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1 Preface
This text developed from an elementary course in probability the-
ory at RSU. In preparing my lectures I borrowed heavily existing
books and lectures in the field and the finished product reflects this.
In particular the books H. Cramer, Yu. Prohorov and Yu. Rosanov,
A. Shiryaev, P. Whittle were significant contributors.

2 Introduction
Probability is a mathematical science in which intuitive notions
of "chance" or "randomness" are investigate. This one like all
notions, is born of experience. Certain experiments are nonrepro-
ducible in that, when repeated under standard conditions, they
produce variable results. The popular example is that of coin-
tossing: the toss being the experiment, resulting in the observation
of the number of heads r(n). Following table shows a real result
of this experiment.

Experiments by Number of throws Relative frequence of heads
Buffon 4040 0,5069

DeMorgan 4092 0,5005
K.Pearson 24000 0,5005

It is the empirical fact that p(n) = r(n)
n varies with n much as in

figure below.
The values of p(n) show fluctuations which become progres-

sively weaker as n increases, until ultimately p(n) shows signs of
tending to some kind of a limit value.

It is on this feature of empirical convergence that one founds
probability theory; by postulating the existence of an idealized
"proportion" (a probability) or "average" (an expectation).
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Fig. 1. A graph of the proportion of heads thrown, p(n), in a sequence
of n throws, from an actual coin-tossing experiment. Note the

logarithmic scale for n.

It should be noted that p(n) doesn’t tends to its limit p in the
usual sense of limits of sequence, because one cannot guarantee
that the fluctuations in p(n) will have fallen below a prescribed
level for all values of n from a certain point onwards.

It is important to add that we proceed to work out a theory
designed to serve as a mathematical model of phenomena showing
statistical regularity.

Mathematical theory of probability don’t investigate any un-
certainty. Probability of truth that "there is a life on the another
planet", or probability "following president of Russia will be a
woman". Probabilities of this type have no direct connection with
random experiments and so have not statistical regularity.

3 What is Elementary
Probability Theory

A probabilistic model arising from the analysis of an experiment,
the all possible result of which are expressed in a finite number
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of outcomes ω1, ..., ωN is called an elementary probabilistic model
and the corresponding theory is an elementary probability theory.
We do not know the nature of these outcomes, only that there are
finite number N of them.
Definition 1. The results of experiments or observations will be
called events.
Definition 2. We call the finite set

Ω = {ω1, ..., ωN}

the space of elementary events or the sample space.
Example 1. For a single toss of coin the space of elementary
events Ω consists of two points:

Ω = {H,T}

where H = "head" T = "tail".
Example 2. For n tosses of a coin the space of elementary events
is

Ω = {ω : ω = {ω1, ..., ωn}}, ωj = H or T

and the general number N(Ω) of outcomes is 2n.

Fig. 2. A Venn diagram illustrating the complement Ā of a set A.
(Venn John (1834–1923) — English mathematicians).

Experimenters are ordinarily interested, not in what particular
outcome occurs as the result of a trial but in whether the outcome
belongs to some subset of the set of all possible outcomes.
Definition 3. We shall describe as events all subsets A ⊂ Ω for
which, under the conditions of the experiment, it is possible to say
either "the outcome ω ∈ A" or the outcome ω∈̄A.
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To every event there corresponds a opposite events "not A" to
be denoted by Ā. So if the event is "rain", then Ā is the event "no
rain". In set terms Ā is the complement of A in Ω; the set of ω
which does not lie in A.

Events are combined into new events by means of operations
expressed by the terms "and" "or".
Definition 4. A "and" B is an event which occurs if, and only
if, both the event A and the event B occur; denoted by A ∩ B or
simply, AB. This is an intersection of A and B.

Fig. 3. A Venn diagram illustrating the intersection A ∩B of sets
A and B.

Suppose A and B are two events: Say "rain" and "wind" A∩B
is the event that it rains and blows.

In set terms, the intersection A ∩ B is the set of ω belonging
both to A and B.
Definition 5. A "or" B is an event which occurs if, and only if,
at least on of the events A,B occurs, we denote it by A∪B. This
is a union of A and B. The union of events A — "rain" and B —
"wind". That is, that it either rains or blows, or both.

Fig. 4. A Venn diagram illustrating the union A ∪B of sets
A and B.
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The set Ω is the set of all possible realizations, it is a sure
event. Its complement is the empty set Θ, the set containing no
elements at all, which can be referred to as a "never occurrence"
and will be called the impossible event.

If events A and B are mutually exclusive, in that there is no
realization for which they both occur, then the set A∩B is empty.
That is, A ∩ B = Θ and the set A and B are said to be disjoint.
The difference A\B means that both A and B̄ occur or, in other
words, that A but not B occur: A ∩ B̄.

Fig. 5. A Venn diagram illustrating the difference A\B of sets
A and B̄.

3.1 Algebra of events
A collection A of subsets of Ω is an algebra if
(1) Ω ∈ A
(2) if A ∈ A, B ∈ A, than the sets A ∪ B (union), A ∩ B (inter-
section), A\B (difference) also belongs to A.
Examples.

(a) {Ω,Θ} trivial algebra
(b) {A, Ā,Ω,Θ}, the collection generated by A
(c) A = {A : A ⊆ Ω} the construction consisting of all the

subsets of Ω (including the empty set Ω).
In elementary probability theory one usually takes the algebra

A to be the algebra of all subsets of Ω.

3.2 Concept of probability
We have now taken the first two steps in defining a probabilistic
model of an experiment with a finite number of outcomes: We have
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selected a sample space and a collection A of subsets, which form
an algebra and are called events. We now take the next step, to
assign to each sample point (outcome) ωj ∈ Ω (j = 1, ..., N), a
weight. This is denoted by p(ωj) and called the probability of the
outcome ωj.

Starting from the given probabilities p(ωj) of the outcomes ωj,
we define the probability P (A) of any event A ∈ A by

P (A) =
∑

{j:ωj∈A}
p(ωj).

In construction a probabilistic model for a specific situation,
the constitution of the sample space Ω and the algebra A of events
are ordinarily not difficult. Any difficulty that may arise is in as-
signing probabilities to the sample points. In the principle, the
solution to this problem lies outside the domain of probability the-
ory, and we shall not consider it in detail. We consider that our
fundamental problem is not the question of how to assign probabil-
ities, but how to calculate the probabilities of complicated events
(element of A) from the probabilities of the sample points. We
assume that it has the following properties:

(1) Axiom of nonnegativity for any A ∈ A P (A) ≥ 0.
(2) Axiom of normalization P (Ω) = 1.
(3) Axiom of additivity. If A and B are disjoint (mutually

exclusive) sets (events): A ∩B = Θ then

P (A ∪B) = P (A) + P (B).

Finally, we say that a triple

(Ω,A, P )

where Ω = {ω1, ..., ωn}, A is an algebra of subsets of Ω and

P = {P (A); A ∈ A}

defines a probabilistic space.

8



In connection with the difficulty of assigning probabilities to
outcomes, we note that there are many actual situations in which
for reasons of symmetry it seems reasonable to consider all con-
ceivable outcomes as equally probable. In such cases, if the sample
space consists of points ω1, ..., ωn, with n < ∞, we put

p(ω1) = ... = p(ωn) = 1/n

and consequently
P (A) = n(A)/n,

for every event A ∈ A, where n(A) is the number of sample points
in A. That is called the classical method of assigning probabilities.
It is clear that in this case the calculation of P (A) reduces to cal-
culating the number of outcomes belonging to A. This is usually
done by combinatorial methods, so that the combinatorics, applied
to finite sets, plays a significant role in the calculus of probabilities.
So we have following classical definition of mathematical probabil-
ity. If there are n exhaustive, mutually exclusive and equally likely
cases, and na of them are favorable to an event A the mathematical
probability of A is defined as ratio nA/n.

4 Conditional Probability.
Independence

The concept of probabilities of events let us answer questions of the
following kind: If there are M balls in an urn, M1 white and M2

black, what is the probability P (A) of the event A that a selected
ball is white? With the classical approach P (A) = M1/M .

The concept of conditional probability, which will be intro-
duced below, let us answer questions of the following kind: What
is the probability that second ball is white (event B) under the
condition that the first ball was also white (event A) (We think of
sampling without replacement).

