim
k

k
t t

G t G t


  .

To solve the problem (5) in the formulation given above, following [9], [4] we write the function  G t  in

the form

     1 2G t G t G t  ,  (8)

where

       
     

           

1 1 2 2

1 2

2 1
11

exp , exp ,

ln ,

ln 0 ln 0
ln 0 , ,

n
k k

k k k k
k kk

G t t G t t

t t G t

G t G t
t G t t t t t

t t

 

 

  


 

 

   
     


 1,k kt t   is the characteristic function of the set  1:
k kt tt t


 .

By analogy with [10], we call the function  X z  the canonical function for  G t  if      pX z K D 
  ,

      1 p
X z K D

 
 ,  where

    
  1

p
p

p

 
 

and

     X t G t X t  .

If in addition    pX W    , then  X z is called a factor function.

Denote

 
    

    

    

1
1

1

0 1
0

2 2

exp ln , ,

:

exp ln , ,

: exp ln .

k
n

k
k

k

z t K G z z D

X z
z t

z z K G z z D
z z

X z K G z

 
 




 
 




 


 

 
    





(9)
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Keeping in mind that the function  2 t is continuous, we have

Lemma 1.  2X z is the canonical function for  2G t in the space  pL   for 1p  , p const .

One of the basic assertions used for the consideration of the problem (5) as it is formulated in Subsection

3 is

Lemma 2. If R , the condition (7) is satisfied at the points   1

n
k k

t  and for kt  , k    denotes a

small arc-wise neighborhood of the point kt  , then we obtain

      1
k k

k kK t M t t t



   

where k are integer numbers and

    
1 1

k
k

k
p t p t

  


,

  kp t   is the same as in (3).

Using Lemma 2, we obtain

Lemma 3. If R  and the condition (7) is fulfilled at the points   1

n
k k

t  , then there exists 0   such

that      1
pX z K D  

  and       1
1

p
X z K D

   
 , k  is the same as in Lemma 1 and

1

n

k
k

  .      (10)

To consider the case z D , taking 0z D  and the transformation   1
0z z   , we obtain an analo-

gous assertion for D . Also applying the formula (3) we obtain

Theorem 1. If R  and the condition (7) is fulfilled at the points   1

n
k k

t 
, then we obtain the function

 1X z  is a factor function for  1G t  in    pK D  
  with the index

1

n

k
k

 

( k  is the same as in Lemma 2).

Theorem 2. If R  and the condition (7) is fulfilled at the discontinuity points of the function  G t

which are everywhere denoted by   1

n

k k
t


, then the function

      
1

exp ln
n

k
k

X z z t K G z




  (11)

or, which is the same,
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 
    

    

1

0 1
01

exp ln , ,

exp ln ,
k

n

k
k

n
k

k

z t K G z z D

X z
z t

z z K G z z D
z z

 





 





 


 

 
    




      (12)

is the canonical function for  G t  in    pK D  
 with index  (as usual the index is the order  X z  at

infinity), k  is the same as in Lemma 2 and
1

n

k
k

  .

5. Let us proceed to the solution of the boundary value problem (5) as it is formulated in Subsection 3. As

usual we denote

   1 1
: , :

2 2
P I S Q I S    .

The problem (1) is equivalent to solving the equation

P GQ g  

in    pL   .

Consider the operator

:A P GQ   .

Using the method well tested by many authors (see e.g. [11]) we approximate the continuous function

 2G t  by rational functions. This gives us the possibility to show that for 0  the operator A is invertible

in    pL   . Therefore the canonical function (10) constructed in Subsection 4 will be the factor function for

 G t . Further it is easy to show that for the problem (5) the classical results hold true.

Finally, we have

Theorem 3. If  is a simple closed line of the class R,  G t  is a piecewise-continuous function on

 with discontinuity points  1

n

k k
t


,      pg t L   , the line  satisfies the condition (7) at the points

kt , 1,2, ,k n  , then the solution (if any) of problem (5) in    pK   has the form

     
  

   1

ab

g t
z X z dt P z X z

X t t z




  
 , (13)

where  nP z  is the polynomial of the n-th degree for 0n   and   0nP z   if 0n  .

If 0 , then the problem has  linearly independent solutions; if 0 , then the solution is unique;

if 0 , then for the solvability of the problem it is necessary and sufficient that the conditions

 
 

0, 0,1, , 1

ab

kt g t
dt k

X t


   

be fulfilled.
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maTematika

wrfivi SeuRlebis sasazRvro amocana uban-uban
uwyveti koeficientiT

e. gordaZe

ivane javaxiSvilis sax. Tbilisis saxelmwifo universiteti, andria razmaZis maTematikis instituti

(warmodgenilia akademiis wevris v. kokilaSvilis mier)

ganxilulia wrfivi SeuRlebis sasazRvro amocana

        ,t G t t g t t    

sasazRvro pirobiT, sadac   martivi Sekruli karlesonis wiria,  G t  da  g t  mocemuli

funqciebia  -ze,      pg t L    da  G t  uban-uban uwyvetia,  0 m G t M     ,

   pL    cvladmaCvenebliani lebegis sivrcea. saZiebeli funqcia warmodgenadi unda

iyos koSis tipis integraliT D -Si.  G t  funqciis wyvetis wertilebSi   wirze
moiTxoveba garkveuli piroba, romelic naklebi SezRudvaa, vidre es mocemuli iyo sxva
SromebSi. iwereba cxadi amoxsnebi.
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