It is natural to reason as follows: If the first ball is white,
then at the second step we have an urn containing M − 1 balls, of
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which M1 − 1 are white and M2 black; hence it seems reasonable
to suppose that the (conditional) probability is (M1 − 1)/(M − 1).

We now give a definition of conditional probability that is con-
sistent with our intuitive ideas.

Let (Ω,A, P ) be a finite probabilistic space and A an event
(i. e. A ∈ A).
Definition 1. The conditional probability of event B given event
A with P (A) > 0 (denoted by PA(B)) is

PA(B) =
P (A ∩B)

P (A)
.

In the classical approach we have

P (A) = N(A)/N(Ω), P (A ∩B) = N(AB)/N(Ω),

and therefore PA(B) = N(AB)/N(A).
From definition 1 we immediately get the following properties

of conditional probability:

PA(A) = 1, PA(Θ) = 0, PA(B) = 1 if A ⊂ B,

PA(B1 +B2) = PA(B1) + PA(B2).

Note that
PA(B) + PA(B̄) = 1.

It follows from these properties that for a given event A the
conditional probability PA(B) define probability distribution

values P (B/A1) P (B/A2) ... P (B/An)

probability P (A1) P (A2) ... P (An)

where A1 ∪ ... ∪An = Ω, Ai ∩Aj = Θ and P (Ak) > 0.
Example. Consider a family with two children. We wan’t to find
the probability that both children are boys, assuming: a) that the
older child is boy; b) that at least one of the children is a boy.

The sample space is Ω = {BB,BG,GB,GG}, where BGmeans
that older child is a boy and the younger is a girl.
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Let us suppose that all sample points are equally probable

P (BB) = P (BG) = P (GB) = P (GG) =
1

4
.

Let A be the event that the older child is a boy, and C that
the younger child is a boy. Then A ∪ C is the event that at least
one child is a boy, and A ∩ C is the event that both children are
boys. In question (a) we want to know the conditional probability
PA(A ∩ C), and in (b), the conditional probability PA∪C(AC).

It is easy to see that

PA(A ∩ C) =
P (A ∩ C)

P (A)
=

1/4

1/2
=

1

2
.

PA∪C(A ∩ C) =
P (A ∩ C)

P (A ∪ C)
=

1/4

3/4
=

1

3
,

because

A ∩ C = BB, A ∪ C = BB ∪BG ∪GB

and by axiom of additivity we have

P (A ∪ C) = P (BB ∪BG ∪GB) =
= P (BB) + P (BG) + P (GB) = 3

4 .

4.1 The formula for total probability
Definition. We say that the collection D = {D1, ...,Dn} of sets is
a decomposition of Ω, and call the Dj the atoms of decomposition,
if the Dj are not empty, are pairwise disjoint, and their sum is Ω.

Consider a decomposition

D = {A1, ..., An} with P (Aj) > 0, j = 1, ..., n

(such a decomposition is often called a complete set of disjoint
events). It is clear that B = BA1∪...∪BAn and since BAj∩BAk =
Θ (j 	= k) disjoint events, we have
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P (B) = P (BA1 ∪ ... ∪BAn) =

n∑
j=1

P (BAj).

But P (BAj) = PAj (B)P (Aj). Hence we have the formula for total
probability

P (B) =

n∑
j=1

PAj(B)P (Aj).

In particular, if we take into account that Ω = A ∪ Ā, then

P (B) = PA(B)P (A) + PĀ(B) · P (Ā).

4.2 Bayes’s formula
(Bayes Thomas (1702–1761) — English mathematician).

Suppose that A and B are events with P (A) > 0 and P (B) >
0. Then by the definition of conditional probability P (A ∩ B) =
PA(B)P (A). Then along with this formula we have the parallel
formula P (A ∩ B) = PB(A)P (B). From this formulae we obtain
Bayes’s formulaes

PB(A) =
PA(B)P (A)

P (B)
.

If the events A1, ..., An form a decomposition of Ω and we take
into account the formula for total probability we have

PB(Aj) =
PAj (B)P (Aj)

n∑
k=1

P (Ak)PAk
(B)

— this is Bayes’s theorem.

Example. Let an urn contain two coins: A1 is a fair coin with
probability 1/2 of falling "H"; andA2 — a biased coin with P2(H)=
1
3 . A coin is drawn at random and tossed. Suppose that it falls
head. We ask for the probability that the fair coin was selected.
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Let us construct the corresponding space of elementary events
Ω = {A1H,A1T,A2H,A2T}, which describes all possible outcomes
of a selection and a toss (A1H means that coin A1 was selected
and fell heads).

P (A1) = P (A2) = 1/2, PA1(H) = 1/2, PA2(H) = 1/3.

Then by the definition 1 of conditional probability we have

P (A1H) = P (A1)PA1(H) = 1
2 · 1

2 = 1
4 , P (A1T ) =

1
4 ,

P (A2H) = P (A2)PA2(H) = 1
2 · 1

3 = 1
6 ,

P (A2T ) =
1
2 · 2

3 = 1
3 .

Using Bayes’s formula, we get

PH(A1) =
P (A1)PA1(H)

P (A1)PA1(H) + P (A2)PA2(H)
=

3

5

and therefore PH(A2) =
2
5 .

4.3 Independence
Independence plays a central role in probability theory: it is pre-
cisely this concept that distinguishes probability theory from the
general theory of measure spaces. "Probability theory is a measure
theory — with a soul" (M. Kac).

After these preliminaries, we introduce the following definition.
Definition 1. Events A and B are called independent or statisti-
cally independent (with respect to the probability P ) if

P (AB) = P (A)P (B)

Caution! Don’t confuse notions of disjoint events and indepen-
dence of events.

13



It is often convenient in probability theory to consider not only
independence of events (or sets) but also independence of collec-
tions of events (or sets). Accordingly we introduce the following
definition
Definition 2. Two algebras A1 and A2 of events (or sets) are
called independent or statistically independent (with respect to
the probability P ) if all pairs of sets A1, A2 belonging respectively
to A1 and A2, are independent.
Example 1. Let us consider two algebras

A1 = {A1, Ā1,Θ,Ω} and A2 = {A2, Ā2,Θ,Ω}

where A1 and A2 are subsets of Ω. It is easy to verify that A1 and
A2 are independent if and only if A1 and A2 are independent. In
fact, the independence of A1 and A2 means the independence of
the 16 events A1 and A2, A1 and Ā2, ...,Ω and Ω. Consequently A1

and A2 are independent. Conversely if A1 and A2 are independent,
we have to show that the other 15 pairs of events are independent.
Let us verify, for example, the independence of A1 and Ā2. We
have

P (A1Ā2) = P (A1(Ω−A2)) = P (A1 −A1A2) =

= P (A1)− P (A1A2) = P (A1)− P (A1)P (A2) =

= P (A1)(1− P (A2)) = P (A1)P (Ā2).

The independence of the other pairs is verified similarly.
Example 2. A card is chosen at random from a deck of playing
cards. For reasons of symmetry we expect the events "A=spade"
and "B=ace" are independent. As a matter of fact, their probabil-
ities are 1/4 and 1/13, and the probability of their simultaneous
realization is

1/52 = P (AB) = P (A) · P (B).

So we have statistically independent events!
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Suppose now that three events A,B and C are pairwise inde-
pendent so that

P (AB) = P (A) · P (B), P (AC) = P (A)P (C),

P (BC) = P (B)P (C).

We might think that this always implies the independence of A,B
and C (P (ABC) = P (A)P (B)P (C). Unfortunately this is not
necessarily so!
Example 3 (Bernstein). Let us consider Ω = {ω1, ω2, ω3, ω4}
where all outcomes are equiprobable. It is easy to verify that the
events A = {ω1, ω2}, B = {ω1, ω3}, C = {ω1, ω4} are pairwise
independent

P (AB) = P (A)P (B), P (AC) = P (A)P (C),

P (BC) = P (B)P (C),

whereas
P (ABC) 	= P (A)P (B)P (C).

Indeed

P (ABC) = P (ω1) =
1

4
and P (A) = P (B) = P (C) =

1

2
.

It is desirable to reserve the term statistically independence for the
case where no such inference is possible. Then not only pairwise
independence must hold but in addition

P (ABC) = P (A) · P (B) · P (C).

Thus we have the following:
Definition 3. The events A1, A2, ..., An are called mutually or
statistically independent if for all combinations

1 ≤ i < j < k < ... ≤ n
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the multiplication rules

P (AiAj) = P (Ai)P (Aj),

P (AiAjAk) = P (Ai)P (Aj)P (Ak)

............................................

P (A1A2...An) = P (A1) · P (A2)...P (An)

apply.
For the sake of simplicity we use in the following materials

"independent" instead of "statistically independent". This concept
can be extended to the any finite number of sets or algebras of sets:
A1, ...,An.
Definition 4. The algebras A1,A2, ...,An of events are called in-
dependent (with respect to the probability P ) if all events A1, A2,
..., An belonging respectively to A1, ...,An are independent.

Now let us consider following.
Example 4. Add to deck of playing cards a "white card". So the
deck consists of 53 cards. We have

P (AB) = P ("spade" ∩ "ace") = 1
53 .

P (A = "spade") = 13
53 ,

P (B = "ace") = 4
53 and P (AB) 	= P (A)P (B).

So we conclude that the notions "Statistically independence"
and "independence in every day sense" are different notions!

Now I would like to make an advance about following.
Caution! Don’t confuse the notions "mutually independent" and
"mutually exclusive" events!

Now let us answer following question, is there any object with
condition of statistical independence?
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4.4 Rademacher’s function
(Rademacher Hans Adolf (1892–1969) — German mathe-
matician).

The material of this section is useful but will not be used ex-
plicitly in the sequel.

It is well known that every number x ∈ [0,1] has unique binary
expansion (containing an infinite number of zeros)

x =
ε1
2

+
ε2
22

+ ... (εi = 0,1).

For example

3/4 = 1/2 + 1/22 + 0/23... = (1,1).

To ensure the uniqueness of the expansion, we shall consider
only the expansions containing an infinite number of zeros. Thus
we choose the first of the two expansions

3

4
=

1

2
+

1

22
+

0

23
+ ... =

1

2
+

0

22
+

1

23
+

1

24
+

1

25
+ ...

Let us take into account that εi is function of x i. e. εi = εi(x)
and consider ε1(x) = a1 (a1 = 0,1). If ε1(x) = 0, we have x =
ε2(x)
22 + ε3(x)

23 + ... and x ∈ [0, 12). If ε1(x) = 1 then x = 1
2 +

ε2(x)
22 + ...

and x ∈ [12 , 1). See Fig. 6. So P (x : ε1(x) = a1) =
1
2 .

Fig. 6. The graph of the function ε1(x).
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For ε2(x) = a2(a2 = 0, 1)

x =
ε1(x)

2
+

1

22
+

ε3(x)

23
+ ... if ε2(x) = 1

or
x =

ε1(x)

2
+

ε3(x)

23
+ ... if ε2(x) = 0.

So, if ε2(x) = 1 then x ∈ [14 ,
1
2) or x ∈ [34 , 1) and P (x : ε2(x) =

1) = 1
2 . Similarly if ε2(x) = 0 then x ∈ [0, 14 ) or x ∈ [12 ,

3
4 ) (See

Fig. 7). So P (x : ε2(x) = 0) = 1
2 .

Fig. 7. The graph of the function ε2(x).

Now let us consider the following expression

P (x : ε1(x) = a1, ε2(x) = a2) =

= P (x : a1
2 + a2

22
≤ x < a1

2 + a2
2 + 1

22
).

Assume that a1 = 0, a2 = 0, then

P (x : ε1(x) = 0, ε2(x) = 0) = P (x : 0 ≤ x ≤ 1
4 ) =

1
4 ;

P (x : ε1(x) = 0, ε2(x) = 1) = P (x : 1
22

≤ x < 1
22

+ 1
4) =

1
4 ;

P (x : ε1(x) = 1, ε2(x) = 0) = P (x : 1
2 ≤ x < 1

2 + 1
4 ) =

1
4 ;

P (x : ε1 = 0, ε2(x) = 1) = P (x : 1
22

≤ x < 1
22

+ 1
4) =

1
4 .

18



This means that P (x : ε1(x) = a1, ε2(x) = a2) =
1
4 . Therefore

1
4 = t(x : ε1(x) = a1, ε2(x) = a2) =

= P (x : ε1(x) = a1) · P (x : ε2(x) = a2) =
1
4 .

This establishes that ε1(x) and ε2(x) are statistically independent.
The same is true for ε1(x), ..., εn(x).

If we now set Rn(x) = 1 − 2εn(x), n ≥ 1 that the sequence,
so called Rademacher’s function R1(x), R2(x), ..., Rn(x) are inde-
pendent!

Fig. 8. The graphs of the functions R1(x) and R2(x).

5 Random Variables
and their Properties

The concept "random variable", which we now introduce serves to
define the quantities that are subject to "measurement" in random
experiments.
Definition. Any numerical function ξ = ξ(ω) defined on a (finite)
sample space Ω is called a (simple) random variable. (The reason
for the term "simple" random variable will become clear after the
introduction of the general concept of random variable).
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Example. In the model of two tosses of a coin with sample space
Ω = {HH,HT, TH, TT}, define a random variable ξ = ξ(ω) by
the table

ω HH HT TH TT

ξ(ω) 2 1 1 0

Here, from its very definition, ξ(ω) is nothing but the number
of heads in the outcome ω.

Another simple example of a random variable is the indicator
function of a set A ∈ A : ξ = I(A) where

I(A) = IA(ω) =

{
1, if ω ∈ A
0, if ω∈̄A.

When experiments are concerned with random variables that
describe observations, their main interest is in the probabilities
with which the random variables take various values. Since we
are considering the case when Ω contains only a finite number of
points, the range x of the random variable ξ is also finite. Let
X = {x1, ..., xm} where the (different) numbers x1, ..., xm exhaust
the values of ξ. If we put

Aj = {ω : ξ(ω) = xj} (j = 1, 2, ...,m),

then ξ can evidently be represented by as

ξ = ξ(ω) =
m∑
j=1

xjIAj (ω),

where the sets A1, ..., Am form a decomposition of Ω; (i. e. they
are pairwise disjoint and their sum is Ω. See 4.1). It is clear that
the values of Pξ(B) = P{ω : ξ(ω) ∈ B}, B ∈ X (X be the
collection of all subsets of X) are completely determined by the
probabilities Pξ(xj) = P{ω : ξ(ω) = xj} xj ∈ X.
Definition. The set of numbers

{Pξ(x1), ..., Pξ(xm)}
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is called the probability distribution of the random vari-
able ξ.
Example. A random variable ξ that takes the two volumes 1
and 0 with probabilities p ("success") and q ("failure") is called a
Bernoulli random variable. Clearly Pξ(x) = pxq1−x, x = 0, 1. A
binomial (or binomially distributed) random variable ξ is a random
variable that takes the n + 1 values 0, 1, ..., n with probabilities
Pξ(x) = Cx

np
xqn−x, x = 0, 1, ..., n. The probabilistic structure of

the random variables ξ is completely specified by the probability
distribution

{Pξ(xj), j = 1, ...,m}.
The concept of the distribution function, which we now introduce,
yields an equivalent description of the probabilistic structure of the
random variables.
Definition. Let x ∈ R1. The function

Fξ(x) = P{ω: ξ(ω) ≤ x}

is called the distribution function of the random variable ξ.
Clearly

Fξ(x) =
∑

j:xj≤x

Pξ(xj)

and Pξ(xj) = Fξ(xj)− Fξ(xj−) where

Fξ(x−) = limy↑xFξ(y).

Here limy↑x Fξ(y) is the left-hand limit. If we suppose that
x1 < x2 < ... < xm and put Fξ(x0) = 0, then

Pξ(xj) = Fξ(xj)− Fξ(xj−1), (j = 1, ...,m).

Pj = Pξ(xj) — probability distribution, Fξ(x) — distribution func-
tion.

It follows from the last Definition that the distribution function
Fξ(x) has the following properties:
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1. Fξ(−∞) = 0; Fξ(∞) = 1.
2. Fξ(x) is continuous on the right Fξ(x + 0) = Fξ(x), and

Fξ(x) has left-hand limit. The function Fξ(x) is "CADLAG"1.

Fig. 9. The graphs of P (x) and Fξ(x) for a random variable ξ with
values 1, 2, 3, 4 and probabilities 1

8 ,
2
8 ,

3
8 ,

2
8 accordingly.

We now turn to the important concept of independence of ran-
dom variables.

Let ξ1, ..., ξr be a set of random variables with values in a finite
set X ⊆ R1.
Definition. The random variables ξ1, ..., ξr are said to be inde-
pendent (mutually independent) if

P (ξ1 = x1, ..., ξr = xr) = P (ξ1 = x1) · ... · P (ξr = xr)

for all x1...xr ∈ X.
1The term "CADLAG" is an acronym for the French phrase which

means "continuous on the right, limits on the left".
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6 The Binomial Distribution
Let a coin be tossed n times and record the results as an ordered
set (a1, ..., an), where aj = 1 for a head ("success") and aj = 0 for
a tail ("failure"). The space of elementary events is

Ω = {ω : ω = (a1, ..., an), aj = 0, 1).

To each elementary event ω = (a1, ..., an) we assign the prob-
ability

p(ω) = p
∑

ajqn−
∑

aj ,

where nonnegative numbers p and q satisfy p+ q = 1. We consider
all outcomes ω = (a1, ..., an) for which∑

j

aj = k (k = 0, 1, ..., n).

According to that (the distribution of k indistinguishable ones in
places) the number of these outcomes is Ck

n. Therefore the bino-
mial formula gives

∑
ω∈Ω

p(ω) =

n∑
k=0

Ck
np

kqn−k = (p+ q)n = 1.

So we verify that this assignment of the weights p(ω) is consis-
tent because we show that∑

ω∈Ω
p(ω) = 1.

Thus the space Ω together with the collection A of all its subsets
and the probabilities

P (A) =
∑
ω∈A

p(ω), A ∈ A,

defines a probabilistic model for n tosses of a coin. We note that
this model for n tosses of a coin can be thought of as the result of
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n "independent" experiments with probability p of success at each
trial.

Let us consider the events

Ak = {ω : ω = (a1, ..., an), a1 + ...+ an = k}, k = 0, 1, ..., n,

consisting of exactly k successes. It follows from what we said
above that P (Ak) = Ck

np
kqn−k, and

n∑
k=0

p(Ak) = 1.

Definition. The set of probabilities (P (A0), ..., P (An)) is called
the binomial distribution (the number of successes in a n tosses).

This distribution plays an extremely important role in proba-
bility theory since it arises in the most diverse probabilistic models.
We write Pn(k) = P (Ak), k = 0,1, ...n. The following figure shows
the binomial distribution in the case p = 1

2 (symmetric coin) for
n = 10.

Fig. 10. The graph of the binomial distribution in the case p = 1
2

for n = 10.

6.1 The Poisson distribution
Definition. The set of probabilities P (A1)P (A2), ..., P (An)... where
P (Ak) =

λke−λ

k! is called the Poisson distribution.
This is indeed probability distribution because
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∞∑
k = 1

λke− λ

k!
= e−λ

∞∑
k = 1

λk

k!
= e−λ · eλ = 1!

Notice that all the (discrete) distributions considered previ-
ously were concentrated at only a finite number of points. The
Poisson distribution is the first example that we have encoun-
tered of discrete distribution concentrated at a countable number
of points.

6.2 Poisson’s theorem
(Poisson Simeon Deni (1781–1840) — French mathemati-
cian).

Let

Pn(k) =

{
Ck
np

kqn−k, k = 0, 1, 2, ..., n
0 k = n+ 1, n + 2, ...

and suppose p is a function p(n) of n.
Theorem. Let p(n) → 0, n → ∞ in such a way that
np(n) → λ, where λ > 0, (λ < ∞). Then for k = 1, 2, ...

Pn(k) → πk =
λke−λ

k!

|Pn(k)− πk| ≤ 3

2

λ2

n
.

Proof.

Pn(k) = Ck
np

kqn−k =

= n!
k!(n−k)! [

λ
n + o( 1n)]

k · [1− λ
n + o( 1n)]

n−k =

= n(n−1)·...·(n−k+1)
k! [λn + o( 1n )]

k[1− λ
n + o( 1n)]

n−k

25



But
n(n− 1) · ... · (n− k + 1)[λn + 0( 1n )]

k =

= n(n−1)·...·(n−k+1)
nk [λ+ 0(1)]k =

= (1− 1
n) · ... · (1− k+1

n )[λ+ 0(1)]k → λk

as n → ∞, and

[1− λ

n
+ 0(

1

n
)]n−k → e−λ

as n → ∞, which establishes this theorem.
In the preceding theorem we have used the Poisson distribution

merely as a convenient approximation to the binomial distribution
in the case of large n and small p. In many applications we deal
with Poisson distribution as a principal distribution of probability
theory. Stars in space, raisins in cake, misprints are distributed in
accordance with the Poisson law!

Fig. 11. The Poisson distribution for various values of λ.

7 The Hypergeometric Distribution
Consider, for example, an urn containing M balls numbered 1, 2,
...,M where M1 balls have the color b1 and M2 balls have the
color b2 and M1 + M2 = M . Suppose that we draw a sample
of size n < M without replacement. The sample space is Ω =
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{ω : ω = (a1, ..., an)} ak 	= aj , k 	= j, aj = 1, ...,M} and the
number of elementary events N(ω) is equal Cn

M . Let us suppose
that the space of elementary events are equiprobable and find the
probability of the event Bn1n2 in which n1 balls have color b1 and
n2 balls have color b2, where n1 + n2 = n. It is easy to show that
N(Bn1n2) = Cn1

M1
Cn2
M2
.

Definition. The set of probabilities {P (Bn1,n2 M1 +M2 = M)}
is called the hypergeometric distribution:

P (Bn1,n2) =
Cn1
M1

Cn2
M2

Cn
M

; (n1 + n2 = n).

Example. 1) Let us consider a lottery of the following kind. There
are 50 balls numbered from 1 to 50; 7 of them are lucky. We draw
a sample of 7 balls, without replacement. The person who picks 7
"lucky" numbers wins a billion−109 dollars! The question is what
is the probability of this events? Taking M = 50, M1 = 7, n1 =
7, n2 = 0.

P (B7,0) = P (7 balls, all lucky) =
=

C7
7 ·C0

43

C7
50

= 1
C7

50
� 2,33 · 10−10.

2) Sportloto. There are 49 balls numbered from 1 to 49. 6 of
them are lucky. What is the probability of the events: P (Bj ,k ) =
P (between 6 balls: j lucky, k unlucky) where j, k = 0, 1, ..., 6 and
j + k = 6.

Taking M = 49, M1 = 6:

1) n1 = 6 n2 = 0 P (B6,0) =
C6

6C
0
496

C49
= 7,2 · 10−8;

2) P (B5,1) = Pr(between 6 balls: 5 lucky, 1 unlucky) =
=

C5
6C

1
43

C6
49

= 0,00001858;

3) P (B4,2) = Pr(between 6 balls: 4 lucky, 2 unlucky) =
=

C4
6C

2
43

C6
49

= 0,000969;

4) P (B3,3) = Pr(between 6 balls: 3 lucky, 3 unlucky) =
=

C3
6C

3
43

C6
46

= 0,017650;
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5) P (B2,4) = Pr(between 6 balls: 2 lucky, 4 unlucky) =
=

C2
6C

4
43

C6
49

= 0,132378;

6) P (B1,5) = Pr(between 6 balls: 1 lucky, 5 unlucky) =
=

C1
6C

5
43

C6
49

= 0,413019;

7) P (B0,6) = Pr(between 6 balls: 0 lucky, 6 unlucky) =
=

C0
6C

6
43

C6
49

= 0,435965.

To make this example clear let us consider an urn with 5 balls
numbered 1, 2, ..., 5. 3 of them are white, 2 — black. What is the
probability Pr (between 3 balls: 2 white and 1 black)=? Pr(·) =
C2

3C
1
2

C3
5
;

8 The Continuous Type
of Distribution

Before this paragraph we had to deal with discrete probabilities
and it is possible approximations of the following form

P (a < ξ < b) ≈
b∫

a

f(x)dx.

In many cases this passage to the limit leads conceptually to a new
— continuous space of elementary events, and the latter may be
intuitively simples than the original discrete model but the defini-
tion of probabilities in it depends on tools such as integration and
measure theory.
Example (Feller). Random choices. To "choose a point at ran-
dom" in the interval (0,1) is a conceptual experiment with an obvi-
ous intuitive meaning. It can be described by discrete approxima-
tions, but it is easier to use the whole interval as an sample space
of events and to assign to each interval its length as probability.
The conceptual experiment of making two independent random
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variable choice of points in (0,1) results in a pair of real numbers,
and so the natural space of elementary events is a unit square.
In this sample space of elementary events one equates, almost in-
stinctively "probability" with "area". This is quite satisfactory for
some elementary purpose, but sooner or later the question arises
as to what the word "area" really means.
Definition. A variable ξ will be said to be of the continuous type,
or to possess a distribution of this type, if the distribution function
F (x) = P (ξ ≤ x) is everywhere continuous and if, the derivative
F ′(x) = f(x) exists in a certain point x, then we shall call f(x)
the probability density function. Moreover, if the density function
f(x) = F ′(x) is continuous for all values of x1 except possibly in
certain points of which any finite interval contains at most a finite
number. The distribution function F (x) is then

F (x) = P (ξ ≤ x) =

∫ x

−∞
f(t)dt.

The distribution has no discrete mass points, and consequently the
probability that ξ takes a value x0 is zero for every
x0: P (ξ = x0) = 0. The probability that ξ takes a value belong-
ing to the finite or infinite interval (a, b) has thus the same value,
whether we consider the interval as closed, open or half-open and
is given by

P (a < ξ < b) = F (b)− F (a) =

∫ b

a
f(t)dt.

Since the total mass in the distribution must be unity, we always
have ∫ ∞

−∞
f(t)dt = 1.

A distribution of the continuous type may be graphically rep-
resented by diagrams, showing distribution function F (x) or the
density function f(x).
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9 The Normal Distribution
Definition. The function defined by

ϕ(x,m, σ) =
1

σ
√
2π

e−(x−m)2/2σ2

is called the normal density function, its integral

Φ

(
x−m

σ

)
=

1√
2π

x−m
σ∫

−∞
e−

u2

2 du =
1

σ
√
2π

x∫
−∞

e−
(u−m)2

2σ2 du,

is the normal distribution function with parameters m and σ. The
transformation u = x−m

σ carries the normal law with parameters
m and σ into the standard normal distribution with parameters
m = 0, σ = 1 and density

1√
2π

e−
u2

2 (−∞ < u < ∞).

This distribution plays an exceptionally important role. This
comes about, first of all, because under rather general hypotheses,
sums of a large number of independent random variables are closely
approximated by normal distribution.

The ϕ(x) is a symmetric bell-shaped curve, decreasing very
rapidly with increasing |x|:

ϕ(1) = 0,24197,
ϕ(2) = 0,053991,
ϕ(3) = 0,004432,
ϕ(4) = 0,000134,

the graph of which is shown in Fig. 12.
The curve Φ(x) approximates 1 very rapidly as x increases:

Φ(1) = 0,841345,
Φ(2) = 0,977250,
Φ(3) = 0,998650,
Φ(4) = 0,999968.
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Fig. 12. The graph of the normal probability density ϕ(x).

For tables ϕ(x) and Φ(x), as well as of other functions that are
used in probability theory. (See: [1], [7]).

erf(x) =
2√
π

2∫
0

e−t2 dt; Φ(x) =
1

2
[1 + erf(

x√
2
)].

10 Expectation
We now turn to the random variable with finite number of values.

Let pi = P{ξ = xi}. It is intuitively plausible that if we observe
the values of the random variable ξ in "n repetitions of identical
experiments", the value xj ought to be encountered about pjn
times, j = 1, ..., k. Hence the mean value calculated from the
results of n experiments is roughly

1

n
[np1x1 + ...+ npkxk] =

n∑
j=1

pjxj.

This discussion provides the motivation for the following definition.
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Definition. The expectation (or mathematical expectation) or
mean value of the random variable

ξ =

n∑
j=1

xjI(Aj)

is the number

Eξ =

n∑
j=1

xjP (Aj)

where

Aj = {ω : ξ(ω) = xj},
n⋃

j=1

Aj = Ω and Ai ∩Aj = Θ.

Since Pξ(xj) = P (Aj), we have

Eξ
def
=

n∑
j=1

xjPξ(xj).

Reminder.

I(Aj) =

{
1 ωj ∈ Aj = {ω : ξ(ω) = xj}
0 ωj ∈ Āj = {ω : ξ(ω) 	= xj}

EI(Aj) = 1 · P (Aj) + 0 · P (Āj) = P (Aj).

We list the basic properties of expectation:
1. If ξ ≥ 0, then Eξ ≥ 0. This property is evident.
2. If ξ and η are arbitrary random variables, then,

E(aξ + bη) = aEξ + bEη,

where a and b are constants.
Let

ξ =
∑
j

xjI(Aj), η =
∑
j

yjI(Bj);

32



Then

aξ + bη = a
∑
i,j

xjI(Aj ∩Bi) + b
∑
i,j

yjI(Ai ∩Bj) =

=
∑
i,j
(axj + byi)I(Aj ∩Bi)

and

E(aξ + bη) =
∑
i,j
(axi + byi)P (Ai ∩Bj) =

=
∑
i
axiP (Ai) +

∑
j
byjP (Bj) = aEξ + bEη.

So we have
E(aξ + bη) = aEξ + bEη

Particularly Ea = a.
3. If ξ ≥ η then Eξ ≥ Eη. This property follows from 1. and 2.
4. | Eξ |≤ E | ξ |. This is evident, since

| Eξ |=|
∑
j

xjP (Aj) |≤
∑
j

| xj | P (Aj) = E | ξ | .

5. If ξ and η are independent, then E(ξη) = Eξ ·Eη.
To prove this we note that

E(ξη) = E[(
∑
j
xjI(Aj)) · (

∑
yiI(Bj)] =

= E(
∑
i,j

xiyjI(Ai ∩Bj)) =
∑
i,j

xiyiP (Ai ∩Bj) =

=
∑
i,j

xiyjP (Ai)P (Bj) =

= (
∑
i
xiP (Ai))(

∑
j
yjP (Bj)) = Eξ · Eη.

Remark. If Eξη = EξEη it does not follow in general that they
are independent: P (ξ = x)P (η = y) = P (ξ = x, η = y). Let us
consider random variable α which takes the values 0, π/2, π with
probability 1/3:

α
0 π/2 π

1/3 1/3 1/3.
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Then ξ = sinα and η = cosα.

Eξ = E sinα =
1

3
(sin 0 + sin

π

2
+ sinπ) =

1

3
.

Eη = E cosα =
1

3
(cos 0 + cos

π

2
+ cos π) = 0.

E(ηξ) = E(sinα cosα) = 1
2E sin 2α =

= 1
2 · 1

3 (sin 0 + sin π + sin 2π) = 0

So, Eξ ·Eη = 1
3 · 0 = 0 = E(ηξ).

P (ξ = 1) = 1
3 · sin π

2 = 1
3 ,

P (η = 1) = 1
3 cos 0 = 1

3 P (ξ = 1 ∩ η = 1) = 0

and
0 = P (ξ = 1 ∩ η = 1) = P (ξ = 1) · P (η = 1) =

1

9
!

So,

Eξη = EξEη =⇒/ P (ξ = x)P (η = y) = P (ξ = x, η = y).

6. (E | ξη |)2 ≤ Eξ2 · Eη2 (Cauchy–Bunyakovsky–Schwarz
inequality without proof! See [14]).

7. If ξ = I(A) then Eξ = P (A), by definition I(A) we have

I(A) =

{
1 ω ∈ A
0 ω ∈ Ā

Eξ = EI(A) = 1 · P (A) + 0 · P (Ā) = P (A),

where
A = {ω : ξ(ω) = 1}, Ā = {ω : ξ(ω) = 0}.

8. Let ξ =
∑
j
xjI(Aj), where Aj = {ω : ξ(ω) = xj}, and

ϕ = ϕ(ξ(ω)) is a function of ξ(ω). If Bj = {ωj ϕ(ξ(ω)) = yj},
then

ϕ(ξ(ω)) =
∑
j

yjIϕ(Bj), then
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I(Bj) = Iϕ(Bj) =

{
1 ϕ = yj
0 ϕ 	= y;

and consequently

Eϕ(ξ) =
∑
j

yjP (Bj) =
∑
j

yjP (ϕ(yj)),

where
P (ϕ(yj)) = P{ω : ϕ(ξ(ω) = xj) = yj}.

Hence the expectation of the random variable ϕ = ϕ(ξ) can be
calculated as

Eϕ(ξ) =
∑
j

ϕ(xj)Pξ(xj),

where
Pξ(xj) = P{ω : ξ(ω) = xj}.

Exercise. Let the random variable ξ take the values 0, 10 with
probability 1/2

ξ :
xj 0 10

Pj 1/2 1/2

Find the expectation of ξ.

Eξ = 0 · 1
2
+ 10

1

2
=

10

2
= 5

Example. Let ξ be a Bernoulli random variable, taking the
values 1 and 0 with probabilities p and q (p + q = 1). Then
Eξ = 1 · P (ξ = 1) + 0 · P (ξ = 0) = p.
Example. Let ξ1, ..., ξn be n Bernoulli random variables
with P (ξj = 1) = p, P (ξj = 0) = q, p + q = 1. Then if
Sn = ξ1 + ...+ ξn we find ESn = Eξ1 + ...+Eξn = np.
Example. Let ξ be a Poisson random variable

P (ξ = m) =
λm

m!
e−λ.
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Then

Eξ =

∞∑
m=1

m
λm

m!
e−λ = λe−λ

∞∑
m=1

λm−1

(m− 1)!
= λe−λeλ = λ.

Because ∞∑
m=1

λm−1

(m− 1)!
= eλ.

10.1 Conditional expectations
Given a probability space (Ω, S, P ) and two events A and B in S
with P (B) > 0
Definition. The conditional probability of A given B is defined
as

P (A/B) := P (A ∩B)/P (B).

The conditional expectation of random variable X given the
event B is defined (when it exists) as

E(X/B) :=

(∫
B
XdP

)
/P (B).

Martingales. Suppose {Bt}t∈T is a family of σ-algebras with
Bt ⊂ Bn ⊂ B for t ≤ n. Then {Xt, Bt} is called a martingale iff
E|Xt| < ∞ for all t and Xt = E(Xn/Bt) whenever t ≤ n

If we think of Xt as the fortune at time t of a gambler, then
a martingale is "fair" game in the sense that at any time t, no
matter the history up to the present (given by Bt), the expected
net gain or loss from further play to time t is 0.

11 Variance
Definition. The variance (or dispersion) of the random variable
ξ (denoted by V ξ) is

V ξ
def
= E(ξ − Eξ)2.
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The number σ def
= +

√
V ξ is called the standard deviation. Since

E(ξ −Eξ)2 = E
(
ξ2 − 2ξEξ + (Eξ)2

)
=

= Eξ2 − 2Eξ · Eξ + E(Eξ)2 =
= Eξ2 − 2(Eξ)2 + (Eξ)2 = Eξ2 − (Eξ)2,

we have
V ξ = Eξ2 − (Eξ)2.

Clearly V ξ ≥ 0. It follows from definition that

V (a+ bξ) = E[a+ bξ − E(a+ bξ)]2 =
= E(a+ bξ − a− bEξ)2 =
= b2E(ξ − Eξ)2 = b2 · V ξ,

a and b are constants. In particular,

V a = 0, V (bξ) = b2V ξ.

Theorem. Let ξ and η be a random variables. Then

V (ξ + η) = E((ξ − Eξ) + (η − Eη))2 = E[(ξ − Eξ)2+
+ 2(ξ − Eξ)(η − Eη) + (η − Eη)2] =
= E(ξ − Eξ)2 + E(η −Eη)2+
+ 2E[(ξ − Eξ)(η − Eη)] =
= V ξ + V η + 2E[(ξ − Eξ)(η − Eη)].

Write cov(ξ, η) def
= E[(ξ −Eξ)(η−Eη)]. This number is called

the covariance of ξ and η.
If V ξ > 0 and V η > 0, then

ρ(ξ, η)
def
=

cov(ξ, η)√
V ξ · V η

is called the correlation coefficient of ξ and η.
It is easy to observe that if ξ and η are independent, so are

ξ − Eξ and η − Eη. Consequently by property 5 of expectations
(If ξ and η are independent, then Eξη = Eξ · Eη), we have

cov(ξ, η) = E[(ξ − Eξ)(η − Eη)] = E(ξ − Eξ) · E(η − Eη) = 0.
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So, if ξ and η are independent, we have cov(ξ, η) = 0! The converse
isn’t correct

cov(ξ, η) = 0|| =⇒/ ||P (ξ = xj, η = yk) = P (ξ = xj)P (η = yk)

for all xj ∈ x and yk ∈ y, where x and y the set of values ξ and η
respectively.

Using the notation that we introduced for covariance, we have

V (ξ + η) = V ξ + V η + 2cov(ξ, η)

Corollary. If random variables ξ and η are independent, the vari-
ance of the sum ξ + η is equal to the sum of the variances

V (ξ + η) = V ξ + V η

Remark. The last formula is still valid under weaker hypotheses
than the independence of ξ and η. In fact, it is enough to suppose
that ξ and η are uncorrelated i. e.

cov(ξ, η) = 0.

Example. If ξ is a Bernoulli random variable, taking the values
1 and 0 with probabilities p and q, then

V ξ = E(ξ − Eξ)2 = E(ξ − p)2 =
= (1− p)2P (ξ = 1) + p2P (ξ = 0) =
= (1− p)2 · p+ p2q = q2p+ p2q = qp.

It follows that if ξ1, ..., ξn are independent identically distributed
Bernoulli random variables, and

Sn = ξ1 + ...+ ξn then V Sn = nV ξ1 = npq.

Example. Let ξ be a Poisson random variable

P (ξ = m) =
λme−λ

m!
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Then

V ξ = Eξ2 − (Eξ)2 =
∞∑

m=1
m2 λme−λ

m! − λ2 =

= λ
∞∑

m=1
m λm−1

(m−1)!e
−λ − λ2 =

= λ
∞∑

m=1
(m− 1) λm−1

(m−1)!e
−λ + λ

∞∑
m=1

λm−1

(m−1)!e
−λ − λ2 =

= λ2 + λ− λ2 = λ.

Reminder. Eξ = λ, where P (ξ = m) = λme−λ

m! .

12 Limit Theorems

12.1 A Miracle or a rule on a Galton desk?
Lets imagine a desk with obstacles and sections. A particle begins
its way from the top to the bottom of the desk. On the first level
there is only one obstacle and the particle chooses its way randomly
left or right with equal possibility. On the second level there are
two obstacles. The particle meets the first or the second obstacle
and the situation repeats. Finally, the particle finds its place in
the sections. The gadget is known as Galton’s desk. If we repeat
the experience many times the particle will take up its position
under bell-shaped curve ϕ(x) (See Section 9). The question is: Is
this a casual observation or does it represents some kind of a rule?
Later it will be given exact answer by limit theorem for Bernoulli
trials.

Let ξ1, ..., ξn be independent identically distributed random
variables, with P (ξj = 1) = p, P (ξj = 0) = q, j = 1, 2, ..., n,
p + q = 1. This is so called James Bernoulli trials with two out-
comes (success and failure) and probability p of success. Then if
Sn = ξ1 + ...+ ξn we have ESn = np, E(Sn = np)2 = npq.

We set the problem of finding convenient asymptotic formulas,
as n −→ ∞, for P (Sn = m) and for their sum over the values of
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m that satisfy the condition

|xm| = |m− np√
npq

| ≤ c.

12.2 De Moivre’s local limit theorem
Let

ξ1, ..., ξn, ...

be a sequence of independent Bernoulli random variables (i. e.
P (ξj = 1) = p, P (ξj = 0) = q, j = 1, 2, ..., n, p + q = 1) and
Sn = ξ1 + ... + ξn. As before we write Pn(k) = Ck

np
kqn−k (0 ≤

k ≤ n).

Theorem. Let 0 < p < 1; then

Pn(m) = P (Sn = m)

=
1√

2πnpq
exp

{
−(m− np)2

2npq

}
+ o

(
1√
npq

)

uniformly for m such that |m− np| = O(
√
npq).

Proof. The proof depends on Stirling’s formula

n! =
√
2πnn+1/2e−n+Θn, where Θn = O

(
1

n

)
.

Let’s investigate the asymptotic behavior of the binomial dis-
tribution

P (Sn = m) =
n!

m!(n−m)!
pmqn−m.

We have

lnP (Sn = m) = lnn!− lnm!− ln(n−m)! +m ln p+ (n−m) ln q.
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Take into account, that

m = xm
√
npq + np = n(1− q) + xm

√
npq

and
n−m = nq − xm

√
npq.

(for brevity we shall write x instead of xm).

Fig. 13. The Galton’s desk.
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Therefore

lnP (Sn = m) = n lnn+ ln
√
2πn− n+ 0

(
1

n

)
−

− m lnm− ln
√
2πm+m+ 0

(
1

m

)
−

− (n−m) ln(n−m)− ln
√

2π(n −m) + n−m+

+ 0

(
1

n−m

)
+m ln p+ (n−m) ln q = n lnn−

− m lnm− (n−m) ln(n−m) +
1

2
ln

2πn

2π(n−m)2π
+

+ 0

(
1

n

)
+ 0

(
1

m

)
+ 0

(
1

n−m

)
︸ ︷︷ ︸

Rn

+m ln p+

+ (n−m) ln q = −(np+ x
√
npq) ln

(
1 + x

√
npq

np

)
−

− (nq − x
√
npq) ln

(
1− x

√
npq

nq

)
+ ln

1√
2π

+

+
1

2
ln

n

m(n−m)
+Rn = ln

1√
2π

+
1

2
ln

n

(n−m)m
−

− (np+ x
√
npq)

(
xq√
npq

− x2q2

2npq
+ 0

(
1

(npq)3/2

))
−

− (nq − x
√
npq)

(
− xp√

npq
− x2p2

2npq
+ 0

(
1

(npq)3/2

))
+

+ Rn = ln
1√
2π

+
1

2
ln

n

(n−m)m
− x2

2
q +

+
x3q2

2
√
npq

− x2p

2
+

x3p2

2
√
npq

+ 0

(
1

n3/2

)
+ 0

(
1

n

)
=

= ln
1√
2π

+
1

2
ln

n

(n−m)m
− x2

2
+ 0

(
1√
n

)
.

This completes the proof.
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Corollary. The conclusion of the local limit theorem can be put
in the following equivalent form: For all x ∈ R′ such that x =
O(

√
npq), and for m = np + x

√
npq an integer from the set

{0, 1, ..., n}

Pn(m) = Pn(np+ xm
√
npq) ∼ 1√

2πnpq
e−x2/m2

,

i. e. as n → ∞

P (Sn = m) =
e−

x2

2√
2πnpq

[
1 +

(q − p)(x3 − 3x)

6
√
npq

]
+Δ,

where
|Δ| < 0, 15 + 0, 25|p − q|

(npq)3/2
+ e−

3
2

√
npq

sup
m: |xm|≤Ψ(n)

∣∣∣∣Pn(np+ xm
√
npq)

e−x2/2/
√
2πnpq

− 1

∣∣∣∣→ 0

where Ψ(n) = O(
√
npq).

We can reformulate these results in probabilistic language in
the following way:

P (Sn = k) ∼ 1√
2πnpq

e−(k−np)2/2npq, |k − np| = O(
√
npq),

P

(
Sn − np√

npq
= x

)
∼ 1√

2πnpq
e−x2/2, x = O(

√
npq).

If we put

tk = (k − np)/
√
npq and �tk = tk+1 − tk = 1/

√
npq,

the preceding formula assumes the form

P

{
Sn − np√

npq
= tk

}
∼ �tk√

2π
e−t2k/2, tk = O(

√
npq).
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It is clear that �tk = 1/
√
npq → 0, as n → ∞ and the set of

points {tk} at it were "fills" the real line. It is natural to expect
that the last formula can be used to obtain the integral formula

P

{
a <

Sn − np√
npq

≤ b

}
∼

b∫
a

e−x2/2dx.

Let us now give a precise state

12.3 De Moivre-Laplace integral theorem
Let 0 ≤ p < 1, Pn(k) = Ck

np
kqn−k. Then

sup
−∞≤a<b≤∞

∣∣∣∣∣∣P
(
a <

Sn − ESn√
V Sn

≤ b

)
− 1√

2π

b∫
a

e−
x2

2 dx

∣∣∣∣∣∣→ 0

n → ∞. It follows at once from this formula that∣∣∣∣P (A < Sn ≤ B)−
[
Φ

(
B − np√

npq

)
− Φ

(
A− np√

npq

)]∣∣∣∣→ 0;

as n → ∞ where

Φ(x, a, σ) =
1

σ
√
2π

x∫
−∞

exp

{
−(t− a)2

2σ2

}
dt;

Φ(x) =
1√
2π

x∫
−∞

e−
u2

2 du — the normal distribution function.

Φ(x) =
1

2
+

1

2

⎛
⎝ 2√

π

x∫
0

e−t2 dt

⎞
⎠ =

1

2
+

1

2
erf
(

x√
2

)
.

Example. A true die is tossed 12000 times. We ask for the prob-
ability P that the number of G′s lies in the interval (1800, 2100).
The required probability is

Pn(m) =
∑

1800<k≤2100

Ck
12000

(
1
6

)1/2 · (56)12000−k
.
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An exact calculation of this sum would obviously be ra-
ther different. However, if we use the integral theorem we find
that the probability P in question is (n = 12000, p = 1/6,
a = 1800, b = 2100)

Φ

(
2100−2000√
12000· 1

6
· 5
6

)
− Φ

(
1800−2000√
12000· 1

6
· 5
6

)

= Φ(
√
6)− Φ(−2

√
6) = Φ(2,449) − Φ(−4,889) = 0,992.

Where the values of Φ(2,449) and Φ(−4,898) were taken from
tables of Φ(x) (this is normal distribution function).

It should be noted, that

Φ(x) =
1√
2π

x∫
−∞

e−t2/2dt =
1

2
+

1√
2π

x∫
0

e−t2/2dt.

1√
2π

x∫
−x

e−t2/2dt = 1− 1√
2π

−x∫
−∞

− 1

2π

∞∫
x

=

= Φ(x)− 1√
2π

−x∫
−∞

= 2Φ(x)− 1.

In some tables it is possible to meet the function

erf(x) =
2√
π

x∫
0

e−u2
du, (x,∞)

this is an error function (erf). We find that

1√
2π

x∫
0

e−t2/2dt =
1

2
· 2√

π

x√
2∫

0

e−t2dt =
1

2
erf
(

x√
2

)
.
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Φ(x) = 1
2 + 1

2erf(
x√
2
).

It is natural to ask how rapid the approach to zero is in the
Moivre-Laplace Integral Theorem as n → ∞. We quote a result in
this direction

sup
x

|Fn(x)−Φ(x)| ≤ p2 + q2√
npq

,

where
Fn(x) = P

(
Sn − np√

npq
≤ x

)
It is important to recognize that the order of the estimate

1/
√
npq cannot be improved.
In this connection we note that if we change the approximation

in the following way:

P (A < Sn ≤ B)−
[
Φ

(
B − np+ 1/2√

npq

)
− Φ

(
A− np+ 1/2√

npq

)]
(1)

we can get a somewhat better approximation than the approxima-
tion by De Moivre- Laplace Integral Theorem (MLIT).

A B Exact value∑
Cm

n pmqn−m
Normal ap-
proximation
by MLIT

Multiple ap-
proximation
by (1)

n=100 p=0,5
40 60 0,9648 0,9545 0,9643
45 55 0,7287 0,6827 0,7287
55 65 0,1832 0,1573 0,1831

n=300 p=0,5
135 165 0,9267 0,9167 0,9265
140 160 0,7747 0,7518 0,7747
160 180 0,1361 0,1238 0,1361

Finally we should remark that many of the fundamental results
in probability theory are formulated as limit theorems. De Moivre-
Laplace theorem was formulated as a limit theorem, which can
fairly be called the origin of a genuine theory of probability and,
in particular, which led the way to numerous investigations that
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clarified the conditions for validity of the central limit theorem.
The De Moivre-Laplace theorem is the progenitor of the central
limit theorem.

Central Limit Theorem (Lindeberg (1922), Levy (1925)).
Let ξ1, ξ2, . . . be a sequence of independent identically dis-

tributed random variables with Eξ21 < ∞ and Sn = ξ1 + . . . ξn.
Then as n → ∞

P

(
Sn − ESn√

DSn
≤ x

)
→ Φ(x).

13 The Law of Large Numbers
Let us consider a triple (Ω,A, P ) with

Ω = {ω : ω = (a1, ..., an), aj = (0,1)}

A is an algebra of subsets of Ω

p(ω) = p
∑

ajqn−
∑

aj , p+ q = 1.

This triple called a probabilistic model of independent experiments
with two outcomes, or a Bernoulli scheme.

In the following part we study some limiting properties for
Bernoulli trials. These are expressed in terms of random variables
and of the probabilities of events connecting them.

We introduce random variables ξ1, ..., ξn by taking ξj(ω) =
aj j = 1, 2, ..., n where ω = (a1, ..., an). As we saw above,
the Bernoulli variables ξj = ξj(ω) are independent and identically
distributed

P (ξj = 1) = p, P (ξj = 0) = q, j = 1, ..., n.

It is natural to think of ξj as describing the result of an experiment
at the j-th stage (or at a time j).

Let us put Sn = Sn(ω) and Sk = ξ1 + ... + ξn. As we found
above, ESn = np and consequently E Sn

n = p.
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In other words, the mean value of the frequency of "success",
i. e. Sn

n coincides with the probability p of success. Hence we are
led to ask how much the frequency Sn

n of success differs from its
probability p.

First of all it should be noted that we cannot expect that for
sufficiently small ε > 0 and for sufficiently large n, the deviation
Sn
n from p is less than ε for all ω, (Sn = Sn(ω)) i. e. that∣∣∣∣Sn

n
− p

∣∣∣∣ ≤ ε, for all ω ∈ Ω. (2)

In fact, when 0 < p < 1,

P

{
Sn

n
= 1

}
= P (ξ1 = 1, ξ2 = 1, ..., ξn = 1) = pn,

P

(
Sn

n
= 0

)
= P (ξ1 = 0, ..., ξn = 0) = qn,

hence it follows that (2) is not satisfied for sufficiently small ε > 0.
We observe, however, that when n is large the probabilities of

the events {Sn/n = 1} and {Sn/n = 0} are small. It is therefore
natural to expect that the total probability of the events for which

|[Sn(ω)/n]− p| > ε

will also be small when n is sufficiently large.
We shall accordingly try to estimate the probability of the event

ω : |[Sn(ω)/n] − p| > ε. For this purpose we need the following
inequality.

Chebyshev’s inequality. (Chebyshev Pafnuti (1821–1894)
— Russian mathematicians). Let (Ω,A,P) be a probability
space and ξ = ξ(ω) be a nonnegative random variable (ξ ≥ 0).
Then, Markov’s inequality (Markov Andrey (1856–1922) —
Russian mathematicians)

Eξ =
∑
j

xjpj ≥
∑

j:xj>ε

= ε
∑

j:xj>ε

pj = εp(ξ > ε).
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P (ξ ≥ ε) ≤ Eξ/ε for all ε > 0. (3)

Proof. We notice that

ξ = ξI(ξ ≥ ε) + ξI(ξ < ε) > ξI(ξ ≥ ε) ≥ εI(ξ ≥ ε),

where I(A) is the indicator of A.
Then, by the properties of expectation,

Eξ ≥ εEI(ξ ≥ ε) = εP (ξ ≥ ε),which establishes (3).

Corollary. If ξ is any random variable, we have for all ε > 0

P{|ξ| ≥ ε} ≤ E|ξ|/ε,
P{|ξ| ≥ ε} = P (ξ2 ≥ ε2} ≤ Eξ2

ε2

P{|ξ − Eξ| ≥ ε} ≤ V ξ/ε2.

In the last of these inequalities, take ξ = Sn/n and take in account
that if ξ1, ..., ξn are i.i.d. Bernoulli random variable and Sn =
ξ1 + ...+ ξn then V Sn = npq, we obtain

P

(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ ε

)
≤ V (Sn/n)

ε2
=

V Sn

n2ε2
=

npq

n2ε2
=

pq

nε2
.

Therefore
P

{∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ ε

}
≤ pq

nε2
≤ 1

4nε2
.

So we have
Theorem (J. Bernoulli 1713). The probability that the frequency
Sn
n differs from its mean (E Sn

n = p) value p by a quantity of mod-
ulus at least equal to ε tends to zero as n → ∞, however small
ε > 0 is chosen.
Reminder.

I(A) =

{
1 ω ∈ A
0 ω∈̄A

EI(A) = 1 · P (A) + 0 · P (Ā) = P (A).
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Appendix:
Order of magnitude as x −→ ∞
Here we introduce the little "o" [ou] and big "O" [ou] notation
invented by number theorists a hundred years ago and now com-
monplace in mathematical analysis and computer science.
Definition. A function f is of smaller order than g as x → ∞ if

lim
x→∞

f(x)

g(x)
= 0.

We indicate this by writing f = o(g); ("f is little-oh of g").
Notice that saying f = o(g) as x → ∞ is another way of saying
that f grows slower than g as x → ∞.
Example. lnx = o(x) as x → ∞ because

lim
x→∞

lnx

x
= 0.

x2 = o(x3 + 1) as x → ∞ because

lim
x→∞

x2

x3 + 1
= 0.

Definition. A function f is of at most the order of g as x → ∞ if
there is a positive integer M for which f(x)

g(x) ≤ M , for x sufficiently
large. We indicate this by writing f = O(g) ("f is big-oh of g").
Example. x + sinx = O(x) as x → ∞ because x+sinx

x ≤ 2 for x
sufficiently large and M = 2.
Example. ex + x2 = O(ex) as x → ∞ and M = 2 because
ax+ b = O(x) as x → ∞−M = a+ 1.

If you look at the definitions again, you will see that
f = o(g)|| =⇒ ||f = O(g).
Definition. A function f is asymptotically equal to g(x) if

lim
x→∞

f(x)

g(x)
= 1.

We write f(x) ∼ g(x).
Example. x2

x+logx ∼ x as x → ∞. sinx ∼ x as x → 0. Notice
that O(1) signifies "any bounded function"; and o(1) "any function
tending to zero".
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1616 Валлис 1703 1752 Лежандр 831 3 1856 Стилтьес 8941

1601 Ферма 1665 1749 Лаплас 8271 1871 Борель 19561678 Монмор 7191

Хронологическая таблица

1600 1650 1700 1750 1800 1850 1900

1700 Даниил Бернулли 1782 1801 Остроградский 1861

1792 Лобачевский 18561695 Николай Бернули 1726 1857 Ляпунов 1918

1821 Чебышев 1894

1667 Иоганн Бернулли 1748 1781 Пуассон 1840 1856 Марков 1922

1654 Якоб Бернулли 1705 1736 Лагранж 1813 1822 Бертран 1900

1501 Кардано 1576
1707 Эйлер 1783 1815 Вейерштрасс 1897

1777 Гаусс 18551692 Стирлинг 17701596 Декарт 1650

1643 Ньютон 1727 1804 Буняковский 1889

1862 Гильберт 19431789 Коши 18571717 Д Аламбер 1783’1646 Лейбниц 17161540 Лудольф 1610

1768 Фурье 1830 1854 Пуанкаре 19121667 Муавр 17541623 Паскаль 1662
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